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Abstract

Pretrained language models have significantly
advanced the state of the art in generating
distributed representations of text. However,
they do not account for the wide variety of
available expert-generated language resources
and lexicons that explicitly encode linguis-
tic/domain knowledge. Such lexicons can be
paired with learned embeddings to further en-
hance NLP prediction and linguistic inquiry.
In this work we present Textagon, a Python
package for generating parallel representations
for text based on predefined lexicons and se-
lecting representations that provide the most
information. We discuss the motivation be-
hind the software, its implementation, as well
as two case studies for its use to demonstrate
operational utility.

PyPi: https://pypi.org/project/textagon/

GitHub: https://github.com/nd-hal/textagon
YouTube: https://youtu.be/zUxamCT8mPg

1 Introduction

Learning distributed representations of text via
large pretrained language models (PLMs) trained
with massive amounts of text data has been a
driver of recent progress in NLP. Pretrained, nu-
meric representations of words and sentences en-
code semantic similarity in a high-dimensional
space. While PLMs’ performance has been im-
pressive, distributed representations learned from
large general corpora are not the only type of rep-
resentation available.

For decades, linguistic researchers and so-
cial scientists have worked with representations
of texts that are based on grammatical struc-
ture, linguistic theories, or domain-adapted lex-
icons. These lexicons cover ideational, textual,
and interpersonal functions of language (Sys-
temic Functional Linguistic Theory, Halliday and

∗Work performed while at Notre Dame.

Matthiessen, 2014), the pragmatic dimension of
language, including actions and intentions (Lan-
guage Action Perspective, Searle, 1969), key
psychological processes (e.g., Pennebaker et al.,
2001), and domain-specific lexicons, which shed
light on task- and context-related nuances (e.g., fi-
nance, Loughran and McDonald, 2011). This liter-
ature recognizes that although text, as a data struc-
ture, is 1-dimensional, the meanings embodied in
natural language are multi-dimensional.

Increasingly, NLP is being used for computa-
tional social science tasks where text is scored
(i.e., text sequence classification) or analyzed to
predict, explain, or describe phenomena mani-
festing in user-generated content (Grimmer et al.,
2022). In these contexts, the use of PLMs has been
impeded by several factors. First, labeled data
for many social science use cases—such as exam-
ining in-text manifestations of confidence, trust,
anxiety, distress, empathy, and personality traits—
is insufficient for fine-tuning PLMs (Macanovic,
2022). Consequently, researchers and practition-
ers are concerned about error rates in text classi-
fication, which may statistically bias estimation in
downstream descriptions and explanations (Yang
et al., 2018; Macanovic, 2022). Moreover, those
without sufficient computational resources have
concerns about whether smaller PLMs can still
provide competitive models (Macanovic, 2022).
Second, disciplinary norms often dictate the use of
certain linguistic resources for content analysis or
expected levels of methodological interpretability.

Recent studies have highlighted the potential
of extracting and leveraging features from vari-
ous linguistic dimensions to boost performance in
downstream tasks (Yang et al., 2023; Qin et al.,
2024b; Abdi et al., 2019; Ahmad et al., 2020; Qin
et al., 2024a) via tailored models. Prior work
has shown that combining structured features with
PLMs can tackle advanced tasks such as bias cor-
rection (Lalor et al., 2022), out-of-domain detec-
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tion (Duan et al., 2022), and misinformation iden-
tification (Lee and Ram, 2024). These models can
discern features potentially overlooked by larger
transformer-based pretrained models.

