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Abstract

Active learning (AL) has demonstrated remark-
able potential in reducing the annotation effort
required for training machine learning models.
However, despite the surging popularity of nat-
ural language generation (NLG) tasks in recent
years, the application of AL to NLG has been
limited. In this paper, we introduce Active Text
Generation (ATGen) – a comprehensive frame-
work that bridges AL with text generation tasks,
enabling the application of state-of-the-art AL
strategies to NLG. Our framework simplifies
AL-empowered annotation in NLG tasks us-
ing both human annotators and automatic an-
notation agents based on large language mod-
els (LLMs). The framework supports LLMs
deployed as services, such as ChatGPT and
Claude, or operated on-premises. Furthermore,
ATGen provides a unified platform for smooth
implementation and benchmarking of novel AL
strategies tailored to NLG tasks. Finally, we
present evaluation results for state-of-the-art
AL strategies across diverse settings and multi-
ple text generation tasks. We show that ATGen
reduces both the effort of human annotators and
costs associated with API calls to LLM-based
annotation agents. The code of the framework
is available on GitHub1 under the MIT license.
The video presentation is available at
http://atgen-video.nlpresearch.group

1 Introduction

Natural language generation (NLG) has witnessed
significant advancements in recent years, with the
emergence of large language models (LLMs) such
as o3 (OpenAI), Claude-4-Opus (Anthropic, 2025),
DeepSeek-R1 (DeepSeek-AI et al., 2025), and oth-
ers. These models have achieved remarkable per-
formance across various NLG tasks, including rea-
soning, neural machine translation, and summariza-
tion. However, for tasks that require deep domain

1https://github.com/Aktsvigun/atgen
∗ – equal contribution

knowledge, such as text generation in medical or
law domains, even the most powerful LLMs are not
capable of generating responses of adequate qual-
ity (Moëll, 2024). Hence, for such tasks, the avail-
ability of annotated datasets still remains a critical
bottleneck. Moreover, due to latency constraints
and memory limitations, real-world applications of-
ten require the deployment of low-resource models.
Such models often exhibit low performance with-
out task-specific fine-tuning, further emphasizing
the need for annotated data.

Recently, automatic labeling methods have been
introduced to alleviate the workload of human an-
notators by utilizing LLMs for labeling in instruct-
mode (Honovich et al., 2023; Wang et al., 2023).
Nonetheless, these techniques are not universally
applicable, as current LLMs may struggle to gen-
erate high-quality annotations for domain-specific
tasks and datasets. Querying the most powerful
LLMs, such as o3 or Claude-4-Opus, incurs sub-
stantial costs, rendering large-scale data annotation
prohibitively expensive.

Active learning (AL) is a promising approach to
addressing the annotation bottleneck in machine
learning. By strategically selecting for labeling
the most informative instances, AL aims to maxi-
mize the model performance while minimizing the
annotation effort (Settles, 2009). Instances are se-
lected iteratively by batches, and after labeling each
batch, the new instances are used to update an ML
model, which in its turn is used to select another
batch. AL in text and token classification tasks
for Transformer-based models allows reducing the
number of annotations by 3-5 times compared to
random selection of instances while maintaining
the same level of performance (Shelmanov et al.,
2021; Margatina et al., 2021). In the era of LLM-
powered annotation, AL emerges as a powerful tool
– not only streamlining human effort but also reduc-
ing the total cost of LLM API calls for automatic
data labeling.
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Another promising direction in this area is ex-
perimental design (ED; Bhatt et al. (2024a)). In
this approach, instances for annotation are selected
once before training the model. This helps miti-
gate the significant overhead in AL ushered from
training a model and querying samples to label on
each iteration. ED also allows for parallelizing the
labeling procedure. It is especially beneficial when
humans serve as annotators because it eliminates
the costs associated with the latency of training a
model and performing an AL query on each iter-
ation. However, to select new instances, ED uti-
lizes neither labels obtained during the annotation
process nor, consequently, the model knowledge
after fine-tuning on the already annotated instances.
This can potentially degrade its benefits compared
to those of AL. For the sake of simplicity, for the re-
mainder of the paper, we subsume ED approaches
under the umbrella term AL since ED can be con-
sidered a particular case of AL.

Although there exist many NLP-oriented AL
frameworks, they primarily focus on classification
and sequence labeling tasks (Lin et al., 2019; Tsvi-
gun et al., 2022b; Schröder et al., 2023). Further-
more, launching an AL cycle with modern LLMs
requires parameter-efficient tools for fine-tuning
(PEFT) and support for efficient LLM inference.
Despite the recent progress in AL strategies for
NLG tasks (Tsvigun et al., 2022a; Xia et al., 2024;
Azeemi et al., 2025), there is currently no unified
framework to evaluate these strategies in unified
settings. Finally, given the remarkable performance
of modern LLMs, powerful models can often effec-
tively replace human annotators for labeling data
on many relatively simple tasks (Golde et al., 2023;
Peng et al., 2023).

To fill the aforementioned gaps, we introduce
Active Text Generation (ATGen) – a comprehen-
sive framework that enables AL annotation in NLG
tasks. ATGen aims to democratize active learning
for text generation by making it accessible to users
regardless of their expertise level in these topics.
With just a few lines of code, users can initiate AL-
empowered data annotation with human or LLM-
based annotators. For researchers, the framework
offers a unified platform for developing and bench-
marking novel active learning strategies, thereby
fostering further innovation in the field.

The main contributions of our framework can be
summarized as follows:

• A collection of state-of-the-art AL and ED

strategies for text generation implemented
with unified program interfaces.

• A demo web application that allows perform-
ing AL annotation for NLG tasks, supporting
both manual labeling and automatic labeling
via proprietary or open-source LLM-based an-
notation agents.

• A benchmarking platform for rigorous evalua-
tion of AL strategies in NLG tasks.

• Experimental evaluation demonstrating that
AL substantially reduces annotation time for
manual labeling and total costs for LLM API
calls in automatic annotation scenarios.

2 Related Work

2.1 AL Selection Strategies in NLP
Non-generative NLP tasks. AL has been widely
explored for non-generative NLP tasks (Yuan et al.,
2020; Margatina et al., 2021; Shelmanov et al.,
2021; Liu et al., 2021; Tsvigun et al., 2022c). Most
prominent solutions substantially outperform ran-
dom sampling, emphasizing the benefits of AL, as
shown by Schröder et al. (2022). Particularly, for
text classification and token classification tasks, en-
abling AL allows reaching the same model quality
with a 3-6 times reduced budget for annotation.

Technically, some of these strategies can be
reused for generative tasks; however, their perfor-
mance in these tasks is questionable. For example,
least confidence (Lewis and Gale, 1994), prediction
entropy (Roy and McCallum, 2001), and Coreset
strategies (Sener and Savarese, 2018) were shown
to substantially outperform random sampling in
text classification (Schröder et al., 2022; Tsvigun
et al., 2022b). However, their extension in gener-
ative tasks does not improve the quality obtained
through random sampling and can even lead to
lower results (Tsvigun et al., 2022a; Perlitz et al.,
2023). Therefore, application of such strategies to
NLG tasks requires careful evaluation in various
settings before usage.

