
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 3: System Demonstrations), pages 621–631
July 27 - August 1, 2025 ©2025 Association for Computational Linguistics

FlexRAG: A Flexible and Comprehensive Framework for
Retrieval-Augmented Generation

Zhuocheng Zhang1,2, Yang Feng1,2,3*, Min Zhang4

1Key Laboratory of Intelligent Information Processing,
Institute of Computing Technology, Chinese Academy of Sciences (ICT/CAS)

2University of Chinese Academy of Sciences, China
3Key Laboratory of AI Safety, Chinese Academy of Sciences

4Institute of Computing and Intelligence, Harbin Institute of Technology (Shenzhen), China
zhangzhuocheng20z,fengyang@ict.ac.cn minzhang@suda.edu.cn

Abstract
Retrieval-Augmented Generation (RAG) plays
a pivotal role in modern large language model
applications, with numerous existing frame-
works offering a wide range of functionalities
to facilitate the development of RAG systems.
However, we have identified several persistent
challenges in these frameworks, including dif-
ficulties in algorithm reproduction and shar-
ing, lack of new techniques, and high system
overhead. To address these limitations, we in-
troduce FlexRAG, an open-source framework
specifically designed for research and proto-
typing. FlexRAG supports text-based, mul-
timodal, and network-based RAG, providing
comprehensive lifecycle support alongside ef-
ficient asynchronous processing and persistent
caching capabilities. By offering a robust and
flexible solution, FlexRAG enables researchers
to rapidly develop, deploy, and share advanced
RAG systems. Our toolkit and resources are
available at https://github.com/ictnlp/FlexRAG.

1 Introduction

With the rapid advancement of large language mod-
els (LLMs) (OpenAI et al., 2024; Dubey et al.,
2024; Yang et al., 2024), they are increasingly play-
ing a pivotal role across various domains. How-
ever, numerous application scenarios necessitate
that these models maintain accurate, comprehen-
sive, and up-to-date knowledge (Gao et al., 2024;
Zhao et al., 2024). Continuously retraining LLMs
to integrate new information is not only computa-
tionally expensive but also poses challenges such
as catastrophic forgetting. To address these limita-
tions, retrieval-augmented generation (RAG) has
emerged as a promising solution, enabling models
to dynamically retrieve relevant information from
external sources, thereby enhancing their factual
accuracy and adaptability.

Given the vast application potential of RAG
across various domains, numerous frameworks

*Corresponding author.

have emerged in recent years to facilitate rapid con-
struction of RAG systems (Jin et al., 2024; Hoshi
et al., 2023; Feng et al., 2024; Zhang et al., 2024b;
Kim et al., 2024a; Yu et al., 2024b). However, a
comprehensive analysis of existing frameworks re-
veals that these tools still fail to adequately address
several core challenges in RAG research. First,
due to the complexity of RAG systems, which in-
volve multiple components and intricate environ-
ment configurations, researchers often struggle to
precisely reproduce existing studies or effectively
share their own work with others. Second, con-
structing a RAG system is inherently complex, re-
quiring researchers to address numerous engineer-
ing challenges, which significantly diverts their
focus from scientific inquiry. Furthermore, as RAG
technology evolves rapidly, many researchers are
exploring advanced topics such as multimodal re-
trieval, web-based retrieval, and document chunk-
ing. However, most existing frameworks are de-
signed to address only a single aspect of RAG re-
search, specifically retrieval strategies. More im-
portantly, both the retrieval and generation com-
ponents in RAG systems impose substantial com-
putational costs, limiting the ability of resource-
constrained researchers to conduct effective inves-
tigations.

To address these issues, we present FlexRAG, a
novel open-source framework designed to facilitate
the rapid reproduction, development, and evalua-
tion of RAG systems. The proposed framework
offers comprehensive support for diverse RAG sce-
narios, including text-based, multimodal, and web-
accessible RAG applications, while providing end-
to-end pipeline support from data preparation to
system evaluation. FlexRAG enables researchers to
efficiently share their work with the community and
quickly develop demonstrative prototypes based on
their algorithms. Notably, FlexRAG incorporates
four key distinguishing features that set it apart
from existing frameworks, which are as follows.

621

mailto:zhangzhuocheng20z@ict.ac.cn
mailto:fengyang@ict.ac.cn
mailto:minzhang@suda.edu.cn
https://github.com/ictnlp/FlexRAG


Sparse Index Dense Index

ElasticSearch

Seekers Downloaders Readers T5 Rankers Cross
Encoders

Late Interactive
Rankers GPT Rankers

Typesense

Persistent
Cache

s

Prompt
Squeezer

Text Encoders Multimodal Encoders

Visual Language ModelsText LLMs Commercial LLMs

Commercial
Encoders

Resource Meter

Logger
Manager

Module
Register

Knowledge
Preprocessors

Chunkers

Document
Parsers

Generation Scores

Datasets

Context
RepackerRetrieval Scores

FlexRAG Framework

Context
Summarizer

Web Access RAG System Knowledge Enhanced Assistant Multimodal RAG System

General Scores

Generation
Tasks

Retrieval
Tasks

RAG
Tasks

Modular
Assistant

Online
Assistant

CLI Tools

Retrievers Models

Metrics Tasks Refiners Assistants Preprocessors

RAG Evaluation System Development
Utilities

Encoders

Generators

Rerankers

FlexRetriever

API-Based Retrievers

Web Retrievers

Application

Basic
Assistant

GUI Tools

Hybrid Index

Memory Map
Database

Figure 1: The architecture of FlexRAG. The light blue boxes represent modules, while the dashed boxes indicate
collections of modules with relevant functions.

Research Oriented Design FlexRAG provides
a unified configuration management system and
a standardized RAG evaluation process to ensure
fair and convenient performance assessment. By
integrating with the Hugging Face Hub, FlexRAG
enables researchers to share their retrievers with the
community, fostering collaborative research efforts.
Moreover, FlexRAG offers an example repository
that facilitates algorithm comparison and reproduc-
tion, supporting rigorous scientific inquiry.

Extensive Infrastructure and Tooling : To
reduce the engineering burden on researchers,
FlexRAG provides complete bilingual documen-
tation and pre-built retrievers available on the Hug-
ging Face Hub, facilitating the rapid implementa-
tion of algorithms. Additionally, FlexRAG pro-
vides a comprehensive command-line toolkit that
facilitates a wide range of tasks, including data
preprocessing, retriever construction, system evalu-
ation, and the development of GUI prototypes, as
illustrated in Figure 2.

Comprehensive Technical Support FlexRAG
not only supports text-based RAG but also extends

to multimodal and web-based RAG, enabling broad
applicability across various data types. Addition-
ally, the framework provides end-to-end support
for the entire RAG pipeline, including document
parsing, chunking, and other essential processes, fa-
cilitating the development of comprehensive RAG
systems.

