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Abstract

Large language models (LLMs) commonly
struggle with specialized or emerging topics
which are rarely seen in the training corpus.
Graph-based retrieval-augmented generation
(GraphRAG) addresses this by structuring do-
main knowledge as a graph for dynamic re-
trieval. However, existing pipelines involve
complex engineering workflows, making it
difficult to isolate the impact of individual
components. It is also challenging to evalu-
ate the retrieval effectiveness due to the over-
lap between the pretraining and evaluation
datasets. In this work, we introduce ROGRAG,
a Robustly Optimized GraphRAG framework.
Specifically, we propose a multi-stage retrieval
mechanism that integrates dual-level with logic
form retrieval methods to improve retrieval
robustness without increasing computational
cost. To further refine the system, we incor-
porate various result verification methods and
adopt an incremental database construction ap-
proach. Through extensive ablation experi-
ments, we rigorously assess the effectiveness
of each component. Our implementation in-
cludes comparative experiments on SeedBench,
where Qwen2.5-7B-Instruct initially underper-
formed. ROGRAG significantly improves the
score from 60.0% to 75.0% and outperforms
mainstream methods. Experiments on domain-
specific datasets reveal that dual-level retrieval
enhances fuzzy matching, while logic form
retrieval improves structured reasoning, high-
lighting the importance of multi-stage retrieval.
ROGRAG is released as an open-source re-
source1 and supports installation with pip.

1 Introduction

The rapid advancement of LLMs has signifi-
cantly enhanced natural language processing (NLP)
tasks (Min et al., 2023). However, their reliance on

*Corresponding author.
†Project lead.
1https://github.com/tpoisonooo/ROGRAG

Figure 1: Performance improvements with each ex-
periment – (a) Our initial system, (b) Remove abun-
dant zero-shot example during retrieval, (c) Revert
LLM rope_scaling default value, (d) Use 8k length
for nodes and edges, 12k length for chunks, (e) Ex-
pand low-level keys, (f) Exact matching method, (g)
Revert to dual-level method and optimize NER prompt,
(h) Fuse logic form retrieval with pre-check.

finite training data and static pre-trained knowledge
limits their effectiveness in knowledge-intensive ap-
plications, such as question answering (QA) and
complex reasoning (Roberts et al., 2020). Retrieval-
augmented generation (RAG) addresses these lim-
itations by integrating information retrieval with
language generation, improving factual accuracy
and adaptability (Lewis et al., 2020).

Traditional RAG methods typically rely on dense
retrieval (Karpukhin et al., 2020) or keyword-based
matching to obtain relevant information in response
to user queries. While effective for many tasks,
these approaches often struggle with complex rea-
soning tasks that require understanding relation-
ships between entities or synthesizing multi-hop
knowledge. To overcome these limitations, recent
research has explored GraphRAG, which incorpo-
rates structured knowledge representations such as
knowledge graphs to enhance both retrieval accu-
racy and reasoning capability (Guo et al., 2024;
Liang et al., 2024). By explicitly modeling entities
and their relations, GraphRAG improves retrieval
precision and facilitates structured reasoning.

Despite its potential, the development and evalu-
ation of GraphRAG systems present several chal-
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Figure 2: Multi-stage retrieval mechanism. User queries are first analyzed by an LLM to identify their intent and
domain. The system then performs two retrieval strategies: logic form retrieval based on operator reasoning, and
dual-level retrieval leveraging fuzzy matching. A verifier determines whether the retrieved context sufficiently
answers the query. The final answer is generated by the LLM based on verified context.