In this work we present Textagon, a Python
package for generating parallel representations for
text. We define parallel representations as token-
level features extracted from multiple lexicons
that, when combined, form a token-lexicon fea-
ture matrix. Textagon provides functionality to
generate parallel representations as well as a grid-
based feature weighting module to identify the
most informative representations. The package al-
lows practitioners to expand raw text data to multi-
dimension data based on linguistic theories to aug-
ment PLMs. Our contributions are a) Textagon,
an open-source Python package for generating and
selecting parallel representations for text, b) a de-
tailed description of the software architecture, and
c) illustrative examples to facilitate easy use of the
software. Textagon is available via PyPi.1

2 Related Work

Recent work has shown that feature expansion and
enrichment can enhance text classification tasks
within neural network architectures (Zimbra et al.,
2018; Huang et al., 2017). For example, Ah-
mad et al. (2020) generate diverse representations
for use in CNN and Bi-LSTM models for ana-
lyzing comprehensive psychometric dimensions.
Automated Concatenation of Embeddings (ACE,
Wang et al., 2020a) automates the process of find-
ing better concatenations of distributed embed-
dings for structured prediction tasks using rein-
forcement learning. Alghanmi et al. (2020) com-
bine BERT with static word embeddings. Wang
et al. (2020b) demonstrate that combining dis-
tributed representations can benefit the language
model. Bollegala (2022) show that weighted con-
catenation can be seen as a spectrum matching op-
eration between source embeddings and the meta-
embedding. To the best of our knowledge, there is
no existing package for generating and combining
parallel representations.

3 The Textagon Package

Textagon implements two key components.
The first generates the parallel representations
based on the available lexicons. The second com-
ponent scores and ranks the top weighted paral-

1https://pypi.org/project/textagon/

import pandas as pd
from textagon.textagon import Textagon
from textagon.tGBS import tGBS

df = pd.read_csv(
'./sample_data/dvd.txt',
sep = '\t',
header = None,
names = ["classLabels", "corpus"]

)

tgon = Textagon(
inputFile = df,
outputFileName = "dvd"

)

tgon.RunFeatureConstruction()
tgon.RunPostFeatureConstruction()

(a)

featuresFile = './output/dvd_key.txt'
trainFile = './output/dvd.csv'
weightFile = './output/dvd_weights.txt'

ranker = tGBS(
featuresFile = featuresFile,
trainFile = trainFile,
weightFile = weightFile

)

tGBS.RankRepresentations()

(b)

Figure 1: An example of running Textagon: First
generating representations (1a) followed by ranking the
representations based on informativeness (1b).

lel representations so that an appropriate sub-set
of representations can be used for specific tasks.
An example to generate and score parallel repre-
sentations with Textagon is shown in Figure 1.

3.1 Generating Representations

Textagon generates and ranks parallel represen-
tations of token-level lexical features. By parallel
representations, we are referring to a matrix struc-
ture for an input string. Each column represents
a token, and each row represents a lexicon. Each
cell then contains the appropriate lexicon tag for
the given token. If there is not a tag, then the to-
ken is retained as-is.

As a running example, consider the following
text: “hypotension. Massive headaches, bp was
still on the low side.” Textagon can expand this
into 20 different representations categorized into
five groups (Table 1). The base representation,
Word, represents a refined version of the origi-
nal data. Importantly, the parallel representations
(Table 1) are token-aligned and can be considered
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Group Representation Description Example

Word Baseline hypotension . massive headaches , bp was still on the low side .

T

Hypernym Replace a token with its superordinate CARDIOVASCULAR_DISEASE . massive ACHE , bp was still on the low
GEOLOGICAL_FORMATION .

NER Named entity recognition (NER) tags hypotension . massive headaches , ORG was still on the low side .
LexADR Adverse drug reaction (ADR) tags REACTION . massive REACTION , bp was still on the low side .
LexSYN Synonym cluster label tags derived by

clustering tokens based on their synsets
hypotension . massive SYN217 , bp was still on the SYN23 SYN345 .