Superior Performance FlexRAG employs a
modular design and leverages asynchronous func-
tions for computationally intensive components, fa-
cilitating the development of high-throughput RAG
system prototypes. Moreover, it employs a persis-
tent caching mechanism to further reduce retrieval
overhead and enhance retrieval efficiency. Most
importantly, FlexRAG incorporates advanced in-
dexing techniques and memory map mechanism,
consuming only one-tenth of the CPU and mem-
ory resources required by comparable frameworks
when performing large-scale retrieval tasks.

In summary, FlexRAG is a comprehensive and
flexible framework that addresses the core chal-
lenges of RAG research, providing researchers with
a powerful tool to develop, evaluate, and deploy
RAG systems.

622



Figure 2: The GUI demonstration provided by FlexRAG.
The left panel displays the messages exchanged between
the user and the assistant, while the right panel shows
the retrieved contexts. The GUI is designed to facilitate
user interaction with the RAG system, allowing users
to input queries and receive responses in a user-friendly
manner.

2 The Architecture of FlexRAG

As illustrated in Figure 1, FlexRAG comprises
twelve core modules, each serving a distinct func-
tion in the RAG pipeline. For clarity, we categorize
them into four functional groups: models, retriev-
ers, system development, and evaluation, along
with auxiliary utility tools. This section first in-
troduces the modules within these four categories,
followed by a detailed discussion of the remaining
components.

2.1 Models

In RAG systems, models are employed across var-
ious components. For instance, dense retrievers
utilize encoders to transform knowledge pieces
into dense vector representations, while generators
are required to produce final responses. FlexRAG
incorporates three fundamental model categories:
encoders, generators, and rerankers.

Encoders The encoder functions to convert in-
put queries or documents into dense vectors for
similarity search in vector space. The encoders in
FlexRAG can be classified into text encoders (De-
vlin et al., 2019; Izacard et al., 2022; Karpukhin
et al., 2020; Lin et al., 2023) and multimodal en-
coders (Radford et al., 2021) based on input data
types. Additional, FlexRAG also supports calling

Web
Reader

Web
Downloader

Web
Seeker

Web Retriever

Retrieved
ContextsRaw

Resources
Resource
URLs

Figure 3: The core components of the WebRetriever
module in FlexRAG and its typical workflow.

commercial encoders via API calls1,2,3, and de-
ploying encoders using famous frameworks4,5.

Rerankers Rerankers optimize the initially re-
trieved document list through reordering mecha-
nisms, effectively filtering out irrelevant content to
reduce noise and enhance input quality for genera-
tors. FlexRAG supports various rerankers, includ-
ing cross-encoder rerankers(Chen et al., 2024), late-
interaction rerankers(Khattab and Zaharia, 2020;
Santhanam et al., 2022; Jha et al., 2024), T5-
style rerankers(Nogueira et al., 2020), and GPT-
style rerankers(Sun et al., 2023). In addition,
FlexRAG also supports calling online rerankers
via APIs1,2,6,7.

Generators The generator synthesizes natural
language responses based on the retrieved docu-
ments and user queries. FlexRAG implement tradi-
tional LLMs (Yang et al., 2024; Dubey et al., 2024)
and Vision Language Models (VLMs) (Wang et al.,
2024b; Steiner et al., 2024) to serve as generators.
Similarly, FlexRAG supports calling commercial
generators via API calls3,8, or deploying generators
using fast inference engines4,9.

2.2 Retrievers

The retriever constitutes one of the most critical
components in RAG systems, serving to rapidly
identify relevant information based on user queries.
In FlexRAG, retrievers are classified into three
types: the Web Retriever, which gathers informa-
tion directly from the internet; the API-Based Re-
triever, which connects to external retrieval sys-
tems via APIs; and the FlexRetriever, developed
in-house by the FlexRAG team, which stores the

1https://jina.ai/
2https://cohere.com/
3https://www.openai.com/
4https://ollama.com/
5https://sbert.net/
6https://www.mixedbread.com/
7https://www.voyageai.com/
8https://www.anthropic.com/
9https://github.com/vllm-project/vllm

623



knowledge base locally and builds indexes using
sparse, dense, or hybrid techniques.

2.2.1 Web Retrievers
Web retrievers are designed to retrieve information
from the internet, typically through search engines
or walking through web pages. With internet ac-
cess, web retrievers has significant advantages in
both the timeliness of retrieval and the breadth of
information it can access, making them particularly
suitable for building personal assistants.

As shown in Figure 3, FlexRAG designs three
key roles to support the construction of web retriev-
ers. The Web Seeker is responsible for locating
online resources. It can be implemented as either
a search engine interface or a web crawler. The
Web Downloader handles the downloading of web
resources. Since web resources are typically in
HTML format, which is challenging for LLMs to
process directly, the Web Reader is designed to
extract content from raw web pages.

To further streamline the development process of
RAG systems, FlexRAG provides two built-in web
retrievers: the SimpleWebRetriever, which lever-
ages search engines to locate web pages and em-
ploys a Web Reader to convert them into an LLM-
friendly format, and the WikipediaRetriever, specif-
ically designed for direct entity querying from
Wikipedia knowledge bases.

2.2.2 FlexRetriever
FlexRetriever is a versatile retriever that sup-
ports both MultiField and MultiIndex retrieval
paradigms. It enables documents to be decomposed
into multiple semantic fields, such as title, abstract,
and content, with dedicated indexes constructed
for each field. Moreover, FlexRetriever facilitates
hybrid retrieval across multiple indexes, allowing
for flexible and fine-grained retrieval strategies that
can be tailored to address complex information
needs. The system supports both sparse and dense
retrieval approaches (Lù, 2024; Douze et al., 2025;
Guo et al., 2020), making it applicable to a wide
spectrum of retrieval tasks.

Notably, FlexRetriever employs memory map
and the empirical formula (Aumüller et al., 2018)
designed for Inverted File and Product Quantiza-
tion (IVFPQ) indexing techniques as its default
configuration, achieving significantly lower mem-
ory overhead and superior retrieval efficiency com-
pared to alternative frameworks.

Furthermore, FlexRetriever is fully integrated

Raw
Document

Parsed
Document

Parse Chunk

Chunks
Chunks

Preprocess

Document
Parser Chunker Knowledge

Preprocessor

Preprocessors

Figure 4: Architecture of the Preprocessors module in
FlexRAG and its typical workflow.

with the Hugging Face ecosystem, enabling seam-
less publication, sharing, and reuse of retrievers
via the Hugging Face Hub 10. This integration
promotes community collaboration and lowers the
barrier to leveraging and contributing retrieval
pipelines with minimal configuration overhead.