Domain LLM win rate Length ratio
Argriculture 0.97 9.25
Art 0.91 8.20
Biography 0.82 7.69
Cooking 0.88 7.70
Computer Science 0.97 10.77
Fiction 0.65 6.63
Finance 0.85 9.33
Health 0.93 8.97

Table 1: Validation of the use of the RAG benchmark
in training models. The questions from the UltraDo-
main (Qian et al., 2024) dataset are first executed using
Qwen2.5-7B-Instruct (Qwen et al., 2025). The Kimi
API2 is then queried to compare the LLM’s responses
with the ground truth (GT) and determine its preference.
Using these preferences, the LLM win rate is calcu-
lated, along with the average token length ratio between
LLM’s responses and the GT. The results show that the
direct responses from the 7B model significantly out-
perform GT, highlighting the difficulty of validating the
RAG system’s effectiveness on such datasets.

lenges. First, these pipelines typically consist of
multiple interdependent components—including
entity extraction, knowledge graph construction,
query decomposition, retrieval mechanisms, and
response generation (Lewis et al., 2020)—making
it difficult to assess the contribution of each in-
dividual module. Second, the widespread use of
publicly available RAG benchmarks in LLM pre-
training corpora complicates evaluation. As demon-
strated in Table 1, we verify that high performance
may result from model memorization rather than
true retrieval capability (Lewis et al., 2021). Fi-
nally, many GraphRAG systems rely on heuristic-
driven query decomposition, which may introduce
errors if LLMs fail to generate accurate sub-queries,
thereby degrading retrieval quality.

2See https://platform.moonshot.cn for Kimi API.

To systematically address these challenges,
we introduce ROGRAG, an Robustly Optimized
GraphRAG framework designed for knowledge-
intensive domains where the performance of
vanilla LLM remains suboptimal. Our method
yields a substantial performance improvement, in-
creasing the score from 60.0% to 75.0%, as illus-
trated in Figure 1. We improve the accuracy of
the GraphRAG system by integrating and refining
four seminal GraphRAG methodologies: DB-GPT
(Xue et al., 2023) (scalability), LightRAG (Guo
et al., 2024) (simple implementation), KAG (Liang
et al., 2024) (reasoning), and HuixiangDou (Kong
et al., 2024) (robustness), into a unified system.
This integration not only leverages the advantages
from different GraphRAG implementations, but
also enables a comprehensive ablation study on
the contributions of different indexing, retrieval,
and generation strategies. The system prioritizes
query decomposition, and degrades to fuzzy match-
ing if decomposition fails or verification is unsuc-
cessful, as shown in Figure 2. This mechanism
ensures robustness and enables continuous stream-
ing responses. ROGRAG also retrains key com-
ponents from the previous generation, including
refusal-to-answer and intent slots. Additionally,
we adopt domain-specific datasets where LLMs ex-
hibit lower baseline scores to ensure that observed
improvements reflect genuine retrieval enhance-
ments rather than model memorization effects. Our
main contributions are as follows:

• Unified GraphRAG Framework: We merge
multiple leading GraphRAG implementations
into a single, extensible pipeline for structured re-
trieval and reasoning. Additionally, we introduce
incremental database construction to dynamically
expand and refine knowledge graphs.

• Enhanced Retrieval Mechanism: We evaluate
and refine retrieval techniques, including dual-
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level query decomposition, logic form retrieval,
and fuzzy matching, with various result verifica-
tion to improve accuracy and adaptability.

• Rigorous Empirical Evaluation: Through com-
prehensive ablation studies on datasets where
LLMs do not achieve trivial success, we provide
insights into the key factors that contribute to
performance improvements in GraphRAG-based
QA systems. Additionally, the system is success-
fully deployed on the platform for user access.

2 Related Work

2.1 Retrieval-Augmented Generation

RAG enhances LLMs by integrating external
knowledge retrieval to improve factual accuracy
and contextual relevance (Gao et al., 2023; Fan
et al., 2024). The standard RAG pipeline (Lewis
et al., 2020) consists of three key components: in-
dexing, retrieval, and generation. Retrieval meth-
ods typically rely on semantic similarity (Khattab
and Zaharia, 2020) to identify relevant knowledge
from external sources. Recent advancements in
RAG have focused on mitigating hallucinations
and improving generation quality. For instance,
RETRO (Borgeaud et al., 2022) employs large-
scale retrieval during both training and inference,
while Lift-RAG (Cheng et al., 2024) introduces
self-memory mechanisms to leverage generated
content for subsequent retrieval. However, tradi-
tional RAG models struggle with structured data,
as they primarily rely on single-document retrieval
and fail to capture complex multi-hop relationships.