Text generation tasks. Recently, several AL
strategies tailored to NLG tasks have emerged.
TE-delfy (Zhao et al., 2020), introduced for the
NMT task, combines uncertainty-based token en-
tropy (TE) and model-agnostic decay logarithm
frequency (delfy). BLEUVar, proposed by Xiao
et al. (2020), considers documents as vectors and
employs the BLEU score (Papineni et al., 2002)

654



to compute the dissimilarity between them. It
selects for annotation texts that exhibit the high-
est variability in BLEU scores across multiple
stochastic generations. NGF-SMP (Hu and Neu-
big, 2021) selects frequent phrases that are under-
represented in the labeled data. HUDS (Azeemi
et al., 2025) combines uncertainty-based and metric
learning approaches by using normalized negative
log-likelihood to estimate uncertainty for unlabeled
sentences and stratifying the data based on these
scores. The final score is a weighted sum of the un-
certainty score and the cosine distance between the
sentence’s BERT embedding and its correspond-
ing stratum centroid embedding. HADAS (Xia
et al., 2024), introduced for Abstractive Text Sum-
marization (ATS), assesses the susceptibility of a
generative model to hallucinations across semantic
frame, discourse, and content verifiability errors. It
combines entailment-based semantic frame scoring,
QA-based discourse evaluation, and BERTScore-
based content verifiability assessment to produce
a hallucination-aware score for each text. LD-
CAL (Li et al., 2024), also designed for the ATS
task, fuses curriculum learning and active learning
by leveraging an LLM-determined difficulty score
to partition documents into four levels and then
selecting representative instances that maximize
the model’s certainty gain, thus covering both high-
and low-density regions.

Some works favor ED approaches since the
query phase of AL in NLG can incur significant
overhead, especially when the model is required to
generate some text to assess the informativeness
of the instance. IDDS (Tsvigun et al., 2022a) se-
lects instances with low semantic similarity with
the labeled pool and high similarity with the whole
unannotated pool. Bhatt et al. (2024b) suggest us-
ing traditional submodular functions for subset se-
lection. They demonstrate the effectiveness of the
facility location function (Mirchandani and Francis,
1991) in some settings. We will refer to this strat-
egy as “Facility Location” throughout the paper.

2.2 Existing AL Frameworks for NLP
There exist many libraries that allow running AL
for various NLP tasks (Klie et al., 2018; Lin et al.,
2019; Nguyen et al., 2022; Tsvigun et al., 2022b;
Schröder et al., 2023). However, these systems
miss many practical features and tools, crucial for
seamless integration with data analysis pipelines
and annotation. Features essential for seamless
data annotation in text generation tasks with active

learning integration are predominantly scattered
across various frameworks. Huang (2021); Beck
et al. (2021) implement many state-of-the-art strate-
gies for classification tasks. Schröder et al. (2023)
provides unified interfaces for benchmarking AL
on text classification datasets. ALToolbox (Tsvigun
et al., 2022b) provides a pre-implemented set of
AL strategies and a GUI for text annotation tasks
such as text classification and information extrac-
tion. It also allows benchmarking AL strategies
for encoder-based and sequence-to-sequence mod-
els. The tool proposed by Golde et al. (2023);
Human Signal (2023) allows annotating data us-
ing LLMs, but has no integration with AL. Finally,
Argilla (Daniel and Francisco, 2023) offers a com-
prehensive tool for data annotation and quality im-
provement in AI projects, but also lacks AL work-
flow support.

Additionally, running an AL loop with mod-
ern LLMs is both time- and memory-consuming
and requires enabling approaches for efficient fine-
tuning and inference. To our knowledge, ATGen is
the first framework to synergize PEFT approaches
like LoRA and inference-efficient frameworks like
vLLM (Kwon et al., 2023) for efficient AL.

3 ATGen Description

In AL, one starts with a small labeled dataset and a
large pool of unlabeled data. An acquisition model
is trained on the labeled set, then used to evaluate
the unlabeled data. A selection AL strategy is used
to identify the most informative instances, which
are then labeled by an oracle (a human or a model).
This process repeats iteratively, gradually improv-
ing the model’s performance until some stopping
criteria are met.

ATGen supports all stages of AL in NLG. It
includes: (1) a web application for manual anno-
tation with integrated AL support; (2) automatic
AL-guided data annotation using LLMs, optimized
for cost-efficient API usage; (3) a wide range of
implemented AL query strategies, evaluation met-
rics, and configurable stopping criteria; (4) tools
for efficient model fine-tuning and inference; (5) a
user-friendly web interface for configuration and
monitoring; and (6) benchmarking scripts for eval-
uating and comparing AL strategies across tasks
and domains.
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🧪 Configure New Experiment

Experiment Configuration
Set up the parameters for your active learning experiment.

Complete all tabs below, then click the "Launch Experiment" button at the bottom to start your run.

🔧  General Setup 🎯  Active Learning 👨💼  Labelling 📚  Data 🤖  Model & Training 📊  Evaluation

Active Learning Strategy
🎯  AL strategy

Random

Hadas
Huds

IDDS

DUAL

📊  AL query size

10

🔧  Advanced Strategy Settings

About AL Strategy

The selected strategy will determine how the

most informative examples are picked from
your dataset for labeling.

Stopping Criteria

Fill in at least one of the parameters below:

🔄  Number of AL iterations

5

📈  Required quality (JSON format):

Example: {"rouge1": 0.5}

💰  Budget (in $)

Ready to Start Your Experiment?
Make sure you've configured all tabs above before proceeding.

🚀  Launch Experiment

Welcome

Configure Experiment

Metrics

Labeled examples

Generations

Annotation

Experiment Comparison

Dashboard

3/29/25, 9:39 AM Configure Experiment

195.242.11.57:8501/Configure_Experiment 1/1

Figure 1: The ATGen configuration form to launch
active learning in a GUI.

3.1 Framework Features

3.1.1 AL Strategies for NLG Tasks
ATGen implements all the state-of-the-art AL selec-
tion strategies in NLG (see Section 2.1). We also
incorporate various uncertainty-based strategies,
such as normalized sequence probability (Ueffing
and Ney, 2007), mean token entropy (Zhao et al.,
2020), and others.

3.1.2 Web GUI for Manual Labeling
ATGen can be used for manual text annotation via
a web GUI application. For manual annotation, we
recommend using ED strategies, as they require
only a single round of annotation before training
the target model. This approach significantly re-
duces annotation time and delays, making it espe-
cially suitable for scenarios involving human an-
notators. The GUI for annotation is displayed in
Figure 2.

3.1.3 Automatic Labeling using LLMs
Users can select any chat-based model from a range
of providers to serve as an annotator in place of a
human. ATGen integrates seamlessly with lead-
ing API-based LLM providers, including Ope-
nAI, Anthropic, and other OpenAI-compatible
platforms such as Nebius AI Studio. For opti-
mal annotation quality, we suggest using Claude-
3.5-sonnet or GPT-4o models. For OpenAI-based
models, we implement the batched API, which is
50% cheaper and several times faster compared to
its synchronous analogue. Users can also choose

✍ Human Annotation

📝 Annotation Interface
This page allows human annotators to provide labels for selected examples. Your annotations will be

used to train and improve the model in subsequent iterations.