2.2.3 API-Based Retriever
FlexRAG also supports two API-Based Retriev-
ers, namely TypesenseRetriever11, and Elastic-
SearchRetriever12, enabling users to implement
their RAG systems by leveraging mature and
feature-rich retrieval systems.

2.3 System Development
Beyond the two fundamental modules of a RAG
system, namely the retriever and the model, addi-
tional components are essential for constructing a
complete RAG pipeline. To address this require-
ment, FlexRAG introduces three modules that col-
lectively enhance the pipeline’s functionality. The
Preprocessors module is responsible for prepar-
ing and structuring the knowledge base, ensuring
that relevant information is efficiently organized
for retrieval. The Refiners module enhances the
retrieved contexts through refinement and post-
processing, improving the quality and relevance
of the input provided to the model. Lastly, the As-
sistants module serves as a unified framework that
encapsulates the entire RAG pipeline, facilitating
seamless integration and operation.

2.3.1 Preprocessors
In modern computing systems, a substantial propor-
tion of knowledge resources are stored and dissem-
inated through document file formats (e.g., PDF,
DOCX), as opposed to plain text. While these semi-
structured data maintains human interpretability, it
present significant parsing challenges for LLMs

10https://huggingface.co/FlexRAG
11https://github.com/typesense/typesense
12https://github.com/elastic/elasticsearch

624



Generation Tasks

QA Tasks

Special Tasks

Single-hop QA

Multi-hop QA

Long-form QA

Short-form QA

Entity Linking

Slot Filling

Fact Verification

Multiple Choice

Retrieval Tasks

RAG Tasks

MTEB-Retrieval*

MMLU, ARC, TruthfulQA, HellaSwag, OpenBookQA, MIRAGE*

FEVER

T-Rex, zsRE

AY2, WnWi, WnCw

HotpotQA, 2WikiMultiHopQA, Musique,
Bamboogle

ELI5, ASQA, DomainRAG*

NQ, TriviaQA, PopQA, SQuAD, MSMARCO-QA, NarrativeQA, WikiQA,
WebQ, AmbigQA, SIQA, CommonsenseQA, BoolQ, Fermi, PIQA 

Dialogue Tasks Doc2Dial, QuAC, QReCC, TopiOCQA, INSCIT, WoW, MTRAG*

Figure 5: RAG Evaluation Tasks. Tasks without an asterisk (*) correspond to individual datasets, while those
marked with an asterisk indicate benchmarks that may comprise multiple datasets.

during information extraction. To address this lim-
itation, document preprocessing pipelines are re-
quired to transform these heterogeneous formats
into standardized structured representations that are
computationally tractable for LLM processing. As
illustrated in Figure 4, FlexRAG’s preprocessing
module comprises three specialized roles, namely
Document Parser, Chunker, and Knowledge Pre-
processor, to facilitate this critical format conver-
sion.

Concretely, the Document Parser is responsi-
ble for extracting LLM readable content from vari-
ous document formats, including PDF, DOCX, and
HTML. Once the content is extracted, the Chunker
segments it into smaller, more manageable chunks,
enabling efficient processing by both the retriever
and the generator. To further improve knowledge
base quality, the Knowledge Preprocessor is de-
signed to preprocess and filter the extracted content,
ensuring that it is well-structured and optimized for
retrieval.

2.3.2 Refiners

Existing research indicates that the quality of re-
sponses generated by LLMs is closely associated
with the relevance, sequencing, and quantity of
contextual information provided in the prompt (Shi
et al., 2023; Zhang et al., 2024a). However, re-
lying solely on retrievers does not guarantee that
the retrieved context aligns with the preferences

of LLMs. Therefore, further processing of the re-
trieved context is a critical step in constructing a
high-performance RAG system. To address this
issue, FlexRAG incorporates three specialized sub-
modules: Prompt Squeezer, Context Repacker, and
Context Summarizer.

Concretely, the Prompt Squeezer is designed
to optimize the prompt provided to the genera-
tor, ensuring that it is concise and relevant to the
user query (Jiang et al., 2023; Pan et al., 2024;
Jiang et al., 2024). To prevent critical information
from being overlooked by the LLM, the Context
Repacker reorganizes the retrieved context for bet-
ter coherence. Additionally, the Context Summa-
rizer enhances the quality of the retrieved context
by condensing it into a more concise and infor-
mative format (Xu et al., 2023; Kim et al., 2024b;
Li et al., 2023), thereby decreasing the inference
overhead.

2.3.3 Assistants

In FlexRAG, the RAG assistant encapsulates the
entire RAG process. This encapsulation standard-
izes the interaction between the RAG pipeline and
the user, while also streamlining the evaluation of
the pipeline. Specifically, the RAG assistant should
provide a chat interface that accepts user input, gen-
erates appropriate responses, and returns both the
retrieved results and generated responses, along
with relevant metadata.

625



Methods
PopQA(%) NQ(%) TriviaQA(%) Average(%)

F1 EM Succ F1 EM Succ F1 EM Succ F1 EM Succ

BM25s(Lù, 2024) 57.88 52.75 68.48 38.79 30.00 54.74 65.93 58.02 61.98 54.20 46.92 61.73
Contriever*(Izacard et al., 2022) 64.14 59.04 80.77 49.67 39.03 75.65 70.36 62.55 68.26 61.39 53.54 74.89
E5 base(Wang et al., 2024a) 59.74 54.25 77.20 50.05 39.56 78.84 71.66 63.79 70.63 60.48 52.53 75.56
BGE M3(Chen et al., 2024) 63.65 58.76 83.42 50.98 40.36 80.00 71.92 63.85 71.10 62.18 54.32 78.17

FLAT 63.65 58.40 82.20 49.20 39.11 77.95 70.61 62.70 80.03 61.15 53.40 80.06
Faiss*(Douze et al., 2025) 64.14 59.04 81.42 49.62 39.11 77.87 70.48 62.57 79.80 61.41 53.57 79.70
ScaNN(Guo et al., 2020) 63.26 58.11 82.13 49.31 39.25 77.76 70.50 62.64 79.93 61.02 53.33 79.94

BGE-reranker-M3(Chen et al., 2024) 66.02 60.76 86.92 50.94 40.53 81.91 74.58 66.71 84.81 63.85 56.00 84.55
colbert-v2(Santhanam et al., 2022) 65.44 60.47 83.56 47.18 37.06 77.53 72.13 64.24 81.47 61.58 53.92 80.85
InRanker-base(Laitz et al., 2024) 66.05 60.90 86.63 48.77 38.50 79.78 73.38 65.47 83.20 62.73 54.96 83.20
rankGPT(Sun et al., 2023) 63.11 58.26 77.91 49.50 39.06 75.90 70.13 62.31 79.11 60.91 53.21 77.64

Qwen2-7B*(Yang et al., 2024) 64.14 59.04 81.42 49.62 39.11 77.87 70.48 62.57 79.80 61.41 53.57 79.70
Llama3.1-8B(Dubey et al., 2024) 63.20 55.83 81.42 47.58 35.73 77.87 71.75 62.97 79.80 60.84 51.51 79.70
ChatQA2-7B(Xu et al., 2024) 60.36 53.82 81.42 49.84 39.09 77.87 71.84 62.67 79.80 60.68 51.86 79.70

Table 1: The experimental results of the ModularAssistant on three widely used RAG tasks. The experiment was
divided into four groups, each investigating the impact of modifying the retriever, index, re-ranker, and generator
on the overall RAG system. Items marked with an asterisk in the table indicate the default configuration for this
experiment. We did not use rerankers except in the experiments investigating the differences between them.

