
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 3: System Demonstrations), pages 71–81
July 27 - August 1, 2025 ©2025 Association for Computational Linguistics

SPOT: Bridging Natural Language and Geospatial Search for
Investigative Journalists

Lynn Khellaf* Ipek Baris Schlicht* Tilman Miraß
Julia Bayer Tilman Wagner Ruben Bouwmeester

Deutsche Welle Innovation, Bonn/Berlin
https://innovation.dw.com/

hey@findthatspot.io

Abstract

OpenStreetMap (OSM) is a vital resource for
investigative journalists doing geolocation veri-
fication. However, existing tools to query OSM
data such as Overpass Turbo require familiarity
with complex query languages, creating barri-
ers for non-technical users. We present SPOT,
an open source natural language interface that
makes OSM’s rich, tag-based geographic data
more accessible through intuitive scene descrip-
tions. SPOT interprets user inputs as structured
representations of geospatial object configura-
tions using fine-tuned Large Language Models
(LLMs), with results being displayed in an in-
teractive map interface. While more general
geospatial search tasks are conceivable, SPOT
is specifically designed for use in investigative
journalism, addressing real-world challenges
such as hallucinations in model output, incon-
sistencies in OSM tagging, and the noisy nature
of user input. It combines a novel synthetic data
pipeline with a semantic bundling system to en-
able robust, accurate query generation. To our
knowledge, SPOT is the first system to achieve
reliable natural language access to OSM data
at this level of accuracy. By lowering the tech-
nical barrier to geolocation verification, SPOT
contributes a practical tool to the broader efforts
to support fact-checking and combat disinfor-
mation.

1 Introduction

Investigative journalists frequently rely on Open-
StreetMap (OSM) (OSM contributors, 2017) as a
vital tool for geolocation verification or research
because of its detailed and comprehensive cover-
age of various locations. However, non-technical
users face challenges due to required knowledge of
query languages (such as OverpassQL1) for data
retrieval.

*Equal Contribution
1https://wiki.openstreetmap.org/wiki/Overpass_

API/Overpass_QL

Although language models have been applied to
relational database interactions, their use in OSM-
based applications is still limited and not tailored
to the needs of investigative journalists. Lawrence
and Riezler (2016) and Will (2021) for instance
introduced datasets and applications that employ
neural-network-based semantic parsers to trans-
form natural language into intermediate query for-
mats. Similarly, Staniek et al. (2024) introduced
the OverpassT5 model along with benchmarking
data for directly querying OSM. However, prior
datasets are not directly applicable to the current
use case, as they assume prerequisite knowledge of
OSM functionalities. While there are AI-powered
geolocation tools available to support investigative
journalists, they either don’t or fail to work effec-
tively with unstructured text inputs (Chen, 2025;
Graylark, 2025), or are based on source code that
is not publicly available or utilize closed Large
Language Models (LLMs) (Meixner, 2025).

To this extent, we present SPOT, an AI-powered,
fully open source and open weight geospatial tool
designed for investigative journalism, although
other potential applications are conceivable. As
illustrated in Figure 1, SPOT includes a pipeline
for generating artificial training data tailored to
user requirements and the OSM tagging system.
Its backbone model leverages LLaMA 3 (Touvron
et al., 2023), which is fine-tuned on the generated
data. During inference, SPOT transforms user in-
put into YAML-based queries which are enriched
with predefined OSM tag bundles by using a se-
mantic search engine. Additionally, SPOT pro-
vides a user-friendly graphical interface that en-
ables users to seamlessly enter their unstructured
search requests, with results displayed interactively
on a map. Places of interest can be further ex-
plored in detail via integrated external tools such
as GoogleStreetView. SPOT is publicly accessi-
ble at https://www.findthatspot.io/, with its
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Figure 1: Overview of SPOT’s OSM-based pipeline, from tag bundle indexing and semantic search, through artificial
sentence and YAML pair generation, to model fine-tuning and interactive inference.

source code hosted on GitHub2. Moreover, the fine-
tuned LLaMA 3 model, along with other bench-
marked LLMs (detailed in Section 4), is available
on HuggingFace3.

2 Related Work

2.1 Text-to-Structured Language

Several research studies have explored ways for
users to interact with databases without requiring
technical knowledge of structured query languages.
The most common approach is to transform natural
language questions into SQL queries (text-to-SQL)
to facilitate interaction with relational databases,
which is closely related to the current use case.
Recent advances in this area have explored both
prompt-based methods and parameter-efficient tun-
ing of LLMs (Zhu et al., 2024; Shi et al., 2024).
For example, Jang et al. (2023) applied adapter
tuning to T5 (Raffel et al., 2020), while Zhang
et al. (2024) used adapter tuning and merging on
LLaMA. Other work has focused on prompt engi-
neering: Gao et al. (2024) proposed DAIL-SQL to
improve example selection in in-context learning,
and Lee et al. (2025) introduced MCS-SQL, which
uses multi-prompting for text-to-SQL generation.