2.2 Graph Retrieval-Augmented Generation

To address the limitations of conventional RAG,
GraphRAG integrates graph-based structures, in-
cluding knowledge graphs like Freebase (Bollacker
et al., 2008) and Wikidata (Vrandečić and Krötzsch,
2014), into the retrieval process. By leveraging
entity-relationship graphs, GraphRAG provides
richer contextual information to enhance both re-
trieval and generation tasks. Since its introduc-
tion (Edge et al., 2024), researchers have explored
how integrating graph-structured data improves the
model’s ability to capture complex dependencies
(Han et al., 2024). Meanwhile, a systematic analy-
sis of the application of GraphRAG in customizing
LLMs has also been conducted (Zhang et al., 2025).

Despite these significant advancements, exist-
ing GraphRAG models still face challenges in bal-
ancing retrieval accuracy, computational efficiency,

Figure 3: Architecture of GraphRAG indexing. The raw
corpus is first cleaned and segmented into manageable
chunks. Entities, relationships, keywords and descrip-
tions are then extracted from each chunk. Subsequently,
graph nodes and edges are constructed and linked back
to their corresponding text chunks.

and adaptability to diverse query structures (Peng
et al., 2024). Our work builds upon these founda-
tions by refining GraphRAG techniques to improve
retrieval precision and response coherence while
maintaining efficient knowledge integration.

3 Methodology

In this section, we describe the components of
GraphRAG, including indexing, retrieval, and gen-
eration, as well as the key methodological choices.
A comprehensive algorithmic overview can be
found in Algorithm 1 in Appendix A.1.

3.1 Graph-Based Indexing

The indexing process, represented by f in Algo-
rithm 1, consists of the preprocess, named entity
recognition (NER), and dump stages. An overview
of this indexing workflow is shown in Figure 3.
Preprocess. Corpus files from heterogeneous
sources are standardized and segmented into dis-
crete text chunks to ensure structural uniformity.
NER. ⟨entitys, relation, entityo⟩ triplets are ini-
tially extracted from segmented text, along with
corresponding keywords, description and weight
(e.g., ⟨Marie Curie, discovered, radium⟩; scientist,
discovery; Marie Curie discovered radium in 1898;
4.5). Subsequently, a graph is constructed by estab-
lishing node-edge relationships to capture complex
multi-hop dependencies across the corpus.
Dump. The extracted entities, relations, and their
corresponding embeddings are stored in a struc-
tured database for efficient retrieval and analysis.

3.2 Graph-Guided Retrieval

The retrieval phase is governed by both g and
the iterative selection in Algorithm 1. There are
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Figure 4: Dual-level retrieval method. User query would
be decomposed into low-level and high-level keywords,
then match with the knowledge graph.

two main methods: dual-level and logic form.
Dual-Level Method. As illustrated in Figure 4,
the query is decomposed into two components: (i)
low-level keywords representing entities and (ii)
high-level relational descriptions. Entities are iden-
tified and matched to corresponding nodes in the
graph, often using fuzzy matching, and their as-
sociated edges are subsequently retrieved. Simi-
larly, relational keywords are mapped to edges to
retrieve connected nodes. The retrieved results are
then merged, with redundant edges, nodes, and
chunk references systematically removed to refine
the final retrieval context. This approach leverages
multi-granularity features for layered fuzzy match-
ing, improving retrieval coverage on ill-formed or
complex queries and enhancing robustness.
Logic Form Method. Inspired by knowledge-
aware reasoning frameworks, this approach utilizes
a predefined set of operators (e.g., filtering, aggre-
gation) to decompose complex queries. An LLM
is employed to transform natural language queries
into a structured sequence of retrieval operations,
which are iteratively refined to enhance the retrieval
context. The pseudocode for this approach is pre-
sented in Algorithm 2 in Appendix A.2.

3.3 Graph-Enhanced Generation

During the generation stage, most RAG archi-
tectures leverage LLMs to (i) format and present
the retrieved context as part of a prompt, (ii) pro-
duce the final response, and (iii) evaluate or verify
whether the generated output correctly addresses
the query. Techniques such as input formatting,
prompt engineering, and self-consistency checks
are often employed to optimize these generations.