Furthermore, FlexRAG also incorporates several
built-in RAG assistants:

• ModularAssistant: A modular assistant that
can be arbitrarily configured through configu-
ration files.

• OnelineAssistant: An assistant that retrieves
information from local knowledge bases and
generates responses based on user queries.

2.4 Evaluation

Tasks Given the sustained scholarly interest in
RAG, researchers have proposed a variety of tasks
to assess RAG systems and their individual com-
ponents. After a comprehensive review of existing
evaluation benchmarks (Yu et al., 2024a; Petroni
et al., 2021; Jin et al., 2024; Katsis et al., 2025;
Muennighoff et al., 2023), we found that these tasks
can be categorized into multi-turn dialogue tasks,
single-turn question-answering tasks, specialized
tasks, and retrieval tasks. As shown in Figure 5,
these tasks can be further classified into two cate-
gories: generative tasks and retrieval-based tasks.
Accordingly, we provide two command-line tools
in FlexRAG to evaluate these two types of tasks. To
ensure a fairer evaluation process, we have devel-
oped pre-configured retrievers for the widely used
Wikipedia knowledge base. These retrievers have
been made publicly available on the Hugging Face
Hub, providing researchers with a convenient and
standardized resource for their evaluations.

Metrics FlexRAG supports a variety of evalua-
tion metrics for assessing the performance of RAG
systems. These metrics can be broadly categorized
into three types: retrieval metrics, generation met-
rics. To ensure the accuracy and reliability of the
evaluation results, we employed the widely adopted
pytrec_eval13, sacreBLEU14, and Rouge15 for met-
ric computation. Additionally, FlexRAG also sup-
ports several LLM-as-a-Judge metrics for evaluat-
ing the quality of generated responses.

3 Empirical Study

To demonstrate the advantages of FlexRAG in
research and prototype development, we con-
ducted several experiments on ModularAssistant,
a highly flexible RAG pipeline within FlexRAG.
We evaluated the performance of the pipeline
on three widely used RAG tasks: Natural Ques-
tions(Kwiatkowski et al., 2019), TriviaQA(Joshi
et al., 2017), and PopQA(Mallen et al., 2023). We
employed the Wikipedia knowledge base provided
by Karpukhin et al. (2020). In the experiment, we
fixed the other components of the ModularAssis-
tant and independently varied its retriever, indexer,
re-ranker, and generator to demonstrate the roles
played by each component in the RAG task. Addi-
tionally, the number of contexts fed into the gener-
ator is fixed at 10. When the reranker is employed,
we retrieve 100 contexts from the retriever and em-

13https://github.com/cvangysel/pytrec_eval
14https://github.com/mjpost/sacrebleu
15https://github.com/pltrdy/rouge

626



ploy the reranker to select the top 10 most relevant
ones. We employed the F1 and Exact Match (EM)
scores to evaluate the generation quality, and the
Success Rate (Succ) to evaluate the retrieval qual-
ity.

As shown in Table 1, the results demonstrate that
the choice of retriever, indexer, re-ranker, and gen-
erator significantly impacts the overall performance
of the RAG system. For more detailed information
about the experiments and the experimental find-
ings, please visit our benchmark pages16.

4 Resource Overhead Analysis

To further validate the advantages of FlexRAG in
terms of system resource efficiency, we evaluated
its dense retrieval performance on the MS_MARCO
Passage Retrieval (Bajaj et al., 2016) task using a
server equipped with 256 GB of RAM, two Intel
Xeon Silver 4214R CPUs, and eight GeForce RTX
3090 GPUs. FlashRAG, whose architecture is most
similar to that of FlexRAG, was selected as the
baseline for comparison. All experiments were
conducted under default parameter settings. his
evaluation primarily focuses on the following four
system resource metrics:

• Average Wall-Clock Time: The average time
taken to complete a single retrieval operation.
This metric is crucial for assessing the actual
latency experienced by users during the re-
trieval process.

• Total CPU Time: The total CPU time con-
sumed during the retrieval process. This met-
ric provides insight into the computational
efficiency of the retrieval operation.

• Average Memory Usage: The average mem-
ory usage during the retrieval process. This
metric reflects the memory efficiency of the
retrieval operation, which is particularly im-
portant for large-scale retrieval tasks.

• Total Memory Usage: The total memory us-
age during the retrieval process.

As shown in Figure 6 Under varying batch sizes,
FlexRAG consistently exhibits significantly lower
overhead compared to FlashRAG in both average
wall-clock time and total CPU time, with perfor-
mance gaps reaching up to an order of magnitude.

16https://github.com/ictnlp/FlexRAG/blob/master/
benchmarks/singlehop_qa.md

1 2 4 8 16 32 64 128
Batch Size

10 1

100

101

Ti
m

e 
(s

ec
on

ds
)

Average Wall Clock Time
FlexRAG
FlashRAG

1 2 4 8 16 32 64 128
Batch Size

103

104

105

CP
U 

Ti
m

e 
(s

ec
on

ds
)

Total CPU Time (Sum)

1 2 4 8 16 32 64 128
Batch Size

10000

15000

20000

25000

30000

M
em

or
y 

(M
B)

Maximum Memory Usage

1 2 4 8 16 32 64 128
Batch Size

10000

15000

20000

25000

30000

M
em

or
y 

(M
B)

Average Memory Usage

Figure 6: The resource overhead of FlexRAG and
FlashRAG under different batch sizes.

In terms of memory consumption, FlexRAG also
demonstrates substantially lower average and peak
memory usage, outperforming the baseline by sev-
eral times. These results highlight the tangible
performance benefits achieved through the incorpo-
ration of a memory-mapping mechanism into the
system architecture, as well as the optimization of
dense index parameters using the ANN-Benchmark
toolkit.