2Source code: https://github.com/dw-innovation/
kid2-spot

3Model weights: https://huggingface.co/DW-ReCo

Despite the growing importance of OSM for ap-
plications such as geo-verification in journalism,
natural language interaction with OSM has been
relatively under-researched compared to text-to-
SQL. Some research (Lawrence and Riezler, 2016;
Will, 2021) proposes the use of semantic parsers to
convert natural language queries into intermediate
representations that include elements from OSM
tags, which can be used to create downstream OSM
queries. In contrast, Staniek et al. (2024) tack-
led the direct text-to-OverpassQL task, creating
a dataset of natural language inputs paired with
their corresponding OverpassQL queries. They
also introduced a task-specific evaluation metric
that considers surface string similarity, semantics,
and syntax. Their evaluation indicated that ex-
plicit pre-training of sequence-to-sequence models
like OverpassT5 was not beneficial, while few-shot
prompting with GPT-4 performed the best.

Unlike previous approaches, the intermediate
representation step in SPOT is multi-layered. To
handle variations in query styles (e.g., typos or dif-
ferent terms for the same object) and to allow for
updates to OSM tags without needing to retrain the
language model, we employ multiple processing
steps. SPOT queries are structured in YAML and
initially do not contain any OSM tag elements. In a
second step, object and property names are passed
through a semantic search engine and replaced with

72

https://github.com/dw-innovation/kid2-spot
https://github.com/dw-innovation/kid2-spot
https://huggingface.co/DW-ReCo


Tool Input Customization External Data Integration Open Source
Overpass Turbo (Turbo, 2025) OT Query via Query ✓ ✓
GeoGuessr GPT (Meixner, 2025) Unstructured Text via Chat X X
GeoSpy (Graylark, 2025) Image NA ✓ X
EarthKit (Chen, 2025) Semi-structured Text via Query ✓ ✓
SPOT Unstructured Text User Guided Search ✓ ✓

Table 1: Comparison of OSM-based, AI-supported geolocation verification tools.

the best-fitting OSM tag bundles required for the
final OSM database request. We fine-tuned an in-
stance of LLaMA 3 to generate the initial YAML.
This state-of-the-art LLM is vastly more perfor-
mant than our earlier T5-based approach (Khellaf
et al., 2023), in which we encountered limitations
addressing several key requirements.

2.2 OSM Datasets

The datasets (Lawrence and Riezler, 2016; Will,
2021; Staniek et al., 2024) are currently the only
publicly available resource designed for natural lan-
guage interaction with OSM. They allow users to
query OSM using its tagging system, based on co-
ordinates, specific tag types or meta-information
such as changes made by particular users. These
datasets, however, are primarily intended for users
who are familiar with OSM’s tagging logic, mak-
ing them difficult to use for those without prior
experience.

In contrast, our tool is designed for visual lo-
cation verification, allowing users to perform the
search using natural language descriptions without
requiring OSM expertise. Our approach focuses
on visual features such as objects, their properties
and the spatial relationships between them, while
excluding meta-information irrelevant to the task.
For this purpose, we have developed a pipeline for
artificial data generation tailored to these specific
needs.

2.3 Comparison of Geolocation Tools

There are numerous geolocation tools that have
a similar target audience, with and without AI
support. Among the most popular for inves-
tigative journalists are the original Overpass
Turbo (Turbo, 2025) (not using AI), GeoGuessr
GPT (Meixner, 2025), GeoSpy (Graylark, 2025)
and EarthKit (Chen, 2025). Table 1 contains a de-
sign comparison of the aformentioned tools with
SPOT. Both SPOT and GeoGuessr GPT (which
uses ChatGPT with a custom prompt) accept un-
structured text as input, while the other tools rely

on structured queries, images, or semi-structured
text. In the case of EarthKit, users are presented
with OSM tags and must manually select the rele-
vant ones to complete their query.

Of these tools, only SPOT and EarthKit offer full
stack open source software and AI models, allow-
ing anyone to host them on their own infrastructure.
In terms of integration, GeoGuessr GPT does not
connect to any external tools or OSM other than
GPT, while EarthKit only integrates with OSM.
The remaining tools offer integration with Google
Maps or Google Street View. In addition to link-
ing to the location on Google, Bing and Yandex,
SPOT also features an OpenStreetView.com inte-
gration for a detailed view of identified locations,
increasing its utility for investigative work.

3 Overview of SPOT

As shown in Figure 1, SPOT has four main com-
ponents: bundle construction and indexing, train-
ing data generation, training and inference. Each
component is briefly described in the following
subsections.

3.1 Bundle Construction and Indexing
To bridge the gap between natural language and the
OSM tagging system, we developed a static bun-
dle list that groups visually similar (individual or
combinations of) OSM tags. This list maps natural
language descriptors to relevant OSM tags, taking
into account the ambiguity and variability of every-
day language. For example, terms such as light rail,
subway and tram are all mapped to the same bundle
representing “smaller urban railway tracks”. This
approach helps to mitigate inconsistencies in OSM
tagging, where multiple tags or tag combinations
can refer to objects that are frequently referred to
by the same terms.

To make them searchable, the bundle lists are
indexed via Elasticsearch4. We index both the raw
text and its semantic embeddings to deal with typos
and paraphrases. The semantic embeddings are

4https://www.elastic.co/elasticsearch
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vectorized using the all-MiniLM-L6-v2 version
of the SBERT sentence transformer (Reimers and
Gurevych, 2019). This setup allows for a hybrid
search approach that combines BM25 with SBERT-
based retrieval.

3.2 Training Dataset Generation
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Figure 2: Sentence length distribution of the generated
sentences
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Figure 3: Semantic Diversity Visualization of sentence
embeddings of the generated sentences using UMAP
and HBSCAN. Blue dots indicate the noisy points that
do not belong to any clusters (16,416 points in total).