4 Experiment

In this section, we describe the experimental
setup and overall result of our GraphRAG system.

Method
SeedBench Subsets

QA-1 QA-2 QA-3 QA-4
(Accuracy) (F1) (Rouge) (Rouge)

vanilla (w/o RAG) 0.57 0.71 0.16 0.35
LangChain 0.68 0.68 0.15 0.04
BM25 0.65 0.69 0.23 0.03
RQ-RAG 0.59 0.62 0.17 0.33
ROGRAG (Ours) 0.75 0.79 0.36 0.38

Table 2: A comparison of the test scores between sev-
eral mainstream RAG systems and our proposed sys-
tem. The experiment is conducted using Qwen2.5-7B-
Instruct on SeedBench, while the BM25 (Jin et al., 2024)
and RQ-RAG (Chan et al., 2024) methods are imple-
mented based on FlashRAG (Jin et al., 2024). The
GraphRAG framework, ROGRAG, which we proposed,
outperforms all other methods across all four subsets
of SeedBench, demonstrating the effectiveness of the
subsequent optimizations.

4.1 Experimental Setup

Methods and Models. We adopt techniques from
HuixiangDou (Kong et al., 2024) regarding the
refusal-to-answer task. To switch between knowl-
edge bases, we use TuGraph (TuGraph, 2023)
for knowledge graph storage and BCEmbedding
(NetEase Youdao, 2023) to extract features for en-
tities and relations due to its effectiveness in gen-
erating high-quality embeddings. The extracted
features are subsequently indexed in Faiss (Douze
et al., 2024). To ensure that our experiments require
minimal computational resources, we conduct tests
on Qwen2.5-7B-Instruct, a relatively lightweight
model that offers a good balance of efficiency and
capability. Appendix B provides further details.
Data and Evaluation. We adopt the SeedBench
(Ying et al., 2025) dataset, a domain-specific bench-
mark curated by human experts to evaluate systems.
In subsequent ablation studies, we applied multiple-
choice questions from QA-1 subset of SeedBench,
with accuracy as evaluation metric.

4.2 Overall Result

Table 2 compares the test scores of several main-
stream RAG systems and our proposed system.
Initially, we evaluate the large model’s direct re-
sponse without RAG (vanilla) as baselines and then
combine the four foundational GraphRAG method-
ologies to construct our initial system. Next, we
conduct detailed ablation experiments on differ-
ent components of the system, comparing various
methods and parameters to improve each compo-
nent, thereby progressively enhancing the test out-
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Version Nodes Edges Accuracy
Trial 20,739 19,857 0.61
Base 21,838 26,847 0.69
Optimize Prompt 29,086 35,750 0.74

Table 3: Number of nodes and edges generated by dif-
ferent Loop NER Strategies and the methods’ impact on
accuracy. Increasing the quantity can improve accuracy.

comes. Finally, we introduce ROGRAG and com-
pare it with three mainstream RAG systems, includ-
ing inverted indexing, similarity-based retrieval,
and multi-round answering techniques.

Our experiments show that ROGRAG outper-
forms all other systems and the baseline across all
four subsets of SeedBench. Additionally, it also
proves that Qwen2.5-7B-Instruct is initially unsuit-
able for these tasks and subsequent optimizations
are effective. Interestingly, on the QA-2 dataset,
the non-RAG approach even outperforms main-
stream methods. This suggests that RAG responses
could be misled by irrelevant context and applying
RAG does not always lead to higher accuracy, par-
ticularly in domains where LLMs lack familiarity.
The poor performance of LangChain (Chase, 2022)
and BM25 (Jin et al., 2024) methods on the QA-4
generation task may be due to parameter settings
that resulted in minimal relevant content being re-
trieved, limiting the model’s ability to generate
accurate answers.

5 Indexing Analysis

In this section, we begin by introducing different
NER strategies and then proceed to validate the
parameters associated with indexing.