Additionally, we observe a general trend wherein
system latency increases with larger batch sizes,
while total CPU overhead tends to decrease. A
particularly noteworthy case arises when the batch
size is set to 1: under this configuration, FlexRAG
achieves the lowest computational overhead across
all settings. Further investigation reveals that this
outcome stems from the Tokenizer component op-
erating in a single-process mode, thereby avoid-
ing the additional overhead associated with inter-
process scheduling.

5 Conclusion

In this paper, we introduce FlexRAG, an open-
source framework designed to facilitate the rapid
reproduction, development, and evaluation of RAG
systems. In general, FlexRAG significantly reduces
the barrier to building RAG systems, streamlines
collaboration, and enables a seamless transition
from research to prototyping with an integrated
pipeline design.

References
Martin Aumüller, Erik Bernhardsson, and Alexander

Faithfull. 2018. ANN-Benchmarks: A Benchmark-
ing Tool for Approximate Nearest Neighbor Algo-
rithms. arXiv preprint. ArXiv:1807.05614 [cs].

627

https://github.com/ictnlp/FlexRAG/blob/master/benchmarks/singlehop_qa.md
https://github.com/ictnlp/FlexRAG/blob/master/benchmarks/singlehop_qa.md
https://doi.org/10.48550/arXiv.1807.05614
https://doi.org/10.48550/arXiv.1807.05614
https://doi.org/10.48550/arXiv.1807.05614


Payal Bajaj, Daniel Campos, Nick Craswell, Li Deng,
Jianfeng Gao, Xiaodong Liu, Rangan Majumder, An-
drew McNamara, Bhaskar Mitra, Tri Nguyen, and
1 others. 2016. Ms marco: A human generated ma-
chine reading comprehension dataset. arXiv preprint
arXiv:1611.09268.

Jianlv Chen, Shitao Xiao, Peitian Zhang, Kun Luo,
Defu Lian, and Zheng Liu. 2024. BGE M3-
Embedding: Multi-Lingual, Multi-Functionality,
Multi-Granularity Text Embeddings Through
Self-Knowledge Distillation. arXiv preprint.
ArXiv:2402.03216 [cs].

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
Deep Bidirectional Transformers for Language Un-
derstanding. arXiv preprint. ArXiv:1810.04805 [cs].

Matthijs Douze, Alexandr Guzhva, Chengqi Deng,
Jeff Johnson, Gergely Szilvasy, Pierre-Emmanuel
Mazaré, Maria Lomeli, Lucas Hosseini, and Hervé
Jégou. 2025. The Faiss library. arXiv preprint.
ArXiv:2401.08281 [cs].

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela
Fan, Anirudh Goyal, Anthony Hartshorn, Aobo Yang,
Archi Mitra, Archie Sravankumar, Artem Korenev,
Arthur Hinsvark, Arun Rao, Aston Zhang, and 514
others. 2024. The Llama 3 Herd of Models. arXiv
preprint. ArXiv:2407.21783 [cs].

Zhangchi Feng, Dongdong Kuang, Zhongyuan Wang,
Zhijie Nie, Yaowei Zheng, and Richong Zhang. 2024.
EasyRAG: Efficient Retrieval-Augmented Genera-
tion Framework for Automated Network Operations.
arXiv preprint. ArXiv:2410.10315.

Jia Fu, Xiaoting Qin, Fangkai Yang, Lu Wang, Jue
Zhang, Qingwei Lin, Yubo Chen, Dongmei Zhang,
Saravan Rajmohan, and Qi Zhang. 2024. AutoRAG-
HP: Automatic Online Hyper-Parameter Tuning for
Retrieval-Augmented Generation. arXiv preprint.
ArXiv:2406.19251.

Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia,
Jinliu Pan, Yuxi Bi, Yi Dai, Jiawei Sun, Qianyu Guo,
Meng Wang, and Haofen Wang. 2024. Retrieval-
Augmented Generation for Large Language Models:
A Survey. arXiv preprint. ArXiv:2312.10997 [cs].

Ruiqi Guo, Philip Sun, Erik Lindgren, Quan Geng,
David Simcha, Felix Chern, and Sanjiv Kumar.
2020. Accelerating Large-Scale Inference with
Anisotropic Vector Quantization. arXiv preprint.
ArXiv:1908.10396 [cs].

Yasuto Hoshi, Daisuke Miyashita, Youyang Ng, Kento
Tatsuno, Yasuhiro Morioka, Osamu Torii, and Jun
Deguchi. 2023. RaLLe: A Framework for Develop-
ing and Evaluating Retrieval-Augmented Large Lan-
guage Models. arXiv preprint. ArXiv:2308.10633.

Gautier Izacard, Mathilde Caron, Lucas Hosseini, Se-
bastian Riedel, Piotr Bojanowski, Armand Joulin,
and Edouard Grave. 2022. Unsupervised Dense In-
formation Retrieval with Contrastive Learning. arXiv
preprint. ArXiv:2112.09118 [cs].

Rohan Jha, Bo Wang, Michael Günther, Georgios Mas-
trapas, Saba Sturua, Isabelle Mohr, Andreas Kouk-
ounas, Mohammad Kalim Akram, Nan Wang, and
Han Xiao. 2024. Jina-ColBERT-v2: A General-
Purpose Multilingual Late Interaction Retriever.
arXiv preprint. ArXiv:2408.16672 [cs].

Huiqiang Jiang, Qianhui Wu, Chin-Yew Lin, Yuqing
Yang, and Lili Qiu. 2023. LLMLingua: Compress-
ing Prompts for Accelerated Inference of Large Lan-
guage Models. In Proceedings of the 2023 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing, pages 13358–13376, Singapore. Association
for Computational Linguistics.

Huiqiang Jiang, Qianhui Wu, Xufang Luo, Dong-
sheng Li, Chin-Yew Lin, Yuqing Yang, and Lili Qiu.
2024. LongLLMLingua: Accelerating and Enhanc-
ing LLMs in Long Context Scenarios via Prompt
Compression. In Proceedings of the 62nd Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 1658–1677,
Bangkok, Thailand. Association for Computational
Linguistics.

Jiajie Jin, Yutao Zhu, Xinyu Yang, Chenghao Zhang,
and Zhicheng Dou. 2024. FlashRAG: A Modular
Toolkit for Efficient Retrieval-Augmented Genera-
tion Research. arXiv preprint. ArXiv:2405.13576
[cs] version: 1.

Mandar Joshi, Eunsol Choi, Daniel Weld, and Luke
Zettlemoyer. 2017. TriviaQA: A Large Scale Dis-
tantly Supervised Challenge Dataset for Reading
Comprehension. In Proceedings of the 55th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 1601–1611,
Vancouver, Canada. Association for Computational
Linguistics.