Prior to development, we conducted a user study
with the in-house SPOT development team and our
expert OSINT community to collect descriptions
of scenes based on images. From this study, we de-
rived a list of user requirements (Appendix A.1) to
guide system development. Key findings included
the high prevalence of generic terms for objects
and spatial relations, as well as frequent typos and
grammar errors.

As illustrated in Figure 1, we designed a novel
YAML-based structure to simplify data handling,
overcoming the challenges associated with JSON’s
strict syntax (Tam et al., 2024). The structure con-
tains all relevant information, namely search area,
entities, properties, and spatial relations. We im-
plemented a framework that creates any number

of YAML combinations via random draft of values
for the semantic fields. Relation types distinguish
between distance and contains relations, as inspired
by the user requirements. In addition to specific
distance values (such as within 100 meters), the
model is trained to translate vague relative spatial
terms (such as nearby, next to) into concrete val-
ues (next to for instance is defined as 50 meters,
the full list in Appendix A.2). The multi-lingual
area names used in the artificial data are extracted
from the public map database NaturalEarthData5.
The information from the YAML queries with ad-
ditional text style (e.g. typos) and persona (e.g.
fact-checker) specifications is then used to dynami-
cally generate prompts, which is in turn used to turn
the YAML into a synthetic natural query sentences
using GPT-4o (OpenAI, 2023).

In total, we used 7 personas and 5 writing styles,
we provide them in Appendix A.3. The number
of generated samples for training is 43976, 2350
of which form the development set. An exam-
ple prompt is shown in Table 9. As shown in
Figure 2, the generated dataset contains different
length of sentences. To evaluate the semantic di-
versity of the generated dataset, we first performed
sentence embedding using SBERT. We then used
UMAP (McInnes et al., 2018) to project these
high-dimensional embeddings into 2D space for
visualization, while preserving local semantic rela-
tionships. UMAP was configured with 50 nearest
neighbours, a minimum distance of 0.1, a target
dimensionality of two, and a fixed random seed
to ensure reproducibility. We then applied HDB-
SCAN (Campello et al., 2015) to the resulting 2D
embeddings. HDBSCAN is a density-based clus-
tering algorithm that can detect clusters of varying
shapes and identify outliers. HDBSCAN was con-
figured with a minimum cluster size and minimum
samples parameter both set to 5. The algorithm
identified 1,274 distinct clusters but did not assign
cluster labels to 16,416 sentences, treating them
as noise. A graph of the result can be seen in Fig-
ure 3. The considerable number of clusters, along
with a substantial proportion of unclustered sen-
tences, indicates that the generated dataset exhibits
significant semantic diversity.

3.3 Training and Inference

We fine-tuned an open-source LLM on the syn-
thetic dataset (described in Section 3.2) by using

5https://www.naturalearthdata.com/
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- Find a tattoo shop and a doityourself shop, both within 2.5 ft of each other.
- Find a restroom and an american football field in米林根,巴登-符堡,国, no more than 28 meters apart.
-In the region of Ward County, North Dakota, United States, seek out a campsite alongside a production studio, specifically
one that is situated on a street whose name concludes with the suffix "-der-Tann-Straße."
- Let’s see. I’m looking for a新星堂. Then there’s a moving walkway. It has a traffic lane numbered 484 and a car lane
numbered 581. I also need to find a monument whose name starts with ""emin du Ro"". All of these should be found within a
distance of 75556 miles from one another.
- Could you kindly locate a play area within the confines of Comuna Vadu Moţilor?
- Find a bowling cemter located three hundrd kilomters away from a camera shop.

Table 2: Examples from the training dataset showing different features (e.g. long/short sentence, properties, typos,
non-Latin alphabet, etc.).

the unsloth library6. The fine-tuning process
employed Low-Rank Adaptation (Hu et al.) with a
rank of 32 and an alpha scaling factor of 64. Train-
ing was conducted with a batch size of 8 and the
learning rate was set to 1e-5 with a weight decay of
0.01. Early stopping was activated with a patience
of 10 epochs and evaluation was performed every
200 steps.

We host the SPOT language model using Hug-
gingFace Inference Endpoints7. A backend built
with FastAPI8 handles post-processing of the
model output, such as replacing names with corre-
sponding OSM tags. The backend forwards user
queries to a PostgreSQL database with the Post-
GIS extension, indexed with the OSM planetary
dataset9, to retrieve spatial coordinates and details
about the detected objects. The results are then
finally displayed on an interactive map in the UI.

4 Experiments

Total 195 samples

Named area 143 samples
No Area (bbox) 52 samples
Properties 63 samples
Typos 36 samples
Grammar Mistakes 39 samples
Relative Spatial Terms 43 samples
Contains Relation 48 samples
Distance Relation 121 samples

Table 3: Breakdown of samples in the benchmarking
dataset.