📂  Select experiment directory:

Demo_09-22-56 (2025-03-29)

🔄  Refresh list

⚠ Important Notice
Please annotate all texts carefully. Do not reload the page as your work might be lost!

Annotation Progress

Completed 0 of 10 texts (0.0%)

Text 1/10

<>  Here is the revised draft.

I spoke with the Duke attorney and he is taking "let me see it 

and I'll let you know" approach so let me know if you have any 

additional changes and I will send it over to him.

Also, it is my understanding that we must now have a Weil 

Gotschal bankruptcy attorney sign off on the deal so I am trying 

to find out who that person is and what needs to be done.

Your Annotation

Please enter your annotation below:

Duke Attorney Notes

Welcome

Configure Experiment

Metrics

Labeled examples

Generations

Annotation

Experiment Comparison

Dashboard

3/29/25, 12:48 PM Human Annotation

195.242.11.57:8501/Annotation 1/2

Figure 2: Human annotation page interface.

a model from HuggingFace or supply a custom
model for data annotation. The selected model
runs locally on the user’s hardware and processes
the input data in batch mode.

3.1.4 Supported Acquisition Models and
Datasets

The framework is tightly integrated with Hugging-
Face. It supports any acquisition model avail-
able through the HuggingFace Transformers li-
brary (Wolf et al., 2019) and allows pulling data
from the HuggingFace hub via the datasets li-
brary (Lhoest et al., 2021). Users can also upload
their own datasets in either CSV or JSON format.

3.1.5 Efficient Fine-Tuning and Inference
Most AL strategies require fine-tuning and/or infer-
ence with the target model. Since modern LLMs
have billions of parameters, the implementation
of computationally efficient methods for training
and inference becomes crucial for real-world appli-
cations of the framework. ATGen, therefore, sup-
ports several parameter-efficient fine-tuning meth-
ods (Houlsby et al., 2019): LoRA (Hu et al., 2022),
which approximates the update matrix as the prod-
uct of two low-rank matrices; QLoRA (Dettmers
et al., 2023), which further reduces memory us-
age using the 4-bit NormalFloat data type, double
quantization, and paged optimizer; and DoRA (Liu
et al., 2024), which allows for more expressive
fine-tuning by introducing an additional low-rank
matrix to model both additive and multiplicative
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updates. The user can omit the usage of PEFT; yet,
this will require a large amount of GPU memory.

For efficient inference, ATGen leverages
three modern inference-accelerating frame-
works: vLLM, which optimizes the inference
through PagedAttention (Kwon et al., 2023),
SGLang (Zheng et al., 2024), which leverages
RadixAttention for prefix caching along with other
techniques, and Unsloth (Daniel Han and team,
2023), which accelerates the inference through
various optimizations like memory-efficient
kernels.

3.1.6 Supported Evaluation Metrics
Performance evaluation in NLG tasks is a cru-
cial bottleneck, since there are many perspectives
from which the quality of the generation can be
gauged (Yuan et al., 2021). We split the imple-
mented metrics into three groups:

1. Automated metrics. These are traditional met-
rics such as BLEU (Papineni et al., 2002),
ROUGE (Lin, 2004), and others, aimed at au-
tomatic evaluation of results.

2. Open-source LLM-based metrics. This
group incorporates metrics that require
the usage of an open-source model, such
as BERTScore (Zhang* et al., 2020),
BARTScore (Yuan et al., 2021), Align-
Score (Zha et al., 2023), and others.

3. Proprietary LLM-based metrics. Recently,
quality estimation with LLMs gained much
attention and has been adopted in many
works (Liu et al., 2023). We therefore use the
DeepEval (Ip and Vongthongsri, 2025) frame-
work for evaluation via LLMs. We note that
this type of evaluation incurs additional com-
putational cost compared to other methods.
Therefore, we recommend using it only at the
final stage of active learning for the ultimate
assessment of model performance.

3.2 Demo Web Application

ATGen allows a user to deploy a web application
for AL annotation on the user’s dataset with either
human or LLM serving as an annotator in just one
line of code. To launch AL annotation from the
GUI, a user can configure a labeler, the data for an-
notation, and a stopping criterion from a web form
(Figure 1). The application supports several stop-
ping criteria: annotating a fixed number of texts,
reaching a certain level of the model’s performance

on a test set, or running out of budget when using a
human or an API-based LLM agent for annotation.

There are many other parameters when running
AL: training hyperparameters, PEFT-related param-
eters, and others. To customize additional parame-
ters, a user can create a configuration file and apply
it using the submission form in the top left corner.

After each AL iteration, the model performance
is evaluated either on the test data, if available, or
on the test split of the labeled data.

3.3 Benchmark for AL Selection Strategies

ATGen provides benchmarking scripts for a seam-
less evaluation of the performance of AL strategies
in NLG tasks. Running an experiment requires im-
plementing the custom strategy according to the
guidelines. The benchmarking tool can also be
leveraged to test the existing approaches in various
AL settings (e.g. in new domains, with LLM an-
notators, etc.). The example code to benchmark a
strategy is provided in Figure 7 in Appendix C.

4 Experiments

Using the ATGen benchmark, we evaluate the per-
formance of AL and ED methods in various setups.

4.1 Experimental Setup

4.1.1 AL Settings
We adopt the widely used simulated AL experi-
mental setup (Settles and Craven, 2008; Shen et al.,
2017; Tsvigun et al., 2022a), which emulates the
AL annotation cycle. At each iteration, we select a
fixed number of top-ranked instances from the unla-
beled pool according to the AL query strategy and
assign them their ground-truth outputs, simulating
an annotation by an oracle. The selected instances
are removed from the unlabeled pool and added to
the training dataset for subsequent iterations. We
then train a new acquisition model from the previ-
ous checkpoint using the accumulated training data
and evaluate its performance on the test set. This
process produces a curve that illustrates how model
performance depends on the amount of annotated
training data. A higher curve indicates better per-
formance of the AL query strategy, as it reflects the
model’s ability to achieve better results with less
training data. For robustness, we run each experi-
ment several times with different random seeds and
average the obtained curves.

Given the growing interest in LLMs application
for data labeling (Honovich et al., 2023), we also
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a) TriviaQA dataset with emulation of “manual” labeling.
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b) TriviaQA dataset with labeling using an LLM.

Figure 3: Performance of AL selection strategies on the TriviaQA dataset with different annotation sources.

conduct experiments where an LLM annotates the
data instead of using ground-truth annotations. In
this scenario, we use DeepSeek-R1 as the annota-
tion model.

4.1.2 Datasets, Metrics, and Acquisition
Model

Following the recent works in this area (Tsvi-
gun et al., 2022a; Xia et al., 2024), we evaluate
AL and ED strategies on 4 diverse NLG tasks:
open-domain question answering: TriviaQA (Joshi
et al., 2017), Wiki subset; mathematical reasoning:
GSM8K (Cobbe et al., 2021); reading comprehen-
sion: RACE (Lai et al., 2017); and text summa-
rization: AESLC (Zhang and Tetreault, 2019). For
TriviaQA and GSM8K, we select 1% of texts from
the train set for labeling on each AL iteration. For
RACE and AESLC, we select 10 texts to label on
each AL iteration to align with the previous works.