Vladimir Karpukhin, Barlas Oğuz, Sewon Min, Patrick
Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and
Wen-tau Yih. 2020. Dense Passage Retrieval for
Open-Domain Question Answering. arXiv preprint.
ArXiv:2004.04906 [cs].

Yannis Katsis, Sara Rosenthal, Kshitij Fadnis, Chu-
laka Gunasekara, Young-Suk Lee, Lucian Popa, Vraj
Shah, Huaiyu Zhu, Danish Contractor, and Ma-
rina Danilevsky. 2025. MTRAG: A Multi-Turn
Conversational Benchmark for Evaluating Retrieval-
Augmented Generation Systems. arXiv preprint.
ArXiv:2501.03468 [cs].

Omar Khattab and Matei Zaharia. 2020. ColBERT:
Efficient and Effective Passage Search via Contextu-
alized Late Interaction over BERT. arXiv preprint.
ArXiv:2004.12832 [cs].

628

https://doi.org/10.48550/arXiv.2402.03216
https://doi.org/10.48550/arXiv.2402.03216
https://doi.org/10.48550/arXiv.2402.03216
https://doi.org/10.48550/arXiv.2402.03216
https://doi.org/10.48550/arXiv.1810.04805
https://doi.org/10.48550/arXiv.1810.04805
https://doi.org/10.48550/arXiv.1810.04805
https://doi.org/10.48550/arXiv.2401.08281
http://arxiv.org/abs/2407.21783
https://doi.org/10.48550/arXiv.2410.10315
https://doi.org/10.48550/arXiv.2410.10315
https://doi.org/10.48550/arXiv.2406.19251
https://doi.org/10.48550/arXiv.2406.19251
https://doi.org/10.48550/arXiv.2406.19251
https://doi.org/10.48550/arXiv.2312.10997
https://doi.org/10.48550/arXiv.2312.10997
https://doi.org/10.48550/arXiv.2312.10997
https://doi.org/10.48550/arXiv.1908.10396
https://doi.org/10.48550/arXiv.1908.10396
https://doi.org/10.48550/arXiv.2308.10633
https://doi.org/10.48550/arXiv.2308.10633
https://doi.org/10.48550/arXiv.2308.10633
https://doi.org/10.48550/arXiv.2112.09118
https://doi.org/10.48550/arXiv.2112.09118
https://doi.org/10.48550/arXiv.2408.16672
https://doi.org/10.48550/arXiv.2408.16672
https://doi.org/10.18653/v1/2023.emnlp-main.825
https://doi.org/10.18653/v1/2023.emnlp-main.825
https://doi.org/10.18653/v1/2023.emnlp-main.825
https://doi.org/10.18653/v1/2024.acl-long.91
https://doi.org/10.18653/v1/2024.acl-long.91
https://doi.org/10.18653/v1/2024.acl-long.91
https://doi.org/10.48550/arXiv.2405.13576
https://doi.org/10.48550/arXiv.2405.13576
https://doi.org/10.48550/arXiv.2405.13576
https://doi.org/10.18653/v1/P17-1147
https://doi.org/10.18653/v1/P17-1147
https://doi.org/10.18653/v1/P17-1147
http://arxiv.org/abs/2004.04906
http://arxiv.org/abs/2004.04906
https://doi.org/10.48550/arXiv.2501.03468
https://doi.org/10.48550/arXiv.2501.03468
https://doi.org/10.48550/arXiv.2501.03468
https://doi.org/10.48550/arXiv.2004.12832
https://doi.org/10.48550/arXiv.2004.12832
https://doi.org/10.48550/arXiv.2004.12832


Dongkyu Kim, Byoungwook Kim, Donggeon Han, and
Matouš Eibich. 2024a. AutoRAG: Automated Frame-
work for optimization of Retrieval Augmented Gen-
eration Pipeline. arXiv preprint. ArXiv:2410.20878.

Jaehyung Kim, Jaehyun Nam, Sangwoo Mo, Jongjin
Park, Sang-Woo Lee, Minjoon Seo, Jung-Woo Ha,
and Jinwoo Shin. 2024b. SuRe: Summarizing Re-
trievals using Answer Candidates for Open-domain
QA of LLMs. arXiv preprint. ArXiv:2404.13081
[cs].

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Red-
field, Michael Collins, Ankur Parikh, Chris Alberti,
Danielle Epstein, Illia Polosukhin, Jacob Devlin, Ken-
ton Lee, Kristina Toutanova, Llion Jones, Matthew
Kelcey, Ming-Wei Chang, Andrew M. Dai, Jakob
Uszkoreit, Quoc Le, and Slav Petrov. 2019. Natu-
ral questions: A benchmark for question answering
research. Transactions of the Association for Compu-
tational Linguistics, 7:452–466.

Thiago Laitz, Konstantinos Papakostas, Roberto Lotufo,
and Rodrigo Nogueira. 2024. InRanker: Distilled
Rankers for Zero-shot Information Retrieval. arXiv
preprint. ArXiv:2401.06910 [cs].

Yucheng Li, Bo Dong, Chenghua Lin, and Frank Guerin.
2023. Compressing Context to Enhance Inference Ef-
ficiency of Large Language Models. arXiv preprint.
ArXiv:2310.06201 [cs].

Sheng-Chieh Lin, Akari Asai, Minghan Li, Barlas Oguz,
Jimmy Lin, Yashar Mehdad, Wen-tau Yih, and Xilun
Chen. 2023. How to Train Your DRAGON: Di-
verse Augmentation Towards Generalizable Dense
Retrieval. arXiv preprint. ArXiv:2302.07452 [cs].

Xing Han Lù. 2024. BM25S: Orders of magnitude
faster lexical search via eager sparse scoring. arXiv
preprint. ArXiv:2407.03618 [cs].

Alex Mallen, Akari Asai, Victor Zhong, Rajarshi Das,
Daniel Khashabi, and Hannaneh Hajishirzi. 2023.
When Not to Trust Language Models: Investigat-
ing Effectiveness of Parametric and Non-Parametric
Memories. arXiv preprint. ArXiv:2212.10511 [cs].

Niklas Muennighoff, Nouamane Tazi, Loïc Magne, and
Nils Reimers. 2023. MTEB: Massive Text Embed-
ding Benchmark. arXiv preprint. ArXiv:2210.07316
[cs].

Rodrigo Nogueira, Zhiying Jiang, and Jimmy Lin. 2020.
Document Ranking with a Pretrained Sequence-to-
Sequence Model. arXiv preprint. ArXiv:2003.06713
[cs].