4.1 Experimental Setup

Benchmarking Dataset. We constructed a bench-
marking dataset consisting of real user queries to

6https://unsloth.ai/
7https://ui.endpoints.huggingface.co/
8https://fastapi.tiangolo.com/
9https://wiki.openstreetmap.org/wiki/Planet.

osm

assess the viability of several candidate LLMs as
query translators. The queries were generated by
a pool of investigative journalists, fact-checkers,
and verification experts from Deutsche Welle while
trying to geolocate sample images using an early
version of SPOT. The resulting list was then fil-
tered based on how well the queries aligned with
the OSM database structure and its resulting limita-
tions. Table 3 shows statistics on the prevalence of
different requirements in the dataset. Table 4 high-
lights some example queries from this study. These
sentences showcase some aspects of the linguistic
variety the system might be faced with and needs
to handle.
Evaluation Metric. As evaluation metric, we eval-
uated the percentage of the matches across areas,
entities, properties and relations. Since the entity
and property names detected by the model might be
correct but not covered by the static bundle list, we
employed the SBERT transformer also used for the
bundle indexing. We considered a ground truth and
a model prediction a match if their cosine similarity
exceeded 0.8. We additionally counted the number
of hallucinated/omitted entities and properties.

4.2 Results

We evaluated several LLMs as semantic parsers.
As a baseline, we used the multilingual T5 vari-
ant, mT5, which has shown strong performance in
past studies on the generation of structured output
despite its relative small size (Khellaf et al., 2023;
Staniek et al., 2024). To adapt mT5 to our task,
we applied LoRa adapter learning. In addition, we
obtained baseline results from GPT-4o by testing
it with zero-shot and few-shot prompting (the full
prompts are provided in Appendix A.4).

We then compared the baseline results with
several widely used open LLMs from different
companies: LLaMA 3 (Dubey et al., 2024) from
Meta, Mistral (Jiang et al., 2023) from Mistral
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- all Don Quijote that are in a retail building with a purple roof coluor in東京都
- Find me a bus platform next to a Cheesecake Factory restaurant and a building with a red roof in Dubrovnik.
- Focus on Arch, Switzerland. Find a restaurant within 1.5 km of a bus station. The restaurant should have a public toilet
inside.
- Search for a planetarium containing a public toilet. It should be within 85,800 yards of a public clock.
- Find a speet kamera within 100 meater from antenna in Paraiba
- I’m looking for a supermarket from a brand ending in "ermarché" with a parking lot next to it and a power line running past
it in less than 15 meters distance.

Table 4: Examples from the benchmarking dataset.

LLM Company Unsloth’s Version

Mistral Mistral unsloth/Mistral-Nemo-Base-2407-bnb-4bit
LLaMA 3 Meta unsloth/llama-3-8b-bnb-4bit
Phi Microsoft unsloth/Phi-3-medium-4k-instruct-bnb-4bit
Qwen2.5 Alibaba unsloth/Qwen2.5-14B

Table 5: Open source LLMs that were examined as potential semantic parsers with their company name and model
code from Unsloth (Han et al., 2023).

Adaptation Model Area Entity Entity* Property Relation

Zero-shot GPT-4o 88.14 2.28 90.21 3.03 9.8
One-shot 89.18 1.13 92.03 10.96 11.11

Adapter Tuning

mT5 88.21 72.34 90.02 48.89 37.01
Mistral 93.33 82.54 95.01 56.58 45.45
Phi 92.82 79.59 94.10 53.33 53.90
LLaMA 3 92.31 81.41 96.15 50.00 48.05
Qwen2.5 92.31 82.31 95.69 51.95 52.60

Table 6: Accuracy of the models in identifying areas, entities, properties and relations. Entity* is the accuracy when
associated properties are excluded. Bold results are the top results.
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Figure 4: Analysis of LLaMA 3, Mistral, and Phi regarding the ratio of perfect YAML generations various metadata
categories. It highlights inter- and intra-model differences in feature handling.

Adaptation Model Entity Property
Missed Hallucinated Missed Hallucinated

Zero-shot GPT-4o 48 37 53 10
One-shot 40 34 50 11

Adapter Tuning

mT5 51 31 15 6
Mistral 27 21 17 6
Phi 30 22 18 7
LLaMA 3 20 16 18 7
Qwen2.5 23 17 19 6

Table 7: The number of omitted/hallucinated entities
and properties of each tested model.

AI, Phi (Abdin et al., 2024) from Microsoft, and
Qwen (Qwen et al., 2025) from Alibaba. We ap-
plied adapter training as detailed in Section 3.3 to

the quantized versions of their (due to hardware
constraints) small/medium models (as summarized
in Table 5).

As shown in Figure 6, the fine-tuned LLMs out-
performed both GPT-4o and mT5 in all aspects.
All fine-tuned LLMs have similar scores for areas,
entities, and entities without properties. Noticeably
high scores were achieved by Mistral for property,
and Qwen2.5 for relation prediction. Qwen2.5 hav-
ing the most parameters could indicate that relation
identification is a task that requires advanced rea-
soning skills. Furthermore, the fine-tuned LLMs
generated fewer hallucinations and omissions com-
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pared to the baseline models (shown in Table 7).
We performed a more nuanced analysis of the

generated outputs using meta tags, indicating the
use of area names, properties, typos, grammar mis-
takes, spatial terms, brand names (as entities or
properties), non-Roman characters, the presence of
distance or contains relations, and the number of en-
tities up to three. The percentage of perfectly gen-
erated YAML queries for each category is shown in
Figure 4. Faulty grammar, typos, and non-Roman
characters in particular posed a challenge to the
models. Despite these similarities, some model-
specific differences are visible, such as Phi and
Qwen2.5 performing slightly better when relations
were defined using spatial terms.