Due to space limitations, we present results for
the TriviaQA and GSM8K datasets in the main part
of the paper, while results for RACE and AESLC
are provided in Appendix A.

We perform experiments with an emulation of
manual labeling on all datasets. On TriviaQA and
GSM8K, we also conduct experiments with LLM-
based labeling by DeepSeek-R1.

We run the experiments with the Qwen/Qwen3-
1.7B acquisition model2 – one of the state-of-the-
art models to date in its size. The hyperparameters
are presented in Appendix B.

To assess the performance of the acquisition
model, we use the exact match (EM) metric for
GSM8K and RACE, the relaxed version of EM that
accepts any of the valid answers for TriviaQA, and

2https://huggingface.co/Qwen/Qwen3-1.7B

ROUGE-2 (Lin, 2004) along with AlignScore (Zha
et al., 2023) for AESLC to ensure that the increased
ROUGE score is not caused by an increase in hal-
lucinations.

4.2 Results

Figure 3 presents the performance of AL query
strategies on the TriviaQA dataset under both man-
ual annotation emulation and LLM-based annota-
tion scenarios. The results reveal consistent pat-
terns across both settings, with HUDS, HADAS,
and Facility Location strategies substantially out-
performing random sampling across all iterations.
For example, random sampling requires over 12%
of the dataset to be labeled to match the perfor-
mance level that AL achieves with three times less
data (just 4%) – in both the “manual” and LLM-
based annotation scenarios.

Figure 4 shows analogous experiments on the
GSM8K dataset. Under manual annotation emu-
lation (Figure 4a), the same three strategies plus
IDDS demonstrate superior performance compared
to random sampling throughout all iterations. How-
ever, when using LLM-based annotation (Fig-
ure 4b), we observe a significant degradation in
overall quality across all strategies. While HUDS,
HADAS, and Facility Location maintain the ad-
vantage over random sampling, absolute quality
scores decrease by several percentage points. The
performance gap likely stems from the inherent lim-
itations of the oracle, DeepSeek-R1. Despite being
a state-of-the-art LLM on mathematical reason-
ing tasks, it is still prone to making annotation er-
rors that accumulate through the AL process. This
finding underscores that for specialized domains,
human annotation remains crucial for obtaining
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a) GSM8K dataset with emulation of “manual” labeling.
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b) GSM8K dataset with labeling using an LLM.

Figure 4: Performance of AL selection strategies on the GSM8K dataset with different annotation oracles.

high-quality models.
Additional experiments on RACE and AESLC

datasets (Figures 6 and 5 in Appendix A) corrobo-
rate these findings. HUDS, HADAS, and Facility
Location consistently outperform random sampling
across diverse NLG tasks. These strategies substan-
tially reduce annotation costs by achieving target
quality levels with far fewer labeled examples.

Overall, the results demonstrate that AL works
effectively in both manual annotation and LLM-
based annotation scenarios. This means that AL
can reduce costs for LLM API calls by 2-4x when
AL annotation is executed in a fully automatic
regime, while achieving the same level of perfor-
mance. Although AL requires retraining a small
LLM on each iteration, which consumes computa-
tional resources, this process can be executed on
a user’s hardware, making it effectively “free” for
the user. Therefore, despite the additional compu-
tational expenses, the savings on LLM API calls
are significantly more substantial.

5 Conclusion

We have presented ATGen – a comprehensive
framework for AL in text generation tasks. The
framework implements all state-of-the-art active
learning techniques for NLG, offers a web-based
annotation tool that supports both human and LLM-
assisted labeling, and includes scripts for consistent
experimental evaluation of AL query strategies. We
have also conducted experiments, demonstrating
that state-of-the-art strategies like HUDS can save
annotators’ time and budget for LLM API calls.

We believe that AL is a promising approach
even in the era of powerful LLMs, as it can help
to reduce costs for building smaller models that

could be deployed in production. We hope that our
framework will foster the development of better
AL strategies in the future.

Limitations

We have not investigated possible bias introduced
by active learning during annotation. This is an
important future work as AL strategies might alter
the data distribution significantly.

We note that AL requires some additional com-
putational expenses for re-training the target LLM.
If the target LLM is not big, these expenses might
be negligible. However, for bigger LLMs, that
might be an additional concern.

Ethical Considerations

For experiments and demo implementation, we
reused pre-existing corpora and LLMs, which have
been publicly released and approved for research
purposes. The code of the demo has been released
under the MIT license on GitHub.

Using LLMs for automatic annotation should
be approached with caution, as these models in-
herit social biases and often produce hallucinations.
Hence, additional verification of annotation quality
is required.

Acknowledgements

The work of A. Tsvigun, T. Bekleutov, R. Grigorev,
R. Kuleev, and I. Makarov on Sections 2–4 was
supported by the Research Center of the Artificial
Intelligence Institute at Innopolis University and
financially by the Ministry of Economic Develop-
ment of the RF (code 25-139-66879-1-0003).

659

https://github.com/Aktsvigun/atgen


References
Anthropic. 2025. Introducing Claude 4.

Abdul Hameed Azeemi, Ihsan Ayyub Qazi, and
Agha Ali Raza. 2025. To label or not to label: Hy-
brid active learning for neural machine translation. In
Proceedings of the 31st International Conference on
Computational Linguistics, pages 3071–3082, Abu
Dhabi, UAE. Association for Computational Linguis-
tics.

Nathan Beck, Suraj Kothawade, Durga Sivasubra-
manian, Apurva Dani, Rishabh Iyer, and Ganesh
Ramakrishnan. 2021. Distil: Deep diversi-
fied interactive learning. https://github.com/
decile-team/distil.

Gantavya Bhatt, Yifang Chen, Arnav Mohanty Das,
Jifan Zhang, Sang T. Truong, Stephen Mussmann,
Yinglun Zhu, Jeffrey A. Bilmes, Simon S. Du,
Kevin G. Jamieson, Jordan T. Ash, and Robert D.
Nowak. 2024a. An experimental design framework
for label-efficient supervised finetuning of large lan-
guage models. CoRR, abs/2401.06692.

Gantavya Bhatt, Yifang Chen, Arnav Mohanty Das,
Jifan Zhang, Sang T. Truong, Stephen Mussmann,
Yinglun Zhu, Jeffrey A. Bilmes, Simon S. Du,
Kevin G. Jamieson, Jordan T. Ash, and Robert D.
Nowak. 2024b. An experimental design framework
for label-efficient supervised finetuning of large lan-
guage models. CoRR, abs/2401.06692.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, Christopher Hesse, and John Schulman.
2021. Training verifiers to solve math word prob-
lems. arXiv preprint arXiv:2110.14168.

Vila-Suero Daniel and Aranda Francisco. 2023. Argilla
- Open-source framework for data-centric NLP.

Michael Han Daniel Han and Unsloth team. 2023. Un-
sloth.

DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang,
Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang,
Xingkai Yu, Yu Wu, Z. F. Wu, Zhibin Gou, Zhihong
Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue,
Bingxuan Wang, Bochao Wu, Bei Feng, Chengda Lu,
Chenggang Zhao, Chengqi Deng, Chenyu Zhang,
Chong Ruan, Damai Dai, Deli Chen, Dongjie Ji,
Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo,
Guangbo Hao, Guanting Chen, Guowei Li, H. Zhang,
Han Bao, Hanwei Xu, Haocheng Wang, Honghui
Ding, Huajian Xin, Huazuo Gao, Hui Qu, Hui Li,
Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang
Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L.
Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai Dong, Kai
Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai
Yu, Lean Wang, Lecong Zhang, Liang Zhao, Litong
Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan
Zhang, Minghua Zhang, Minghui Tang, Meng Li,

Miaojun Wang, Mingming Li, Ning Tian, Panpan
Huang, Peng Zhang, Qiancheng Wang, Qinyu Chen,
Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan,
Runji Wang, R. J. Chen, R. L. Jin, Ruyi Chen,
Shanghao Lu, Shangyan Zhou, Shanhuang Chen,
Shengfeng Ye, Shiyu Wang, Shuiping Yu, Shunfeng
Zhou, Shuting Pan, S. S. Li, Shuang Zhou, Shaoqing
Wu, Shengfeng Ye, Tao Yun, Tian Pei, Tianyu Sun,
T. Wang, Wangding Zeng, Wanjia Zhao, Wen Liu,
Wenfeng Liang, Wenjun Gao, Wenqin Yu, Wentao
Zhang, W. L. Xiao, Wei An, Xiaodong Liu, Xiaohan
Wang, Xiaokang Chen, Xiaotao Nie, Xin Cheng, Xin
Liu, Xin Xie, Xingchao Liu, Xinyu Yang, Xinyuan Li,
Xuecheng Su, Xuheng Lin, X. Q. Li, Xiangyue Jin,
Xiaojin Shen, Xiaosha Chen, Xiaowen Sun, Xiaoxi-
ang Wang, Xinnan Song, Xinyi Zhou, Xianzu Wang,
Xinxia Shan, Y. K. Li, Y. Q. Wang, Y. X. Wei, Yang
Zhang, Yanhong Xu, Yao Li, Yao Zhao, Yaofeng
Sun, Yaohui Wang, Yi Yu, Yichao Zhang, Yifan Shi,
Yiliang Xiong, Ying He, Yishi Piao, Yisong Wang,
Yixuan Tan, Yiyang Ma, Yiyuan Liu, Yongqiang Guo,
Yuan Ou, Yuduan Wang, Yue Gong, Yuheng Zou, Yu-
jia He, Yunfan Xiong, Yuxiang Luo, Yuxiang You,
Yuxuan Liu, Yuyang Zhou, Y. X. Zhu, Yanhong Xu,
Yanping Huang, Yaohui Li, Yi Zheng, Yuchen Zhu,
Yunxian Ma, Ying Tang, Yukun Zha, Yuting Yan,
Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean
Xu, Zhenda Xie, Zhengyan Zhang, Zhewen Hao,
Zhicheng Ma, Zhigang Yan, Zhiyu Wu, Zihui Gu, Zi-
jia Zhu, Zijun Liu, Zilin Li, Ziwei Xie, Ziyang Song,
Zizheng Pan, Zhen Huang, Zhipeng Xu, Zhongyu
Zhang, and Zhen Zhang. 2025. Deepseek-r1: Incen-
tivizing reasoning capability in llms via reinforce-
ment learning. Preprint, arXiv:2501.12948.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and
Luke Zettlemoyer. 2023. Qlora: Efficient finetuning
of quantized llms. In Advances in Neural Information
Processing Systems 36: Annual Conference on Neu-
ral Information Processing Systems 2023, NeurIPS
2023, New Orleans, LA, USA, December 10 - 16,
2023.

Jonas Golde, Patrick Haller, Felix Hamborg, Julian
Risch, and Alan Akbik. 2023. Fabricator: An open
source toolkit for generating labeled training data
with teacher llms. In Proceedings of the 2023 Con-
ference on Empirical Methods in Natural Language
Processing, EMNLP 2023 - System Demonstrations,
Singapore, December 6-10, 2023, pages 1–11. Asso-
ciation for Computational Linguistics.

Or Honovich, Thomas Scialom, Omer Levy, and Timo
Schick. 2023. Unnatural instructions: Tuning lan-
guage models with (almost) no human labor. In
Proceedings of the 61st Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 14409–14428, Toronto, Canada.
Association for Computational Linguistics.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski,
Bruna Morrone, Quentin De Laroussilhe, Andrea
Gesmundo, Mona Attariyan, and Sylvain Gelly. 2019.
Parameter-efficient transfer learning for nlp. In In-

660

https://www.anthropic.com/news/claude-4
https://aclanthology.org/2025.coling-main.206/
https://aclanthology.org/2025.coling-main.206/
https://github.com/decile-team/distil
https://github.com/decile-team/distil
https://doi.org/10.48550/ARXIV.2401.06692
https://doi.org/10.48550/ARXIV.2401.06692
https://doi.org/10.48550/ARXIV.2401.06692
https://doi.org/10.48550/ARXIV.2401.06692
https://doi.org/10.48550/ARXIV.2401.06692
https://doi.org/10.48550/ARXIV.2401.06692
https://github.com/argilla-io/argilla
https://github.com/argilla-io/argilla
http://github.com/unslothai/unsloth
http://github.com/unslothai/unsloth
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
http://papers.nips.cc/paper_files/paper/2023/hash/1feb87871436031bdc0f2beaa62a049b-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/1feb87871436031bdc0f2beaa62a049b-Abstract-Conference.html
https://doi.org/10.18653/V1/2023.EMNLP-DEMO.1
https://doi.org/10.18653/V1/2023.EMNLP-DEMO.1
https://doi.org/10.18653/V1/2023.EMNLP-DEMO.1
https://doi.org/10.18653/v1/2023.acl-long.806
https://doi.org/10.18653/v1/2023.acl-long.806


ternational conference on machine learning, pages
2790–2799. PMLR.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. 2022. Lora: Low-rank adaptation of
large language models. In The Tenth International
Conference on Learning Representations, ICLR 2022,
Virtual Event, April 25-29, 2022. OpenReview.net.

Junjie Hu and Graham Neubig. 2021. Phrase-level ac-
tive learning for neural machine translation. In Pro-
ceedings of the Sixth Conference on Machine Trans-
lation, pages 1087–1099, Online. Association for
Computational Linguistics.

Kuan-Hao Huang. 2021. Deepal: Deep active learning
in python. arXiv preprint arXiv:2111.15258.

Human Signal. 2023. Adala: A framework for au-
tonomous data labeling agents. https://github.
com/HumanSignal/Adala.

Jeffrey Ip and Kritin Vongthongsri. 2025. deepeval.

Mandar Joshi, Eunsol Choi, Daniel Weld, and Luke
Zettlemoyer. 2017. TriviaQA: A large scale distantly
supervised challenge dataset for reading comprehen-
sion. In Proceedings of the 55th Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 1601–1611, Vancouver,
Canada. Association for Computational Linguistics.

Jan-Christoph Klie, Michael Bugert, Beto Boullosa,
Richard Eckart de Castilho, and Iryna Gurevych.
2018. The INCEpTION platform: Machine-assisted
and knowledge-oriented interactive annotation. In
Proceedings of the 27th International Conference on
Computational Linguistics: System Demonstrations,
pages 5–9, Santa Fe, New Mexico.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying
Sheng, Lianmin Zheng, Cody Hao Yu, Joseph Gonza-
lez, Hao Zhang, and Ion Stoica. 2023. Efficient mem-
ory management for large language model serving
with pagedattention. In Proceedings of the 29th Sym-
posium on Operating Systems Principles, SOSP 2023,
Koblenz, Germany, October 23-26, 2023, pages 611–
626. ACM.