5.1 Loop NER Strategies

To maximize the recall of the NER, GraphRAG
tends to iteratively call the LLM in order to ex-
tract as many entities as possible. The common
stopping condition is based on the LLM’s judg-
ment of whether any entities have been missed. We
compare two implementations of iterative NER,
as shown in Algorithm 3 in Appendix A.3. The
trial version (trial) follows a standard procedural
logic: it performs NER first, then queries the LLM
whether further extraction is needed, and proceeds
only if the response is affirmative. In contrast, Base-
line version (base) deviates from this flow. After
performing NER, it informs the LLM that more

Max Length Accuracy
32k 0.67
64k 0.65

Table 4: Impact of different maximum context lengths of
LLM on accuracy. When the model’s maximum length
is sufficient, a smaller rope_scaling is preferred.

entities may exist and requests further extraction
before entering the if-condition.

As shown in Table 3, the larger nodes and edges
in the knowledge graph is positively correlated with
higher precision, and the erroneous entities gener-
ated by LLM have minimal impact on the overall
graph structure and final accuracy. Therefore, we
can optimize the prompt by specifying entity types
and splitting examples to improve accuracy.

5.2 Max LLM Context Length
While LLMs typically perform well in needle-in-

a-haystack experiments, RAG systems often need
to focus more on subtle and implicit expressions
within the corpus. To extend the maximum input
length in YaRN (Peng et al., 2023), we modify the
parameter rope_scaling , which modifies the ro-
tary position embedding (RoPE) scaling strategy in
order to accommodate longer contexts. Our empiri-
cal results show that increasing the length from 32k
to 64k leads to a noticeable 2% drop in precision.
Therefore, a smaller rope_scaling setting is gen-
erally preferable, as shown in Table 4. Similarly,
reducing chunk size may lead to better results, as it
allows for more accurate information extraction.

6 Retrieval & Generation Analysis

In this section, we first validate the parameters
that impact performance, followed by a comparison
of different retrieval and verification methods.

6.1 Representation and Matching Granularity
Based on the previous conclusions, we hypothe-

size that the essence of the dual-level method lies
in approximate matching. The richer the repre-
sentations derived from the corpus and query, the
higher the overall precision. To validate this, we
conducted experiments in two opposite directions.
Extended Queries and Low-Level Keys. Since
LLMs often struggle with domain-specific data
(e.g., mistaking entities for relationships), we ex-
pand the maximum length of the query representa-
tion (Rq in Algorithm 1) and increase the number
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Method Accuracy
Dual-level 0.650
+28k context length 0.690
+expand low-level keys 0.695

Exact matching method 0.635

Table 5: Validations of dual-level retrieval method in
two opposite directions. It is hypothesized that increas-
ing the length of Rq and Rc will lead to improved accu-
racy, and the results support this hypothesis.

Method Avg length Accuracy
Optimized dual-level 9863 0.74
Logic form 1699 0.55

Table 6: Average output context length of dual-level and
logic form and methods’ impact on accuracy. Although
the logic form retrieval method shows suboptimal preci-
sion, it provides higher information density.

of low-level keys. This approach aims to allow
the query to incorporate more detailed information,
thereby enhancing the accuracy of matching.
Exact Matching. Instead of concatenating the en-
tity list, we independently store the features of each
entity during the indexing phase and match individ-
ual entities during query time. This method aims to
improve precision by avoiding the noise typically
introduced by approximate matching.

Our hypotheses are validated in Table 5. Increas-
ing the maximum length of Rq to 28k results in a
4% improvement in precision compared to baseline.
Expanding the number of low-level keys helps fix
some rare bad cases. In contrast, switching to exact
matching leads to a decrease in precision. This sug-
gests that fuzzy matching is essential for capturing
the nuances of the query, as exact matching fails
to account for the implicit keywords derived from
the query. This aligns with common sense, as exact
matching is too rigid for complex queries.

6.2 Dual-Level vs. Logic Form

We compare the results of dual-level and logic
form methods in Table 6. Although the dual-level
method achieves higher precision, it fails to provide
convincing answers to questions that require calcu-
lations (e.g., “How much taller is Zhefu 802 than its
parent?”). In our real-world scenario evaluations,
responses generated by the logic form method are
more concise and exhibit a clearer logical progres-
sion, preferred by domain experts.