Finally, we assessed whether the generated out-
put was parsable, as a well-formatted output is es-
sential for the rest of the query pipeline. Based on
our benchmark data set, only LLaMA 3 and GPT-
4o consistently produced parsable output, leading
to the selection of LLaMA 3 as the primary parser
for SPOT. A custom parser was deemed too unre-
liable and potentially detrimental to the inference
speed. Although not specifically fine-tuned in lan-
guages other than English, the model appears to be
able to interpret queries in a variety of languages,
although this was not further tested.

5 Conclusion

SPOT represents a significant step forward in mak-
ing OSM more accessible to non-technical users,
particularly investigative journalists, through an
easy-to-use natural language interface. By address-
ing the complexity of OSM query languages with a
data pipeline that generates any amount of synthetic
data, a static list of descriptors, and tag bundles that
allow users to perform geospatial searches using
their natural language, SPOT improves the usabil-
ity of OSM data. Our evaluations demonstrate its
ability to handle different linguistic styles, gram-
matical errors and different types of object rela-
tionships, achieving state-of-the-art performance in
query interpretation with fine-tuned LLaMA 3 and
other LLMs. This work bridges the gap between
complex geospatial query languages and practical,
intuitive interfaces.

Despite its strengths, SPOT’s reliance on syn-
thetic data, limits in hardware and a small bench-
mark dataset highlight potential avenues for future
improvement. We further aim to expand language
support, add multimodal features such as image

queries, and explore an alternative chat interface to
further improve usability. Lastly, we plan to con-
duct comprehensive end-to-end evaluations with
SPOT users to assess all components of the system,
including the overall user experience.

Acknowledgments

This project is led by the Deutsche Welle Research
and Cooperation Projects team and was co-funded
by BKM ("Beauftragte der Bundesregierung für
Kultur und Medien," the German Government’s
Commissioner for Culture and Media).

Limitations

While our approach performs well in several cases,
it does not fully capture the complexity of real-
world user queries. Users may phrase their queries
ambiguously or use implicit descriptions rather
than naming entities directly (’somewhere to eat’
instead of ’restaurant’, for example). In addition,
references to entities with multiple interpretations,
such as ambiguous landmarks, can introduce chal-
lenges that our current setup does not explicitly
address. Another limitation is our reliance on OSM
as the primary knowledge source. While OSM pro-
vides broad coverage, its data may be incomplete
or inconsistent in certain regions. Addressing more
diverse data sources and improving the handling of
ambiguous or underspecified queries are important
areas for future work.

Ethics Statement

SPOT democratizes access to geospatial data, but
there are several ethical considerations. First, the
underlying LLMs may contain inherent biases that
could influence query interpretation and results. In
addition, the OSM data itself has uneven coverage
across regions, potentially limiting the utility of
SPOT in under-represented areas.

Regional differences in tagging conventions also
present challenges. Although our bundling ap-
proach mitigates some inconsistencies, cultural and
regional idiosyncrasies in describing places may
not be fully captured in our current implementation,
reflecting potential limitations in the geographic
perspective of the development team.

The most important ethical consideration is pri-
vacy. By lowering the technical barriers to geolo-
cation identification, SPOT could potentially facil-
itate invasions of privacy through the analysis of
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images or videos shared on for example social me-
dia. While these capabilities already exist through
tools such as Overpass Turbo, SPOT’s accessibility
heightens concerns. We believe that the benefits for
legitimate fact-checking and investigative journal-
ism outweigh these risks, but emphasize that users
should only use SPOT for ethical purposes, such
as verifying public information rather than track-
ing individuals. Ongoing work includes exploring
additional safeguards to prevent misuse while pre-
serving functionality for legitimate uses.

The broader impact of the tool lies in its potential
to empower journalists around the world to verify
information more efficiently, potentially countering
misinformation and strengthening factual reporting
in an era of increasing manipulation of digital in-
formation.

References
Marah Abdin, Jyoti Aneja, Hany Awadalla, Ahmed

Awadallah, Ammar Ahmad Awan, Nguyen Bach,
Amit Bahree, Arash Bakhtiari, Jianmin Bao, Harkirat
Behl, et al. 2024. Phi-3 technical report: A highly ca-
pable language model locally on your phone. arXiv
preprint arXiv:2404.14219.

Ricardo J. G. B. Campello, Davoud Moulavi, Arthur
Zimek, and Jörg Sander. 2015. Hierarchical den-
sity estimates for data clustering, visualization, and
outlier detection. ACM Trans. Knowl. Discov. Data,
10(1).