Guokun Lai, Qizhe Xie, Hanxiao Liu, Yiming Yang,
and Eduard Hovy. 2017. RACE: Large-scale ReAd-
ing comprehension dataset from examinations. In
Proceedings of the 2017 Conference on Empirical
Methods in Natural Language Processing, pages 785–
794, Copenhagen, Denmark. Association for Compu-
tational Linguistics.

David D. Lewis and William A. Gale. 1994. A se-
quential algorithm for training text classifiers. In
Proceedings of the 17th Annual International ACM-
SIGIR Conference on Research and Development
in Information Retrieval. Dublin, Ireland, 3-6 July
1994 (Special Issue of the SIGIR Forum), pages 3–12.
ACM/Springer.

Quentin Lhoest, Albert Villanova del Moral, Yacine
Jernite, Abhishek Thakur, Patrick von Platen, Suraj
Patil, Julien Chaumond, Mariama Drame, Julien Plu,
Lewis Tunstall, Joe Davison, Mario Šaško, Gun-
jan Chhablani, Bhavitvya Malik, Simon Brandeis,
Teven Le Scao, Victor Sanh, Canwen Xu, Nicolas
Patry, Angelina McMillan-Major, Philipp Schmid,
Sylvain Gugger, Clément Delangue, Théo Matus-
sière, Lysandre Debut, Stas Bekman, Pierric Cis-
tac, Thibault Goehringer, Victor Mustar, François
Lagunas, Alexander Rush, and Thomas Wolf. 2021.
Datasets: A community library for natural language
processing. In Proceedings of the 2021 Conference
on Empirical Methods in Natural Language Process-
ing: System Demonstrations, pages 175–184, Online
and Punta Cana, Dominican Republic. Association
for Computational Linguistics.

Dongyuan Li, Ying Zhang, Zhen Wang, Shiyin Tan,
Satoshi Kosugi, and Manabu Okumura. 2024. Ac-
tive learning for abstractive text summarization via
llm-determined curriculum and certainty gain maxi-
mization. In Findings of the Association for Compu-
tational Linguistics: EMNLP 2024, Miami, Florida,
USA, November 12-16, 2024, pages 8959–8971. As-
sociation for Computational Linguistics.

Bill Yuchen Lin, Dongho Lee, Frank F. Xu, Ouyu Lan,
and Xiang Ren. 2019. Alpacatag: An active learning-
based crowd annotation framework for sequence tag-
ging. In Proceedings of the 57th Annual Meeting of
the Association for Computational Linguistics (ACL),
Demo Track.

Chin-Yew Lin. 2004. ROUGE: A package for auto-
matic evaluation of summaries. In Text Summariza-
tion Branches Out, pages 74–81, Barcelona, Spain.
Association for Computational Linguistics.

Qiang Liu, Yanqiao Zhu, Zhaocheng Liu, Yufeng Zhang,
and Shu Wu. 2021. Deep active learning for text clas-
sification with diverse interpretations. In CIKM ’21:
The 30th ACM International Conference on Infor-
mation and Knowledge Management, Virtual Event,
Queensland, Australia, November 1 - 5, 2021, pages
3263–3267. ACM.

Shih-Yang Liu, Chien-Yi Wang, Hongxu Yin, Pavlo
Molchanov, Yu-Chiang Frank Wang, Kwang-Ting
Cheng, and Min-Hung Chen. 2024. Dora:
Weight-decomposed low-rank adaptation. CoRR,
abs/2402.09353.

Yang Liu, Dan Iter, Yichong Xu, Shuohang Wang,
Ruochen Xu, and Chenguang Zhu. 2023. G-eval:
NLG evaluation using gpt-4 with better human align-
ment. In Proceedings of the 2023 Conference on
Empirical Methods in Natural Language Processing,
pages 2511–2522, Singapore. Association for Com-
putational Linguistics.

Katerina Margatina, Giorgos Vernikos, Loïc Barrault,
and Nikolaos Aletras. 2021. Active learning by ac-
quiring contrastive examples. In Proceedings of the
2021 Conference on Empirical Methods in Natural

661

https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://aclanthology.org/2021.wmt-1.117
https://aclanthology.org/2021.wmt-1.117
https://github.com/HumanSignal/Adala
https://github.com/HumanSignal/Adala
https://github.com/confident-ai/deepeval
https://doi.org/10.18653/v1/P17-1147
https://doi.org/10.18653/v1/P17-1147
https://doi.org/10.18653/v1/P17-1147
https://www.aclweb.org/anthology/C18-2002
https://www.aclweb.org/anthology/C18-2002
https://doi.org/10.1145/3600006.3613165
https://doi.org/10.1145/3600006.3613165
https://doi.org/10.1145/3600006.3613165
https://doi.org/10.18653/v1/D17-1082
https://doi.org/10.18653/v1/D17-1082
https://doi.org/10.1007/978-1-4471-2099-5_1
https://doi.org/10.1007/978-1-4471-2099-5_1
https://arxiv.org/abs/2109.02846
https://arxiv.org/abs/2109.02846
https://aclanthology.org/2024.findings-emnlp.523
https://aclanthology.org/2024.findings-emnlp.523
https://aclanthology.org/2024.findings-emnlp.523
https://aclanthology.org/2024.findings-emnlp.523
https://aclanthology.org/W04-1013
https://aclanthology.org/W04-1013
https://doi.org/10.1145/3459637.3482080
https://doi.org/10.1145/3459637.3482080
https://doi.org/10.48550/ARXIV.2402.09353
https://doi.org/10.48550/ARXIV.2402.09353
https://doi.org/10.18653/v1/2023.emnlp-main.153
https://doi.org/10.18653/v1/2023.emnlp-main.153
https://doi.org/10.18653/v1/2023.emnlp-main.153
https://doi.org/10.18653/V1/2021.EMNLP-MAIN.51
https://doi.org/10.18653/V1/2021.EMNLP-MAIN.51


Language Processing, EMNLP 2021, Virtual Event
/ Punta Cana, Dominican Republic, 7-11 November,
2021, pages 650–663. Association for Computational
Linguistics.

Pitu B. Mirchandani and Richard L. Francis, editors.
1991. Discrete Location Theory. Wiley.

Birger Moëll. 2024. Comparing the efficacy of GPT-4
and chat-gpt in mental health care: A blind assess-
ment of large language models for psychological sup-
port. CoRR, abs/2405.09300.

Minh Van Nguyen, Nghia Ngo, Bonan Min, and Thien
Nguyen. 2022. FAMIE: A fast active learning frame-
work for multilingual information extraction. In Pro-
ceedings of the 2022 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies: System
Demonstrations, pages 131–139, Hybrid: Seattle,
Washington + Online. Association for Computational
Linguistics.

OpenAI. Introducing o3 and o4-mini.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In Proceedings of the
40th Annual Meeting of the Association for Compu-
tational Linguistics, July 6-12, 2002, Philadelphia,
PA, USA, pages 311–318. ACL.