Method Accuracy
Argument Checking 0.75
Result Checking 0.72

Table 7: Performance comparison of checking strategies
on logic form retrieval method. The results indicate that
the argument checking yields better performance.

6.3 Argument Checking vs. Result Checking

RAG systems often employ LLM to verify the
correctness of results. We compare two approaches:
argument checking and result checking. The argu-
ment checking verifies whether the provided con-
text can answer the question before generating the
final response, while the result checking examines
the question, context, and response together for
overall coherence. The pseudocode is shown in
Algorithm 4 in Appendix A.4. The results are sum-
marized in Table 7, which shows that argument
checking is preferred. From the aspect of inference,
the response diverts part of the LLM’s attention,
thereby reducing its ability to focus on the core
question. From the aspect of model, Qwen-2.5-7B-
Instruct is a causal model, where correct reasoning
within the context typically leads to correct results.
Therefore, result checking is redundant.

7 Conclusion

In this work, we introduce ROGRAG, a robustly
optimized GraphRAG framework that addresses
the limitations of existing retrieval-augmented
generation pipelines in handling specialized and
domain-specific queries. By combining dual-level
and logic form methods in a multistage retrieval
process, ROGRAG enhances retrieval robustness.
The system is further enhanced with result verifica-
tion methods and an incremental knowledge graph
construction strategy. The empirical studies show
that the logic form method, with its step-by-step
approach, is more acceptable by domain experts.
This method aligns well with human reasoning and
provides clear and logical answers that are easy
to interpret and validate. Lastly, future work shall
focus on building a high-accuracy verifier, refining
LLM decomposition steps, and exploring further
enhancements to improve overall performance. For
a more detailed discussion, see Appendix C.
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Limitations

Due to the large workload, we have only used
Qwen2.5-7B-Instruct to conduct experiments on
a single domain-specific dataset for the time be-
ing. In the future, we will explore the application
of ROGRAG to more general models, test its per-
formance on a broader range of domain-specific
datasets, and enhance its robustness. However, de-
veloping the GraphRAG system presents several
challenges, such as the difficulty of constructing
an effective high-accuracy verifier, which is essen-
tial for further improving precision. On the other
hand, due to the inherent limitations of large mod-
els and the noisy or incomplete corpus provided,
errors in entity extraction, query decomposition, or
knowledge retrieval within the GraphRAG method
may propagate throughout the system, exacerbating
inaccuracies in response generation. In addition,
heuristic-driven query decomposition remains a po-
tential bottleneck, as errors in subquery formation
may degrade retrieval performance.
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A Additional Details on Methodology

A.1 GraphRAG

Let the corpus be denoted by C and the user
query by Q. The GraphRAG framework, defined
as graphrag = (f, g, d), consists of three primary
functions:

• Indexing function f , which extracts structured
representations from C, yielding Rc.

• Retrieval function g, which derives representa-
tions from Q, producing Rq.

• Graph-based augmentation function d, which
iteratively constructs paths linking Rc and Rq,
refining the retrieval context.

Algorithm 1 GraphRAG

1: Compute corpus representations: Rc = f(C)
2: Compute query representations: Rq = g(Q)
3: Initialize the retrieval set: S0 ⊆ Rc

4: for k = 1, 2, . . . do
5: Select the most relevant element: e+k =

argmine∈Rc\Sk−1
dist(Sk−1 ∪ {e}, Rq)

6: Remove the least relevant element: e−k =
argmine∈Sk−1

dist(Sk−1 \ {e}, Rq)
7: Update retrieval set: Sk = Sk−1 ∪ {e+k } \
{e−k }

8: if dist(Sk, Rq) does not improve then
9: Terminate retrieval process

10: end if
11: end for

The indexing and retrieval processes are formal-
ized in Algorithm 1. At each iteration, an element
e+k is selected for inclusion if it minimizes the re-
trieval distance dist(Sk−1, Rq), while an element
e−k is removed if it similarly optimizes the retrieved
set. The stopping criterion ensures termination
when no further improvements can be achieved.