Jett Chen. 2025. Earthkit. Accessed: 2025-02-10.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela
Fan, Anirudh Goyal, Anthony Hartshorn, Aobo Yang,
Archi Mitra, Archie Sravankumar, Artem Korenev,
Arthur Hinsvark, Arun Rao, Aston Zhang, Aurélien
Rodriguez, Austen Gregerson, Ava Spataru, Bap-
tiste Rozière, Bethany Biron, Binh Tang, Bobbie
Chern, Charlotte Caucheteux, Chaya Nayak, Chloe
Bi, Chris Marra, Chris McConnell, Christian Keller,
Christophe Touret, Chunyang Wu, Corinne Wong,
Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Al-
lonsius, Daniel Song, Danielle Pintz, Danny Livshits,
David Esiobu, Dhruv Choudhary, Dhruv Mahajan,
Diego Garcia-Olano, Diego Perino, Dieuwke Hupkes,
Egor Lakomkin, Ehab AlBadawy, Elina Lobanova,
Emily Dinan, Eric Michael Smith, Filip Radenovic,
Frank Zhang, Gabriel Synnaeve, Gabrielle Lee, Geor-
gia Lewis Anderson, Graeme Nail, Grégoire Mialon,
Guan Pang, Guillem Cucurell, Hailey Nguyen, Han-
nah Korevaar, Hu Xu, Hugo Touvron, Iliyan Zarov,
Imanol Arrieta Ibarra, Isabel M. Kloumann, Ishan
Misra, Ivan Evtimov, Jade Copet, Jaewon Lee, Jan
Geffert, Jana Vranes, Jason Park, Jay Mahadeokar,
Jeet Shah, Jelmer van der Linde, Jennifer Billock,

Jenny Hong, Jenya Lee, Jeremy Fu, Jianfeng Chi,
Jianyu Huang, Jiawen Liu, Jie Wang, Jiecao Yu,
Joanna Bitton, Joe Spisak, Jongsoo Park, Joseph
Rocca, Joshua Johnstun, Joshua Saxe, Junteng Jia,
Kalyan Vasuden Alwala, Kartikeya Upasani, Kate
Plawiak, Ke Li, Kenneth Heafield, Kevin Stone, and
et al. 2024. The llama 3 herd of models. CoRR,
abs/2407.21783.

Dawei Gao, Haibin Wang, Yaliang Li, Xiuyu Sun,
Yichen Qian, Bolin Ding, and Jingren Zhou. 2024.
Text-to-sql empowered by large language models:
A benchmark evaluation. Proc. VLDB Endow.,
17(5):1132–1145.

Graylark. 2025. Geospy. Accessed: 2025-02-10.

Daniel Han, Michael Han, and Unsloth team. 2023. Un-
sloth. http://github.com/unslothai/unsloth.

Edward J Hu, Phillip Wallis, Zeyuan Allen-Zhu,
Yuanzhi Li, Shean Wang, Lu Wang, Weizhu Chen,
et al. Lora: Low-rank adaptation of large language
models. In International Conference on Learning
Representations.

Joel Jang, Seungone Kim, Seonghyeon Ye, Doyoung
Kim, Lajanugen Logeswaran, Moontae Lee, Kyung-
jae Lee, and Minjoon Seo. 2023. Exploring the bene-
fits of training expert language models over instruc-
tion tuning. In International Conference on Machine
Learning, pages 14702–14729. PMLR.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guil-
laume Lample, Lucile Saulnier, et al. 2023. Mistral
7b. arXiv preprint arXiv:2310.06825.

Lynn Khellaf, Ipek Baris Schlicht, Julia Bayer, Ruben
Bouwmeester, Tilman Miraß, and Tilman Wagner.
2023. Spot: A natural language interface for geospa-
tial searches in osm. Proceedings of OSM Science
2023, page 49.

Carolin Lawrence and Stefan Riezler. 2016. Nlmaps: A
natural language interface to query openstreetmap. In
Proceedings of COLING 2016, the 26th International
Conference on Computational Linguistics: System
Demonstrations, pages 6–10.

Dongjun Lee, Choongwon Park, Jaehyuk Kim, and
Heesoo Park. 2025. MCS-SQL: Leveraging mul-
tiple prompts and multiple-choice selection for text-
to-SQL generation. In Proceedings of the 31st Inter-
national Conference on Computational Linguistics,
pages 337–353, Abu Dhabi, UAE. Association for
Computational Linguistics.

Leland McInnes, John Healy, Nathaniel Saul, and Lukas
Grossberger. 2018. Umap: Uniform manifold ap-
proximation and projection. The Journal of Open
Source Software, 3(29):861.

Bill Meixner. 2025. Geoguessr gpt. Accessed: 2025-
02-10.

78

https://doi.org/10.1145/2733381
https://doi.org/10.1145/2733381
https://doi.org/10.1145/2733381
https://github.com/JettChenT/earthkit
https://doi.org/10.14778/3641204.3641221
https://doi.org/10.14778/3641204.3641221
https://geospy.ai/
http://github.com/unslothai/unsloth
https://aclanthology.org/2025.coling-main.24/
https://aclanthology.org/2025.coling-main.24/
https://aclanthology.org/2025.coling-main.24/
https://chatgpt.com/g/g-brlHi7t2R-geoguessr-gpt


OpenAI. 2023. Gpt-4 technical report. Preprint,
arXiv:2303.08774.

OSM contributors. 2017. Planet dump re-
trieved from https://planet.osm.org. https:
//www.openstreetmap.org.

Qwen, :, An Yang, Baosong Yang, Beichen Zhang,
Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin,
Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Yang,
Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang,
Keming Lu, Keqin Bao, Kexin Yang, Le Yu, Mei Li,
Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji
Lin, Tianhao Li, Tianyi Tang, Tingyu Xia, Xingzhang
Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang
Zhang, Yu Wan, Yuqiong Liu, Zeyu Cui, Zhenru
Zhang, and Zihan Qiu. 2025. Qwen2.5 technical
report. Preprint, arXiv:2412.15115.

Colin Raffel, Noam Shazeer, Adam Roberts, Kather-
ine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. 2020. Exploring the
limits of transfer learning with a unified text-to-text
transformer. Journal of Machine Learning Research,
21(140):1–67.