LexGloVeCC GLoVe Common Crawl labels derived
clustering tokens based on embeddings

GLOVECC234 GLOVECC251 GLOVECC312 GLOVECC457 , GLOVECC244
GLOVECC46 GLOVECC46 GLOVECC251 GLOVECC251 GLOVECC312
GLOVECC440 GLOVECC251

LexGloVeTW GLoVe Twitter labels derived clustering
tokens based on embeddings

GLOVETW23 GLOVETW122 GLOVETW147 GLOVETW165 GLOVETW285
GLOVETW392 GLOVETW119 GLOVETW119 GLOVETW238
GLOVETW238 GLOVETW26 GLOVETW349 GLOVETW122

LexGloVeWG GLoVe Wikipedia plus Gigaword labels
derived clustering tokens based on em-
beddings

GLOVEWG279 GLOVEWG436 GLOVEWG364 GLOVEWG329
GLOVEWG414 GLOVEWG145 GLOVEWG436 GLOVEWG436
GLOVEWG436 GLOVEWG436 GLOVEWG18 GLOVEWG353
GLOVEWG436

SA

Sentiment Positive, negative, or neutral tags LPOSMNEG . LPOSLNEG LPOSLNEG , bp was LPOSMNEG on the
LPOSLNEG LPOSLNEG .

Affect Affect tags hypotension . massive headaches , bp was still on the SADNESS side .
LexEMOLEX NRC Emotion Lexicon hypotension . EMOFEARNEGATIVESADNESSSURPRISE headaches , bp

was still on the low side .
LexAILEXCAT Affect Intensity Lexical Categorization hypotension . massive FEAR , bp was still on the low side .
LexAILEXINT Affect Intensity Lexical Intensity hypotension massive MFEAR bp was still on the low side nan

P
LexLIWC Linguistic inquiry and word count

(LIWC) categories
hypotension . massive HEALTH , bp AUXVB ADVERBS FUNCT ARTICLE
SPACE RELATIV .

LexSAVLEX SAVLEX word standardization hypotension . massive headaches , bp was still on the WP KA .

SS

POS POS tags NOUN PUNCT ADJ NOUN PUNCT PROPN AUX ADV ADP DET ADJ
NOUN PUNCT

Misspelling Tag for misspellings hypotension . massive headaches , MISSPELLING was still on the low side .
Legomena Tag for unique words hypotension . massive headaches , bp was still on the low side .

S

Word&Sense Labels based on distinct word senses hypotension|_|01 . massive|_|04 headaches|_|02 , bp was still|_|04 on the
low|_|04 side|_|01 .

Word&POS Part-of-speech (POS) tags tupled with
their respective word occurrences

hypotension|_|NOUN .|_|PUNCT massive|_|ADJ headaches|_|NOUN
,|_|PUNCT bp|_|PROPN was|_|AUX still|_|ADV on|_|ADP the|_|DET
low|_|ADJ side|_|NOUN .|_|PUNCT

Word&NER Named-entity recognition (NER) tags hypotension . massive headaches , bp|_|ORG was still on the low side .

Table 1: A description of the parallel representations generated by Textagon for an illustrative example.
T: Topical, SA: Sentiment and affect, P: Psychological and pragmatic, SS: Syntax and style, S: Semantics.

as a token-lexicon matrix representation. This al-
lows for easier integration into convolutional or
sequence-based learning representations and for
easier content analysis of text or PLM attention
mechanisms. Moreover, the included representa-
tions are guided by linguistic and social science
theories (Searle, 1969; Pennebaker et al., 2001;
Mohammad and Turney, 2010) and can be easily
extended by users via custom lexicons.

3.2 Representation Ranking with tGBS

Textagon first generates and selects represen-
tations for feature extraction. As Table 1 shows,
twenty representations can be generated for a
given dataset (though users can add additional
lexicon-based representations as needed). Paral-
lel representations can provide diverse linguistic
perspectives; however, they can also introduce re-
dundant information, potentially diminishing their
utility. To address this, Textagon implements
an n-gram Grid-Based Subsumption (GBS) algo-
rithm (Ahmad et al., 2020) to retain key features,

making the embedding more effective. Subsump-
tion filters higher-order features to remove redun-
dancy and improve information gain (Riloff et al.,
2006; Abbasi et al., 2011).

GBS Calculation. We modify the n-gram GBS
algorithm of Ahmad et al. (2020) to fit our token-
level parallel representation design. The tokenized
GBS algorithm (tGBS) gives each token a GBS
weight for each representation (refer to Appendix
A for details). tGBS generates token importance
weights for each token in every representation.