A.2 Logic Form Retrieval

Logic Form method. Inspired by knowledge-
aware reasoning frameworks, this approach em-
ploys a predefined set of operators (e.g., filtering,
aggregation) to decompose complex queries.

A.3 Loop NER

Two implementations of iterative NER, includ-
ing a trial version and a base version.

Algorithm 2 Logic Form Retrieval

1: Input: Operator set O = {o1, o2, . . . , on},
where each oi = (operatori, functioni)

2: Input: User query Q
3: Output: History
4: Decompose query Q into a list of subqueries

L using LLM
5: L ← {(q1, a1), (q2, a2), . . . , (qm, am)},

where each aj ∈ O
6: for (qj , aj) ∈ L do
7: Identify the corresponding operator oj for

aj
8: Execute aj ← oj(qj)
9: end for

10: Concatenate all sub-queries and sub-answers
aj into history

11: return History

Algorithm 3 Loop NER
1: Initialize input text T
2: Initialize maximum attempts MAX
3: Initialize history H ← NER_init(T )
4:

5: function TRIAL

6: for i = 0 to MAX do
7: continue← LLM_judge(H)
8: if continue == "no" then
9: break

10: end if
11: result← NER_continue(T,H)
12: H ← H ∪ result
13: end for
14: end function
15:

16: function BASE

17: for i = 0 to MAX do
18: result← NER_continue(T,H)
19: H ← H ∪ result
20: continue← LLM_judge(H)
21: if continue == "no" then
22: break
23: end if
24: end for
25: end function

A.4 Retrieval Verifier

Two implementations of iterative retrieval ver-
ifier, including two methods: pre-check and post-
check.
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Figure 5: User interface of the deployment platform. The system enables natural language interaction for agricultural
knowledge retrieval and question answering.

Algorithm 4 Retrieval Verifier
1: Initialize:
2: context← logic_form_retrieve()

3: function ARGUMENT CHECKING

4: if LLM_judge(query, context)
5: == "support" then
6: return LLM(query, context)
7: end if
8: end function

9: function RESULT CHECKING

10: reply ← LLM(query, context)
11: if LLM_judge(query, context, reply)
12: == "support" then
13: return reply
14: end if
15: end function

B Detailed Experimental Setup

We adopt techniques from (Kong et al.,
2024) regarding the refusal-to-answer task.
Specifically, for text splitting, we employ
ChineseRecursiveTextSplitter3 for Chinese
text, which takes into account both maximum
length and punctuation positions. For English text,
we use RecursiveCharacterTextSplitter5

with a chunk overlap of 32. In both cases, the
default chunk size was set to 768 tokens.

C Additional Discussion on Experiments

Our experiments highlight several key factors
that affect the performance of the GraphRAG sys-

3https://github.com/chatchat-space/
Langchain-Chatchat

tem. Our analysis of iterative NER methods shows
that increasing the number of extracted entities can
improve accuracy, as erroneous entities will be-
come isolated nodes and will not significantly af-
fect retrieval accuracy. When evaluating the LLM
context length, a smaller rope_scaling yields bet-
ter performance when the maximum length of the
model is sufficient. A larger context length (64k)
leads to a slight decrease in accuracy, possibly be-
cause the increased volume of information makes it
harder to extract meaningful entities and relations.
In retrieval and generation analysis, we find that
expanding the query representation and incorporat-
ing more low-level keys improves accuracy while
switching to exact matching leads to performance
degradation. This result suggests that fuzzy match-
ing is critical to capturing subtle query semantics,
as strict exact matching cannot account for implicit
query variations. Comparing retrieval methods, we
observe that while the dual-level method achieves
higher accuracy, it lacks the ability to provide con-
vincing reasoning on real queries. In contrast, the
logic form method provides higher information
density and is more concise and clear. Finally, in
the validator design, we find that argument check-
ing is more effective than result checking.

D Application

ROGRAG is deployed on an online research plat-
form SeedLLM4, as illustrated in Figure 5.

4https://seedllm.org.cn
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