Nils Reimers and Iryna Gurevych. 2019. Sentence-bert:
Sentence embeddings using siamese bert-networks.
In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th
International Joint Conference on Natural Language
Processing (EMNLP-IJCNLP), pages 3982–3992.

Liang Shi, Zhengju Tang, and Zhi Yang. 2024. A survey
on employing large language models for text-to-sql
tasks. arXiv preprint arXiv:2407.15186.

Michael Staniek, Raphael Schumann, Maike Züfle, and
Stefan Riezler. 2024. Text-to-OverpassQL: A natural
language interface for complex geodata querying of
OpenStreetMap. Transactions of the Association for
Computational Linguistics, 12:562–575.

Zhi Rui Tam, Cheng-Kuang Wu, Yi-Lin Tsai, Chieh-
Yen Lin, Hung-yi Lee, and Yun-Nung Chen. 2024.
Let me speak freely? a study on the impact of format
restrictions on large language model performance. In
Proceedings of the 2024 Conference on Empirical
Methods in Natural Language Processing: Industry
Track, pages 1218–1236, Miami, Florida, US. Asso-
ciation for Computational Linguistics.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal
Azhar, Aurelien Rodriguez, Armand Joulin, Edouard
Grave, and Guillaume Lample. 2023. Llama: Open
and efficient foundation language models. Preprint,
arXiv:2302.13971.

Overpass Turbo. 2025. Overpass turbo website. Ac-
cessed: 2025-02-10.

Simon Will. 2021. Nlmaps web: A natural language
interface to openstreetmap. In Proceedings of the

Academic Track, State of the Map 2021, pages 13–
15.

Chao Zhang, Yuren Mao, Yijiang Fan, Yu Mi, Yun-
jun Gao, Lu Chen, Dongfang Lou, and Jinshu Lin.
2024. Finsql: Model-agnostic llms-based text-to-sql
framework for financial analysis. In Companion of
the 2024 International Conference on Management
of Data, SIGMOD/PODS 2024, Santiago AA, Chile,
June 9-15, 2024, pages 93–105. ACM.

Xiaohu Zhu, Qian Li, Lizhen Cui, and Yongkang
Liu. 2024. Large language model enhanced text-
to-sql generation: A survey. arXiv preprint
arXiv:2410.06011.

79

https://arxiv.org/abs/2303.08774
 https://www.openstreetmap.org 
 https://www.openstreetmap.org 
https://arxiv.org/abs/2412.15115
https://arxiv.org/abs/2412.15115
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://doi.org/10.1162/tacl_a_00654
https://doi.org/10.1162/tacl_a_00654
https://doi.org/10.1162/tacl_a_00654
https://doi.org/10.18653/v1/2024.emnlp-industry.91
https://doi.org/10.18653/v1/2024.emnlp-industry.91
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2302.13971
https://overpass-turbo.eu/
https://doi.org/10.1145/3626246.3653375
https://doi.org/10.1145/3626246.3653375


A Appendix

A.1 Requirements for SPOT

We list the requirements of SPOT that serve as also
function for the data generation pipeline.
Entity Recognition

• SPOT identifies general categories like restau-
rant, train station which allows recognition of
places based on category type.

• SPOT detects specific brand names, includ-
ing ‘McDonald’s’, ‘KFC’, ‘Tchibo’ and com-
pound names such as Thalia bookstore.

Entity Properties

• SPOT identifies properties such as ‘organic
(food shop)’, ‘Italian (restaurant)’ or colors
such as ‘brown (bench)’ for refined queries.

• SPOT interprets quantitative descriptors such
as height, floors and house numbers.

Area Recognition

• SPOT supports cities, districts, and regions,
including multi-word areas (e.g., "New York")
and states such as "Nordrhein-Westfalen."

• SPOT introduces bounding box support for
identifying entities within a broader, unde-
fined area.

Relation Recognition

• SPOT interprets both numeric distances (e.g.,
‘100 meters’) and written forms (e.g., ‘one
hundred meters’).

• SPOT supports terms like ‘next to’, ‘opposite
from’ and ‘beside’ to improve natural under-
standing of spatial relationships.

• SPOT supports distance-based relations 1) ra-
dius constraints (e.g. entity A to entity B and
entity C) and entity chains (e.g. entity A to B
and entity B to entity C).

• SPOT recognizes relationship such as ‘a foun-
tain within a park’ and ‘a shop inside a mall’,
‘a park with a fountain’, ‘hotel with a parking
lot’.

Robustness to Different Styles

• SPOT can match descriptors with slight varia-
tions such as plurals ("bookshops" vs. "book-
shop") and minor differences (‘bookstore’ vs.
‘book shop’).

• SPOT is robust to typos in names and common
words (e.g., ‘MacDonalds’ for ‘McDonald’s’)

• SPOT is robust to styles that presents differ-
ent user profiles such as an experienced fact-
checker, beginner, etc. Additionally, it is ro-
bust to formal and casual query styles.

• SPOT recognizes area names and locations
in code-switching texts (mixture of texts in
different languages). For example, area and
brand names in non-Roman alphabets such as
Cyrillic and Greek.

• SPOT supports both single and multi-sentence
structures in user queries.

A.2 Relative Spatial Terms
A list of relative spatial terms and their interpreta-
tion can be found in Table 8.