To select the most informative representations
for inclusion, we calculate a score for each repre-
sentation, SR, which reflects the information gain
of the entire representation compared to the origi-
nal text data. To calculate SR we consider the ratio
of tokens in a representation with non-zero tGBS
weight. Specifically, for a tokenized input xi and a
representation R, we calculate the count of tokens
xi where the tGBS score of xi in representation R
is greater than some (small, non-zero) threshold θ.
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SR =
|{xi ∈ X|tGBS(xi, R) > θ}|

|X| (1)

This ratio, SR, offers a quantitative insight into
the proportion of significant features retained in
each representation, thereby serving as an indica-
tor of the representation’s richness or sparsity con-
cerning the underlying dataset. After generation,
we rank representations based on SR. Users can
then select the appropriate number of representa-
tions based on their use cases.

4 Evaluation

In this section, we evaluate the effectiveness of
Textagon in three ways. First, we present
a case study using representations generated
by Textagon to compare human- and LLM-
generated essays. Second, we analyze the ex-
pressive power of the tGBS-based parallel rep-
resentations generated by Textagon on 13
testbeds/tasks covering domains such as health,
medicine, and disasters, and tasks including in-
ferring trust, anxiety, confidence, distress, and
empathy (Table 2). Third, on the same 13
testbeds, we show how representations generated
by Textagon can boost predictive performance
on encoder-only (e.g., BERT, RoBERTa, Dis-
tilBERT) and decoder-only models (e.g., GPT).
These cases illustrate how Textagon can sup-
port context-specific computational social science
via direct text analysis as well as analysis of fine-
tuned PLMs. Future work using Textagon can
build on these examples.2

4.1 Content Analysis Case Study

Token-aligned parallel representations can shed
light on the important linguistic dimensions of a
given token as they relate to a downstream com-
putational social science task of interest. Im-
portantly, Textagon can be used for textual
content analysis by combining parallel represen-
tations and class labels to highlight differences
across classes. Because representations are token-
aligned, Textagon can also surface linguistic
dimensions of model attention when fine-tuning
a PLM for a target application domain. Here,
we present a small case study on automated es-
say scoring (AES), a problem that is of interest

2Notebooks for our evaluations are available at https:
//github.com/nd-hal/textagon/.

to the NLP community as well as computational
social scientists (Taghipour and Ng, 2016; Yang
et al., 2020). We use the publicly available hu-
man and GPT-generated essay testbed developed
by Bevilacqua et al. (2025) and the AskRating
drug sentiment dataset (Sharif et al., 2014; Lalor
et al., 2022) to explore: (1) linguistic differences
between human and GPT essays; (2) BERT at-
tention patterns when fine-tuned to score human
versus GPT-generated essays. The essay testbed
is comprised of over 15K human-generated es-
says and approximately 1.5K GPT-generated es-
says. GPT essays were constructed using the
same human essay prompts taken from popular
AES testbeds, ASAP (Mathias and Bhattacharyya,
2018) and FCE (Yannakoudakis et al., 2011).

We first extracted parallel representations for
human- and GPT-generated essays and used tGBS
to score them. Here the label for identifying the
most informative representations is the source of
the essay (e.g., human or GPT). We then aggre-
gated the expressive power across representations
by their linguistic categories. The results appear in
Figure 2a as the “Human/LLM - Essays” bar series
(middle bars). For comparison, we included two
sets of baselines. First, we ran a similar analysis
on the AskRating testbed, with two label options
for representation ranking: gender (authors self-
reported as male/female) and age (above/below
the median age). These results are shown in the
two leftmost bar series in Figure 2a. For the
second baseline we focus on the 15K human es-
says, and for labels we use ethnicity (self-reported
Asian/non-Asian authors) and age (older versus
younger authors). These two series appear as the
rightmost bars in Figure 2a.