OpenAI, Josh Achiam, Steven Adler, Sandhini Agarwal,
Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Alt-
man, Shyamal Anadkat, Red Avila, Igor Babuschkin,
Suchir Balaji, Valerie Balcom, Paul Baltescu, Haim-
ing Bao, Mohammad Bavarian, Jeff Belgum, and
262 others. 2024. GPT-4 Technical Report. arXiv
preprint. ArXiv:2303.08774 [cs].

Zhuoshi Pan, Qianhui Wu, Huiqiang Jiang, Menglin
Xia, Xufang Luo, Jue Zhang, Qingwei Lin, Victor
Rühle, Yuqing Yang, Chin-Yew Lin, H. Vicky Zhao,
Lili Qiu, and Dongmei Zhang. 2024. LLMLingua-
2: Data Distillation for Efficient and Faithful Task-
Agnostic Prompt Compression. In Findings of the As-
sociation for Computational Linguistics: ACL 2024,
pages 963–981, Bangkok, Thailand. Association for
Computational Linguistics.

Fabio Petroni, Aleksandra Piktus, Angela Fan, Patrick
Lewis, Majid Yazdani, Nicola De Cao, James Thorne,
Yacine Jernite, Vladimir Karpukhin, Jean Maillard,
Vassilis Plachouras, Tim Rocktäschel, and Sebas-
tian Riedel. 2021. KILT: a Benchmark for Knowl-
edge Intensive Language Tasks. arXiv preprint.
ArXiv:2009.02252 [cs].

Alec Radford, Jong Wook Kim, Chris Hallacy,
Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin,
Jack Clark, Gretchen Krueger, and Ilya Sutskever.
2021. Learning Transferable Visual Models From
Natural Language Supervision. arXiv preprint.
ArXiv:2103.00020 [cs].

Keshav Santhanam, Omar Khattab, Jon Saad-Falcon,
Christopher Potts, and Matei Zaharia. 2022. Col-
BERTv2: Effective and Efficient Retrieval via
Lightweight Late Interaction. arXiv preprint.
ArXiv:2112.01488 [cs].

Freda Shi, Xinyun Chen, Kanishka Misra, Nathan
Scales, David Dohan, Ed Chi, Nathanael Schärli, and
Denny Zhou. 2023. Large Language Models Can
Be Easily Distracted by Irrelevant Context. arXiv
preprint. ArXiv:2302.00093 [cs].

Andreas Steiner, André Susano Pinto, Michael Tschan-
nen, Daniel Keysers, Xiao Wang, Yonatan Bitton,
Alexey Gritsenko, Matthias Minderer, Anthony Sher-
bondy, Shangbang Long, Siyang Qin, Reeve Ingle,
Emanuele Bugliarello, Sahar Kazemzadeh, Thomas
Mesnard, Ibrahim Alabdulmohsin, Lucas Beyer, and
Xiaohua Zhai. 2024. PaliGemma 2: A Family
of Versatile VLMs for Transfer. arXiv preprint.
ArXiv:2412.03555 [cs].

Weiwei Sun, Lingyong Yan, Xinyu Ma, Shuaiqiang
Wang, Pengjie Ren, Zhumin Chen, Dawei Yin, and
Zhaochun Ren. 2023. Is ChatGPT Good at Search?
Investigating Large Language Models as Re-Ranking
Agents. arXiv preprint. ArXiv:2304.09542 [cs].

Liang Wang, Nan Yang, Xiaolong Huang, Binxing Jiao,
Linjun Yang, Daxin Jiang, Rangan Majumder, and
Furu Wei. 2024a. Text Embeddings by Weakly-
Supervised Contrastive Pre-training. arXiv preprint.
ArXiv:2212.03533 [cs].

Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhi-
hao Fan, Jinze Bai, Keqin Chen, Xuejing Liu, Jialin
Wang, Wenbin Ge, Yang Fan, Kai Dang, Mengfei
Du, Xuancheng Ren, Rui Men, Dayiheng Liu,
Chang Zhou, Jingren Zhou, and Junyang Lin. 2024b.

629

https://doi.org/10.48550/arXiv.2410.20878
https://doi.org/10.48550/arXiv.2410.20878
https://doi.org/10.48550/arXiv.2410.20878
https://doi.org/10.48550/arXiv.2404.13081
https://doi.org/10.48550/arXiv.2404.13081
https://doi.org/10.48550/arXiv.2404.13081
https://doi.org/10.1162/tacl_a_00276
https://doi.org/10.1162/tacl_a_00276
https://doi.org/10.1162/tacl_a_00276
http://arxiv.org/abs/2401.06910
http://arxiv.org/abs/2401.06910
https://doi.org/10.48550/arXiv.2310.06201
https://doi.org/10.48550/arXiv.2310.06201
http://arxiv.org/abs/2302.07452
http://arxiv.org/abs/2302.07452
http://arxiv.org/abs/2302.07452
https://doi.org/10.48550/arXiv.2407.03618
https://doi.org/10.48550/arXiv.2407.03618
https://doi.org/10.48550/arXiv.2212.10511
https://doi.org/10.48550/arXiv.2212.10511
https://doi.org/10.48550/arXiv.2212.10511
https://doi.org/10.48550/arXiv.2210.07316
https://doi.org/10.48550/arXiv.2210.07316
http://arxiv.org/abs/2003.06713
http://arxiv.org/abs/2003.06713
https://doi.org/10.48550/arXiv.2303.08774
https://doi.org/10.18653/v1/2024.findings-acl.57
https://doi.org/10.18653/v1/2024.findings-acl.57
https://doi.org/10.18653/v1/2024.findings-acl.57
https://doi.org/10.48550/arXiv.2009.02252
https://doi.org/10.48550/arXiv.2009.02252
https://doi.org/10.48550/arXiv.2103.00020
https://doi.org/10.48550/arXiv.2103.00020
https://doi.org/10.48550/arXiv.2112.01488
https://doi.org/10.48550/arXiv.2112.01488
https://doi.org/10.48550/arXiv.2112.01488
https://doi.org/10.48550/arXiv.2302.00093
https://doi.org/10.48550/arXiv.2302.00093
https://doi.org/10.48550/arXiv.2412.03555
https://doi.org/10.48550/arXiv.2412.03555
http://arxiv.org/abs/2304.09542
http://arxiv.org/abs/2304.09542
http://arxiv.org/abs/2304.09542
https://doi.org/10.48550/arXiv.2212.03533
https://doi.org/10.48550/arXiv.2212.03533


Qwen2-VL: Enhancing Vision-Language Model’s
Perception of the World at Any Resolution. arXiv
preprint. ArXiv:2409.12191 [cs].

Fangyuan Xu, Weijia Shi, and Eunsol Choi. 2023. RE-
COMP: Improving Retrieval-Augmented LMs with
Compression and Selective Augmentation. arXiv
preprint. ArXiv:2310.04408 [cs].