A.3 Styles and Personas
Writing styles randomly selected in each prompt:
“in perfect grammar and clear wording”, “in simple
language”, “with very precise wording, short, to the
point”, “with very elaborate wording”,“as a chain
of thoughts split into multiple sentences’.

Personas randomly selected in each prompt: “po-
litical journalist”, “investigative journalist”, “expert
fact checker”, “hobby fact checker”, “human rights
abuse monitoring OSINT Expert”, “OSINT begin-
ner”, “legal professional”.

A.4 Prompts
A.4.1 Dataset Generation
We designed a dynamic prompt with some ran-
domly selected parameters.

An example of the generated sample is shown in
Table 9.

A.4.2 Inferencing Prompt
For the one-shot prompt, we appended one sample
from the training data to the zero-shot prompt. The
matching of each benchmarking samples to one
training sample is based on the cosine similarity of
their SBERT embeddings.
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Index Distance Terms

0 25 m not far away, enclosed by
1 50 m next to, among, adjacent, beside, side by side, at, next door
2 100 m near, around it, in close distance to, surrounded from
3 150 m in front of, close to, opposite from, in surroundings
4 250 m on the opposite side
5 1000 m on the edge
6 2000 m nearby

Table 8: List of relative spatial terms and distance values used during data generation.

Tag Combination Prompt Generated Sen-
tence

area:
type: bbox

entities:
- id: 0

name: church
properties:
- name: levels

operator: '>'
value: '56'

type: nwr
- id: 1

name: bridge
properties:
- name: name

operator: '~'
value: MK6

type: nwr
relations:
- source: 0

target: 1
type: distance
value: 16460 m

Generate one or more sentences simulating a user using a natural language interface
for an AI geolocation search tool that finds locations based on descriptions of objects
and their spatial relations. Each object has one main descriptor and optionally
additional properties. All properties must be put in a logical connection to the object.
Objects can either be single instances, or clusters of multiple of one object which
are located in a specific distance radius (e.g. "three houses next to/within 10m of
each other"). Mention the area, cover all entities and their respective properties, and
describe the respective relations. Stick to the descriptions of entities and relations
provided and don’t add anything. When describing names or brand (names), be
creative in your phrasing (examples being a "book store of brand Thalia" vs. "a
Thalia book store", or simply e.g. "a Thalia" if the type of object is not given). Stick
to the values of each relation. Distances always refer to a maximum distance. If no
distance is given, do not use any terms such as close, near, create sentences such
as "find a house and a restaurant". Vary your phrasing. Do not affirm this request
and return nothing but the answer. ==Persona== hobby fact checker ==Style==
as a chain of thoughts split into multiple sentences ==Input== Objects: - Obj. 0:
church | Properties -> levels: above 56 - Obj. 1: bridge | Properties -> name:
"MK6" Distances: - All objects are no more than 16460 meters from another. Please
take your time and make sure that all the provided information is contained in the
sentence.

Looking around an
area, I’m trying to
find a church that
has more than 56
levels. In the same
vicinity, not ex-
ceeding a distance
of 16,460 meters,
there should also
be a bridge called
"MK6".

Table 9: An example parametric prompt used for data generation. Due to space limitations, the prompt formatting
was altered. The original prompts can be found in the source code.

Inferencing Prompt

You are a joint entity and relation extractor. Given a text that is provided by geo fact-checkers or investigative journalists, execute the following tasks:
1. Identify the area mentioned in the text. If no area is found, designate its type as ’bbox’ and assign its name as ’bbox’. If area is found, designate its type as ’area’.
2. Detect and extract the geographical entities present in the text. Areas are not part of these entities. Entities are always present in a sentence. There are two type of entities: cluster
and nwr. The ’cluster’ type is clusters of entities, allowing queries like "3 Italian restaurants next to each other" or "at least 5 wind generators nearby." The other entity types
belongs to nwr.
3. Extract properties associated with each identified entity, if available. The properties must be related to their types, colors, heights, etc.
4. Identify and extract any relations between the entities if mentioned in the text. We define two relation types: contains and dist. Assign one of them as the relation type. In contains
relations, you can recognize relationships such as "a fountain within a park" and "a shop inside a mall.". In contain relation, there is no distance. In dist relation, you interpret both
numeric distances (e.g., "100 meters") and written forms (e.g., "one hundred meters"), support terms like "next to," "opposite from," and "beside" to improve natural understanding
of spatial relationships, and recognize Multiple distance-based relations are supported, including radius constraints (e "A to B and C") and entity chains (e.g., "A to B and B to C").
Let’s think step by step.
Please provide the output as the following YAML format and don’t provide any explanation nor note:

area:
type: area type
value: area name

entities:
- name: [entity name 1]

id: [entity id 1]
type: [entity type 1]
properties:
- name: [property name 1]
operator: [operator 1]
value: [property value 1]

- name: [property name 2]
operator: [operator 2]
value: [property value 2]

- ...
- name: entity name 2

id: entity id 2
type: entity type 2

- ...
relations:
- source: entity id 1

target: entity id 2
type: relation between entity 1 and entity 2
value: relation distance if the type of relation is dist

- ...

Figure 5: Zero-shot prompt used to query the LLMs, containing instructions and the YAML layout. The prompt
includes support for cluster-type entities, which were not available in the deployed system at the time of writing.
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