As shown in Figure 2a, we find that the
parallel representational composition for human
versus GPT-generated essays across dimensions
such as topical, sentiment/affect, psychologi-
cal/pragmatic, and style/syntax differ far more
than, say, essays written by different (self-
reported) human demographic groups (e.g., Asian
versus non-Asian or younger versus older au-
thors). In fact, the parallel representational com-
positions are akin to those for different demo-
graphic groups in the AskRating online health
forum testbed (e.g., differences between gender
and age of the health forum participants). These
results can shed light on the linguistic differ-
ences in user-generated content created by differ-
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(a) Parallel representation profiles for human versus GPT-
generated essays

(b) Parallel representation profiles for most attended to-
kens in fine-tuned BERT in human versus GPT-generated
essays

Figure 2: Results of our content analysis case study.

Figure 3: Cumulative expressive power of parallel representations in Textagon, across testbeds, by category.

ent user sub-groups, as well as differences be-
tween human-LLM content in the era of genera-
tive AI.

Next, we fine-tuned a BERT model (bert-base-
uncased) on the human-generated essays. We then
extracted the top sixty most prevalent tokens in hu-
man and GPT-generated essays, respectively, and
passed them through the fine-tuned BERT to see
how the attention layers were attending to these
tokens. For the tokens that BERT was attending
to (i.e., where aggregated average attention scores
are greater than a predefined threshold t), we then
analyzed their tGBS-processed parallel token rep-
resentations for analysis (Figure 2b).

The bars depict the proportion of the most at-
tended to tokens in the fine-tuned BERT model
that have an informative parallel token in that re-
spective language dimension (e.g., word sense,
topical, sentiment/affect, etc.). Notably, the re-
sults reveal that although the BERT attention for
top human/GPT tokens is comparable in terms
of its parallel representational composition for
word sense and topical tokens, top human texts

contain more sentiment/affect, psychological pro-
cess, and syntax/style information (e.g., once-
used/hapax legomenon tokens, misspellings, char-
acters). Conversely, the top GPT tokens attended
to are richer in terms of the pragmatic dimensions
of language (e.g., actions, intentions, declaratives,
etc.). These results, which are made possible
via parallel representation generation and token-
aligned tGBS scoring via Textagon, illustrate
deeper PLM content analysis affordances enabled
by Textagon in an important computational so-
cial science context.

4.2 Expressive Power Results

Next, we show the expressive power of the paral-
lel representations produced by Textagon, rel-
ative to the baseline word token representation,
using tGBS (Figure 3). As representations are
added across linguistic categories, the amount of
information included increases. Looking at the
rightmost side of the figure, we note that the to-
tal amount of additional information expressed (in
terms of potentially informative tokens across the
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20 representations) ranges from 4x-7x. These rep-
resentations are then sorted on a per-dataset ba-
sis to identify the top representations for inclu-
sion into downstream tasks (e.g., content analysis,
classification). Next, we show how this additional
expressive power can translate into enhanced text
classification predictive power.

Dataset N Reference

Anxiety

8,502

(Ahmad et al., 2020;
Abbasi et al., 2021;
Lalor et al., 2022,
2024)

Numeracy
SubjectiveLit
TrustPhys

AskRating 20,000 (Sharif et al., 2014;
Lalor et al., 2022)

Distress 1,860 (Buechel et al., 2018)Empathy

DisasterTweets 7,613 (Howard et al., 2019;
Cloutier and Japkow-
icz, 2023)

Jigsaw 20,000 (Adams et al., 2017)

Quora20k 20,000 (DataCanary et al.,
2017)

TweetsADR 5,009 (Hassan et al., 2013;
Zimbra et al., 2018)

WitnessAccuracy 2,224 (Dobolyi and Dodson,
2018)WitnessConfidence

Table 2: Datasets used in our classification example.
Please refer to the original citations for further details
on data collection, validation, etc.