Peng Xu, Wei Ping, Xianchao Wu, Chejian Xu, Zi-
han Liu, Mohammad Shoeybi, and Bryan Catanzaro.
2024. ChatQA 2: Bridging the Gap to Proprietary
LLMs in Long Context and RAG Capabilities. arXiv
preprint. ArXiv:2407.14482 [cs].

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng,
Bowen Yu, Chang Zhou, Chengpeng Li, Chengyuan
Li, Dayiheng Liu, Fei Huang, Guanting Dong, Hao-
ran Wei, Huan Lin, Jialong Tang, Jialin Wang, Jian
Yang, Jianhong Tu, Jianwei Zhang, Jianxin Ma, and
43 others. 2024. Qwen2 Technical Report. arXiv
preprint. ArXiv:2407.10671 [cs].

Hao Yu, Aoran Gan, Kai Zhang, Shiwei Tong, Qi Liu,
and Zhaofeng Liu. 2024a. Evaluation of retrieval-
augmented generation: A survey. In CCF Conference
on Big Data, pages 102–120. Springer.

Xiao Yu, Yunan Lu, and Zhou Yu. 2024b. LocalRQA:
From Generating Data to Locally Training, Testing,
and Deploying Retrieval-Augmented QA Systems.
arXiv preprint. ArXiv:2403.00982.

Taolin Zhang, Dongyang Li, Qizhou Chen, Chengyu
Wang, Longtao Huang, Hui Xue, Xiaofeng
He, and Jun Huang. 2024a. R4: Rein-
forced Retriever-Reorder-Responder for Retrieval-
Augmented Large Language Models. arXiv preprint.
ArXiv:2405.02659 [cs].

Xuanwang Zhang, Yunze Song, Yidong Wang, Shuyun
Tang, Xinfeng Li, Zhengran Zeng, Zhen Wu, Wei
Ye, Wenyuan Xu, Yue Zhang, Xinyu Dai, Shikun
Zhang, and Qingsong Wen. 2024b. RAGLAB: A
Modular and Research-Oriented Unified Framework
for Retrieval-Augmented Generation. arXiv preprint.
ArXiv:2408.11381 [cs].

Siyun Zhao, Yuqing Yang, Zilong Wang, Zhiyuan He,
Luna K. Qiu, and Lili Qiu. 2024. Retrieval Aug-
mented Generation (RAG) and Beyond: A Com-
prehensive Survey on How to Make your LLMs
use External Data More Wisely. arXiv preprint.
ArXiv:2409.14924 [cs].

A Comparison with Existing RAG
Frameworks

To further illustrate the uniqueness of FlexRAG,
we conducted a comparative analysis of a wide
range of related works. The results of this compari-
son are summarized in Table 2. As a heavyweight
framework, LangChain and LlamaIndex offer the
most comprehensive functionalities. However, the
research-oriented design brings FlexRAG distinct
advantages in algorithm reproducibility and knowl-
edge sharing. At the same time, its lightweight ar-
chitecture ensures a smoother learning curve, mak-
ing it more accessible to researchers and developers
alike.

Among lightweight frameworks, FlashRAG has
made notable contributions to the reproducibility
of existing researches. Beyond this, FlexRAG of-
fers a more extensive set of fundamental compo-
nents, supports web access, integrates seamlessly
with Hugging Face, and features a well-structured
preprocessing module. UltraRAG incorporates
numerous cutting-edge techniques. In contrast,
the modular architecture of FlexRAG allowing re-
searchers to efficiently extend and customize it to
meet their evolving needs. Meanwhile, AutoRAG
and AutoRAG-HP focus primarily on automated
hyperparameter tuning, while several other frame-
works in this category have been discontinued.

1https://www.langchain.com/
2https://www.llamaindex.ai/
3https://github.com/OpenBMB/UltraRAG

630

https://doi.org/10.48550/arXiv.2409.12191
https://doi.org/10.48550/arXiv.2409.12191
https://doi.org/10.48550/arXiv.2310.04408
https://doi.org/10.48550/arXiv.2310.04408
https://doi.org/10.48550/arXiv.2310.04408
https://doi.org/10.48550/arXiv.2407.14482
https://doi.org/10.48550/arXiv.2407.14482
https://doi.org/10.48550/arXiv.2407.10671
https://doi.org/10.48550/arXiv.2403.00982
https://doi.org/10.48550/arXiv.2403.00982
https://doi.org/10.48550/arXiv.2403.00982
http://arxiv.org/abs/2405.02659
http://arxiv.org/abs/2405.02659
http://arxiv.org/abs/2405.02659
https://doi.org/10.48550/arXiv.2408.11381
https://doi.org/10.48550/arXiv.2408.11381
https://doi.org/10.48550/arXiv.2408.11381
https://doi.org/10.48550/arXiv.2409.14924
https://doi.org/10.48550/arXiv.2409.14924
https://doi.org/10.48550/arXiv.2409.14924
https://doi.org/10.48550/arXiv.2409.14924


Frameworks Web Access Multimodal Preprocess Evaluation Training Scripts Research Oriented Still Maintain

LangChain1 ✓ ✓ ✓ ✓ ✓ ✗ ✓

LlamaIndex2 ✓ ✓ ✓ ✓ ✓ ✗ ✓

FlashRAG(Jin et al., 2024) ✗ ✓ ✗ ✓ ✗ ✓ ✓

RAGLab(Zhang et al., 2024b) ✗ ✗ ✗ ✓ ✓ ✓ ✗

AutoRAG(Kim et al., 2024a) ✗ ✗ ✓ ✓ ✗ ✓ ✓

AutoRAG-HP(Fu et al., 2024) ✗ ✗ - ✓ ✗ ✓ -
RaLLe(Hoshi et al., 2023) ✗ ✗ ✗ ✓ ✗ ✓ ✗

LocalRQA(Yu et al., 2024b) ✗ ✗ ✓ ✓ ✓ ✓ ✗

EasyRAG(Feng et al., 2024) ✓ ✗ ✗ ✗ ✗ ✓ ✗

UltraRAG3 ✗ ✓ ✗ ✓ ✓ ✓ ✓

FlexRAG (Ours) ✓ ✓ ✓ ✓ ✗ ✓ ✓

Table 2: Comparison with existing retrieval-augmented generation frameworks. We evaluate each framework
based on the following criteria: (1) support for internet access, (2) multimodal RAG capabilities, (3) inclusion of
preprocessing modules, (4) availability of evaluation modules, (5) provision of training scripts, (6) research-oriented
design, and (7) active maintenance status (defined as having commits within the last three months). "-" indicates the
framework is not currently public available.

631