Baolin Peng, Chunyuan Li, Pengcheng He, Michel Gal-
ley, and Jianfeng Gao. 2023. Instruction tuning with
gpt-4. Preprint, arXiv:2304.03277.

Yotam Perlitz, Ariel Gera, Michal Shmueli-Scheuer,
Dafna Sheinwald, Noam Slonim, and Liat Ein-Dor.
2023. Active learning for natural language gener-
ation. In Proceedings of the 2023 Conference on
Empirical Methods in Natural Language Process-
ing, EMNLP 2023, Singapore, December 6-10, 2023,
pages 9862–9877. Association for Computational
Linguistics.

Nicholas Roy and Andrew McCallum. 2001. Toward op-
timal active learning through sampling estimation of
error reduction. In Proceedings of the Eighteenth In-
ternational Conference on Machine Learning (ICML
2001), Williams College, Williamstown, MA, USA,
June 28 - July 1, 2001, pages 441–448. Morgan Kauf-
mann.

Christopher Schröder, Lydia Müller, Andreas Niekler,
and Martin Potthast. 2023. Small-text: Active learn-
ing for text classification in python. In Proceedings
of the 17th Conference of the European Chapter of
the Association for Computational Linguistics: Sys-
tem Demonstrations, pages 84–95, Dubrovnik, Croa-
tia. Association for Computational Linguistics.

Christopher Schröder, Andreas Niekler, and Martin
Potthast. 2022. Revisiting uncertainty-based query
strategies for active learning with transformers. In
Findings of the Association for Computational Lin-
guistics: ACL 2022, pages 2194–2203, Dublin, Ire-
land. Association for Computational Linguistics.

Ozan Sener and Silvio Savarese. 2018. Active learning
for convolutional neural networks: A core-set ap-
proach. In 6th International Conference on Learning
Representations, ICLR 2018, Vancouver, BC, Canada,
April 30 - May 3, 2018, Conference Track Proceed-
ings. OpenReview.net.

Burr Settles. 2009. Active learning literature survey.
Computer Sciences Technical Report 1648, Univer-
sity of Wisconsin–Madison.

Burr Settles and Mark Craven. 2008. An analysis of ac-
tive learning strategies for sequence labeling tasks. In
2008 Conference on Empirical Methods in Natural
Language Processing, EMNLP 2008, Proceedings
of the Conference, 25-27 October 2008, Honolulu,
Hawaii, USA, A meeting of SIGDAT, a Special Inter-
est Group of the ACL, pages 1070–1079. Association
for Natural Language Processing.

Artem Shelmanov, Dmitry Puzyrev, Lyubov
Kupriyanova, Denis Belyakov, Daniil Larionov,
Nikita Khromov, Olga Kozlova, Ekaterina Artemova,
Dmitry V. Dylov, and Alexander Panchenko.
2021. Active learning for sequence tagging with
deep pre-trained models and bayesian uncertainty
estimates. In Proceedings of the 16th Conference
of the European Chapter of the Association for
Computational Linguistics: Main Volume, EACL
2021, Online, April 19 - 23, 2021, pages 1698–1712.
Association for Computational Linguistics.

Yanyao Shen, Hyokun Yun, Zachary Lipton, Yakov Kro-
nrod, and Animashree Anandkumar. 2017. Deep
active learning for named entity recognition. In
Proceedings of the 2nd Workshop on Representa-
tion Learning for NLP, pages 252–256, Vancouver,
Canada. Association for Computational Linguistics.

Akim Tsvigun, Ivan Lysenko, Danila Sedashov, Ivan
Lazichny, Eldar Damirov, Vladimir Karlov, Artemy
Belousov, Leonid Sanochkin, Maxim Panov, Alexan-
der Panchenko, Mikhail Burtsev, and Artem Shel-
manov. 2022a. Active learning for abstractive text
summarization. In Findings of the Association
for Computational Linguistics: EMNLP 2022, Abu
Dhabi, United Arab Emirates, December 7-11, 2022,
pages 5128–5152. Association for Computational
Linguistics.

Akim Tsvigun, Leonid Sanochkin, Daniil Larionov,
Gleb Kuzmin, Artem Vazhentsev, Ivan Lazichny,
Nikita Khromov, Danil Kireev, Aleksandr Ruba-
shevskii, Olga Shahmatova, Dmitry V. Dylov, Igor
Galitskiy, and Artem Shelmanov. 2022b. ALTool-
box: A set of tools for active learning annotation of
natural language texts. In Proceedings of the 2022
Conference on Empirical Methods in Natural Lan-
guage Processing: System Demonstrations, pages
406–434, Abu Dhabi, UAE. Association for Compu-
tational Linguistics.

Akim Tsvigun, Artem Shelmanov, Gleb Kuzmin,
Leonid Sanochkin, Daniil Larionov, Gleb Gusev,
Manvel Avetisian, and Leonid Zhukov. 2022c. To-
wards computationally feasible deep active learning.

662

https://www.wiley.com/en-us/Discrete+Location+Theory-p-9780471892335
https://doi.org/10.48550/ARXIV.2405.09300
https://doi.org/10.48550/ARXIV.2405.09300
https://doi.org/10.48550/ARXIV.2405.09300
https://doi.org/10.48550/ARXIV.2405.09300
https://doi.org/10.18653/v1/2022.naacl-demo.14
https://doi.org/10.18653/v1/2022.naacl-demo.14
https://openai.com/index/introducing-o3-and-o4-mini/
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://arxiv.org/abs/2304.03277
https://arxiv.org/abs/2304.03277
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.611
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.611
https://doi.org/10.18653/v1/2023.eacl-demo.11
https://doi.org/10.18653/v1/2023.eacl-demo.11
https://doi.org/10.18653/v1/2022.findings-acl.172
https://doi.org/10.18653/v1/2022.findings-acl.172
https://openreview.net/forum?id=H1aIuk-RW
https://openreview.net/forum?id=H1aIuk-RW
https://openreview.net/forum?id=H1aIuk-RW
https://www.aclweb.org/anthology/D08-1112/
https://www.aclweb.org/anthology/D08-1112/
https://doi.org/10.18653/V1/2021.EACL-MAIN.145
https://doi.org/10.18653/V1/2021.EACL-MAIN.145
https://doi.org/10.18653/V1/2021.EACL-MAIN.145
https://doi.org/10.18653/v1/W17-2630
https://doi.org/10.18653/v1/W17-2630
https://doi.org/10.18653/V1/2022.FINDINGS-EMNLP.377
https://doi.org/10.18653/V1/2022.FINDINGS-EMNLP.377
https://doi.org/10.18653/v1/2022.emnlp-demos.41
https://doi.org/10.18653/v1/2022.emnlp-demos.41
https://doi.org/10.18653/v1/2022.emnlp-demos.41
https://doi.org/10.18653/v1/2022.findings-naacl.90
https://doi.org/10.18653/v1/2022.findings-naacl.90


In Findings of the Association for Computational
Linguistics: NAACL 2022, pages 1198–1218, Seattle,
United States. Association for Computational Lin-
guistics.