4.3 Text Classification Performance

We assess the potential lift to PLM classifiers
by comparing a directly fine-tuned PLM baseline
classifier with one where Textagon features ex-
tracted from the parallel representations are con-
catenated with PLMs during the fine-tuning pro-
cess. Concatenation occurs with the embeddings
from the transformer-based models (See Figure 5,
panel C in the appendices) and are forwarded into
a multilayer perceptron (MLP) to produce the pre-
diction output. The included PLMs were: BERT
(Devlin et al., 2018), RoBERTa (Liu et al., 2019),
DistilBERT (Sanh et al., 2019), and GPT-2 (Rad-
ford et al., 2019).

Figure 4 shows AUC performance results across
a collection of benchmarking datasets (Table 2).
Incorporating Textagon parallel representations
to the classification tasks typically improves pre-
dictive performance, with lifts on BERT and
RoBERTa ranging from 1%-5% in most cases.
Gains on smaller PLMs such as DistilBERT were

even more pronounced. Textagon enables the
identification of more informative parallel repre-
sentations for each task, which can have important
implications for downstream explanatory and de-
scriptive insights (Yang et al., 2018).

5 Conclusion

In this work, we have presented Textagon, a
Python package for generating and selecting in-
formative, theory-driven parallel representations.
Textagon implements several key components
to facilitate parallel representation generation and
selection. Token-level tGBS calculation measures
the information gain of each representation com-
pared to the original text data to identify those
representations that can improve model perfor-
mance. The output representations can then be
used as standalone features for downstream tasks
or can be concatenated with embeddings from
PLMs for a richer representation of the input text
before classification. We demonstrate use cases
of Textagon for content analysis and enhanc-
ing predictive performance. Textagon can fa-
cilitate linguistic examinations of which lexicons
provide the most information and which are most
beneficial to PLMs for classification tasks. In ad-
dition, Textagon can incorporate new lexicons
as future researchers develop them to further en-
hance predictive power. Our work has important
implications for computational social science re-
searchers and practitioners.

There are several limitations for this work.
Textagon relies on the quality and availabil-
ity of input lexicons for parallel representation
generation. What’s more, lexicons are inherently
incomplete in that they may only have tags for
a subset of tokens. Researchers incorporating
Textagon should ensure that the lexicons used
are appropriate for their use cases. The incor-
porated lexicons are appropriate for open-domain
text, but if needed can be augmented with domain-
specific resources as well (e.g., Loughran and Mc-
Donald, 2011). Generating and selecting repre-
sentations can be computationally expensive, in
particular for large datasets. While we propose
an information-gain heuristic for representation
selection (Appendix B), future work on efficient
generation and selection can improve processing
speed for the overall pipeline.
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Figure 4: Comparing base PLM models with Textagon across benchmarking datasets. Textagon improves
performance in 46 out of 52 task-model settings (88.5%).
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A Token GBS

For parallel representations R = {r1, r2, ..., rm},
the initial weight of a 1-gram feature fix from rep-
resentation rx is given by:

w(fix) = max
ca,cb

(
p(fix|ca) log p(fix|ca)

p(fix|cb)

)
+ s(fix) (2)

where the first term is the log-likelihood ratio
that measures discriminatory potential and s(fix)
captures the semantic orientation:

s(fix) =
1

dw

d∑

y=1

w∑

q=1

[pos(fix, q)− neg(fix, q)] (3)

This ensures the differentiation of features with
opposing orientations. For subsumption within rx,
each 1-gram fix with w(fix) > 0 is compared
to every other 1-gram. If the classification of fix
matches that of another 1-gram, given by:

c(fix) = argmax
ca,cb

(
p(fix|ca) log p(fix|ca)

p(fix|cb)

)
+s(fix) (4)

subsumption decisions are made based on a
threshold t:

w(fix) =

{
0 if w(fix) ≤ w(fux) + t
w(fix) otherwise . (5)

For each pair of representations rx and rz , 1-
gram features are selected into subsets A and B.
Using k-Means clustering with k = 2, the result is
G = {g1, g2} clusters. A link between rx and rz
is based on entropy reduction:

L(rx, rz) =

{
1 if H(G|r)

H(G) ≤ l

0 otherwise
(6)

The entropy across clusters is denoted as H(G).
The entropy H(G|r) considering a specific repre-
sentation r (either rx or rz) is defined as:

H(G|r) = −
∑

r∈{rx,rz}
P (r)

∑

δ∈G

P (δ|r) log2 P (δ|r). (7)

After establishing links, subsumption between
rx and rz is performed in a similar manner, but
bidirectionally.

Here, correlated 1-gram features between
linked representations rx and rz are addressed.
For every pair of representations rx and rz with
L(rx, rz) = 1, any remaining feature fijx in rx
with weight w(fijx) > 0 is compared against all
other remaining features fuvz in rz with weight
greater than 0, given j = v. If the correlation be-
tween fijx and fuvz surpasses the threshold p, then
w(fijx) is set to 0.
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Figure 5: Example of applying Textagon to a classification pipeline.

B Classification Details

Figure 5 shows the pipeline for our classification
example. We first extract and score represen-
tations using Textagon. We then extract fea-
tures from the parallel representations in a high-
dimensional space. The third component uses
the extracted features either as standalone fea-
tures or concatenated with embedding outputs of a
transformer-based model as input to a downstream
prediction model. This component also evaluates
the predictions and returns the evaluation to the
first component for assessing representation com-
binations.

B.1 Selecting the Representation Space
Having generated representations and calculated
SR, the next step is to decide which represen-
tations to include alongside the word representa-
tions. We rely on two selection criteria: treating
SR as information gain and a search space lim-
iting heuristic. We first sort the representations
by SR and select the top n based on SR. We
then search through all three-way representation
combinations. This reduces the search complexity
from O(2n) to O(n+

(
n
3

)
) = O(n3).

B.2 Representation Controller
Having identified the pool of candidate represen-
tation combinations, the representation controller
iterates over the representation space. Given a
combination, the representation controller takes
the embedding of each contained representation
from the text data and concatenates all embed-
dings in parallel (Figure 5, panel B). The con-
catenation is taken as the input data for the end-
to-end, CNN feature extraction model. We first

process each representation into embeddable data.
We then convert each representation text data into
aligned, word-index-based numerical data.

B.2.1 Optimal Search of Representations

As discussed, we do not use a greedy algorithm
initially because the initial representation space
without any constraints is too large to be effi-
ciently searched. When we contain the upper
bound of the representation space complexity to
O(n3), we can use a greedy search to identify the
best combination of representations.

We evaluate each representation individually
and store the best AUC. Then, we perform a
greedy search to find the best combination of three
representations. We iterate through all possible
combinations of three different representations r1,
r2, r3 from R, train the model, and update the best
AUC and the corresponding combination if a bet-
ter AUC is found.

B.2.2 End-to-end Feature Extraction

The input data, which the representation con-
troller generates, contains features not only within
but also across representation embeddings. Such
high-dimensional features can be captured by a
2D CNN. For the embedded data, it will be used
to pretrain an autoencoder (Kaneko and Bolle-
gala, 2020), whose parameters and weights will
be saved for future usage. We structure the au-
toencoder as three convolutional layers; each layer
is followed by a ReLU layer. We reduce dimen-
sions smoothly in the autoencoder, via the factors
of 4

5 , 3
4 , and 2

3 . Then, the encoder is used to con-
struct a CNN model, along with three feature ex-
tractors of different sizes, whose output is concate-
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nated to formalize the final output. The three fea-
ture extractors have the same structure; each con-
tains one 2D convolutional layer (Conv2d), one
ReLU layer (ReLU), and one 2D max pooling
layer (MaxPool2d). The kernel size of MaxPool2d
corresponds with the kernel size of Conv2d. For
Conv2d, each of their kernels is resized by factors
of 1

6 , 1
4 , and 1

3 .

B.3 Concatenation Features and Finalize
Output

The three feature extractors can go through the in-
put data in different views and eventually capture
features in different dimensions. To keep all ex-
tracted features, we concatenate them in sequence,
and then apply an adaptive pooling layer (Adap-
tiveMaxPool2d) to get the final output representa-
tion (Figure 5, panel D).
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