Nicola Ueffing and Hermann Ney. 2007. Word-level
confidence estimation for machine translation. Com-
put. Linguistics, 33(1):9–40.

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa
Liu, Noah A. Smith, Daniel Khashabi, and Hannaneh
Hajishirzi. 2023. Self-instruct: Aligning language
models with self-generated instructions. In Proceed-
ings of the 61st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 13484–13508, Toronto, Canada. Association
for Computational Linguistics.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
and Jamie Brew. 2019. Huggingface’s transformers:
State-of-the-art natural language processing. CoRR,
abs/1910.03771.

Yu Xia, Xu Liu, Tong Yu, Sungchul Kim, Ryan A. Rossi,
Anup B. Rao, Tung Mai, and Shuai Li. 2024. Hallu-
cination diversity-aware active learning for text sum-
marization. CoRR, abs/2404.01588.

Tim Z. Xiao, Aidan N. Gomez, and Yarin Gal.
2020. Wat zei je? detecting out-of-distribution
translations with variational transformers. CoRR,
abs/2006.08344.

Michelle Yuan, Hsuan-Tien Lin, and Jordan Boyd-
Graber. 2020. Cold-start active learning through self-
supervised language modeling. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 7935–7948,
Online. Association for Computational Linguistics.

Weizhe Yuan, Graham Neubig, and Pengfei Liu. 2021.
Bartscore: Evaluating generated text as text genera-
tion. In Advances in Neural Information Processing
Systems, volume 34, pages 27263–27277. Curran As-
sociates, Inc.

Yuheng Zha, Yichi Yang, Ruichen Li, and Zhiting Hu.
2023. AlignScore: Evaluating factual consistency
with a unified alignment function. In Proceedings
of the 61st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 11328–11348, Toronto, Canada. Association
for Computational Linguistics.

Rui Zhang and Joel R. Tetreault. 2019. This email
could save your life: Introducing the task of email
subject line generation. In Proceedings of the 57th
Conference of the Association for Computational Lin-
guistics, ACL 2019, Florence, Italy, July 28- August
2, 2019, Volume 1: Long Papers, pages 446–456.
Association for Computational Linguistics.

Tianyi Zhang*, Varsha Kishore*, Felix Wu*, Kilian Q.
Weinberger, and Yoav Artzi. 2020. Bertscore: Eval-
uating text generation with bert. In International
Conference on Learning Representations.

Yuekai Zhao, Haoran Zhang, Shuchang Zhou, and Zhi-
hua Zhang. 2020. Active learning approaches to
enhancing neural machine translation: An empirical
study. In Findings of the Association for Compu-
tational Linguistics: EMNLP 2020, Online Event,
16-20 November 2020, volume EMNLP 2020 of Find-
ings of ACL, pages 1796–1806. Association for Com-
putational Linguistics.

Lianmin Zheng, Liangsheng Yin, Zhiqiang Xie, Chuyue
Sun, Jeff Huang, Cody Hao Yu, Shiyi Cao, Christos
Kozyrakis, Ion Stoica, Joseph E. Gonzalez, Clark W.
Barrett, and Ying Sheng. 2024. Sglang: Efficient
execution of structured language model programs. In
Advances in Neural Information Processing Systems
38: Annual Conference on Neural Information Pro-
cessing Systems 2024, NeurIPS 2024, Vancouver, BC,
Canada, December 10 - 15, 2024.

663

https://doi.org/10.1162/COLI.2007.33.1.9
https://doi.org/10.1162/COLI.2007.33.1.9
https://doi.org/10.18653/v1/2023.acl-long.754
https://doi.org/10.18653/v1/2023.acl-long.754
https://arxiv.org/abs/1910.03771
https://arxiv.org/abs/1910.03771
https://doi.org/10.48550/ARXIV.2404.01588
https://doi.org/10.48550/ARXIV.2404.01588
https://doi.org/10.48550/ARXIV.2404.01588
https://arxiv.org/abs/2006.08344
https://arxiv.org/abs/2006.08344
https://doi.org/10.18653/v1/2020.emnlp-main.637
https://doi.org/10.18653/v1/2020.emnlp-main.637
https://proceedings.neurips.cc/paper/2021/file/e4d2b6e6fdeca3e60e0f1a62fee3d9dd-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/e4d2b6e6fdeca3e60e0f1a62fee3d9dd-Paper.pdf
https://aclanthology.org/2023.acl-long.634
https://aclanthology.org/2023.acl-long.634
https://doi.org/10.18653/v1/p19-1043
https://doi.org/10.18653/v1/p19-1043
https://doi.org/10.18653/v1/p19-1043
https://openreview.net/forum?id=SkeHuCVFDr
https://openreview.net/forum?id=SkeHuCVFDr
https://doi.org/10.18653/V1/2020.FINDINGS-EMNLP.162
https://doi.org/10.18653/V1/2020.FINDINGS-EMNLP.162
https://doi.org/10.18653/V1/2020.FINDINGS-EMNLP.162
http://papers.nips.cc/paper_files/paper/2024/hash/724be4472168f31ba1c9ac630f15dec8-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2024/hash/724be4472168f31ba1c9ac630f15dec8-Abstract-Conference.html


A Additional Experiments
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a) ROUGE-2 scores.
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Figure 5: Performance of AL and ED strategies with emulation of “manual” labeling on AESLC in terms of the
main metric (ROUGE-2) and a hallucination-sensitive metric (AlignScore).
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Figure 6: Performance of AL and ED strategies with emulation of “manual” labeling on the RACE dataset.
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B Model Hyperparameters for Benchmarks

Hparam Value
Checkpoint Qwen/Qwen3-1.7B
# Param. 1.7B
Quantization None
Number of epochs 5
Train Batch size 16
Evaluation Batch size 16
Evaluation Split Size 20%
Gradient Accumulation Steps 1
Learning Rate 3e-5
Warmup Ratio 0.03
Weight Decay 0.01
Max. Gradient Norm 1
Early Stopping Patience 5
Optimizer adamw_hf
Inference Framework vLLM
Batch Size 16
GPU Memory Utilization 0.5
Temperature 0
Generation top_p 0.5
PEFT Enabled
r 16
lora_alpha 16
lora_dropout 0.
LoRA bias 'none'

Table 1: Hyperparameter values and checkpoints from the Hugging Face repository (Wolf et al., 2019) of the models.

C Code Examples

HYDRA_CONFIG_NAME=base python scripts/run_active_learning.py al=STRATEGY_NAME

Figure 7: A Bash command example to benchmark a AL strategy with the name “STRATEGY_NAME”.

HYDRA_CONFIG_NAME=base run-al \
data=gsm8k \
al.init_query_size=0.01 \
al.query_size=0.01 \
al.num_iterations=20 \
al=huds \
evaluation.additional_metrics=[] \
labeller=api_llm \
labeller.parameters.model=gpt-4.1 \
labeller.parameters.max_tokens=4096 \
al.budget=100 \
labeller.price.input_per_1m=2 \
labeller.price.output_per_1m=8 \
labeller.api_key=<your_openai_api_key>

Figure 8: Advanced Bash code example to benchmark the strategy “huds” on the dataset “TriviaQA”, annotating 1%
of texts on each iteration, with GPT-4.1 LLM serving as labeller, calculating only the ’relaxed’ exact match metric.
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