ROGRAG: A Robustly Optimized GraphRAG Framework

Zhefan Wang!

Huanjun Kong!" Jie Ying!
'Shanghai Artificial Intelligence Laboratory

Wanli Ouyang'? Nanqing Dong'>*
2Shanghai Innovation Institute

3Department of Information Engineering, Chinese University of Hong Kong

Abstract

Large language models (LLMs) commonly
struggle with specialized or emerging topics
which are rarely seen in the training corpus.
Graph-based retrieval-augmented generation
(GraphRAG) addresses this by structuring do-
main knowledge as a graph for dynamic re-
trieval. However, existing pipelines involve
complex engineering workflows, making it
difficult to isolate the impact of individual
components. It is also challenging to evalu-
ate the retrieval effectiveness due to the over-
lap between the pretraining and evaluation
datasets. In this work, we introduce ROGRAG,
a Robustly Optimized GraphRAG framework.
Specifically, we propose a multi-stage retrieval
mechanism that integrates dual-level with logic
form retrieval methods to improve retrieval
robustness without increasing computational
cost. To further refine the system, we incor-
porate various result verification methods and
adopt an incremental database construction ap-
proach. Through extensive ablation experi-
ments, we rigorously assess the effectiveness
of each component. Our implementation in-
cludes comparative experiments on SeedBench,
where Qwen2.5-7B-Instruct initially underper-
formed. ROGRAG significantly improves the
score from 60.0% to 75.0% and outperforms
mainstream methods. Experiments on domain-
specific datasets reveal that dual-level retrieval
enhances fuzzy matching, while logic form
retrieval improves structured reasoning, high-
lighting the importance of multi-stage retrieval.
ROGRAG is released as an open-source re-
source! and supports installation with pip.

1 Introduction

The rapid advancement of LLLMs has signifi-
cantly enhanced natural language processing (NLP)
tasks (Min et al., 2023). However, their reliance on

*Corresponding author.

"Project lead.
! https://github.com/tpoisonooo/ROGRAG

—e— Accuracy (%)
-- 65% Threshold 75.0

~
vl

Accuracy (%)

Experiment

Figure 1: Performance improvements with each ex-
periment — (a) Our initial system, (b) Remove abun-
dant zero-shot example during retrieval, (c) Revert
LLM rope_scaling default value, (d) Use 8k length
for nodes and edges, 12k length for chunks, (e) Ex-
pand low-level keys, (f) Exact matching method, (g)
Revert to dual-level method and optimize NER prompt,
(h) Fuse logic form retrieval with pre-check.

finite training data and static pre-trained knowledge
limits their effectiveness in knowledge-intensive ap-
plications, such as question answering (QA) and
complex reasoning (Roberts et al., 2020). Retrieval-
augmented generation (RAG) addresses these lim-
itations by integrating information retrieval with
language generation, improving factual accuracy
and adaptability (Lewis et al., 2020).

Traditional RAG methods typically rely on dense
retrieval (Karpukhin et al., 2020) or keyword-based
matching to obtain relevant information in response
to user queries. While effective for many tasks,
these approaches often struggle with complex rea-
soning tasks that require understanding relation-
ships between entities or synthesizing multi-hop
knowledge. To overcome these limitations, recent
research has explored GraphRAG, which incorpo-
rates structured knowledge representations such as
knowledge graphs to enhance both retrieval accu-
racy and reasoning capability (Guo et al., 2024;
Liang et al., 2024). By explicitly modeling entities
and their relations, GraphRAG improves retrieval
precision and facilitates structured reasoning.

Despite its potential, the development and evalu-
ation of GraphRAG systems present several chal-

604

Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 3: System Demonstrations), pages 604-613
July 27 - August 1, 2025 ©2025 Association for Computational Linguistics

https://github.com/tpoisonooo/ROGRAG

Intent analysis Logic form retrieval

subanswerl

9 subqueryl PO,
O
Query§ subquery2 ‘ { ‘F>;\. ol ‘ subanswer2
\ /

subquery3 subanswer3

v | @

:‘@/: { domain

Operator-based
retrieval

intention gossip

Retrieval verifier Dual-level retrieval

answerl

0 + z Low-level words PNy
=])
Query context | |@ Query \ High-level words » [\\ d\ .L,%’,«"‘ answer2
LLM @ context Fuzzy matching-based retrieval

(combined answers)
answer ? |

Operators 01, 03... Op context
(combined sut)

lO @ LLM Context-based generation

Figure 2: Multi-stage retrieval mechanism. User queries are first analyzed by an LLM to identify their intent and
domain. The system then performs two retrieval strategies: logic form retrieval based on operator reasoning, and
dual-level retrieval leveraging fuzzy matching. A verifier determines whether the retrieved context sufficiently
answers the query. The final answer is generated by the LLM based on verified context.

Domain LLM win rate Length ratio
Argriculture 0.97 9.25
Art 0.91 8.20
Biography 0.82 7.69
Cooking 0.88 7.70
Computer Science 0.97 10.77
Fiction 0.65 6.63
Finance 0.85 9.33
Health 0.93 8.97

Table 1: Validation of the use of the RAG benchmark
in training models. The questions from the UltraDo-
main (Qian et al., 2024) dataset are first executed using
Qwen2.5-7B-Instruct (Qwen et al., 2025). The Kimi
API? is then queried to compare the LLM’s responses
with the ground truth (GT) and determine its preference.
Using these preferences, the LLM win rate is calcu-
lated, along with the average token length ratio between
LLM’s responses and the GT. The results show that the
direct responses from the 7B model significantly out-
perform GT, highlighting the difficulty of validating the
RAG system’s effectiveness on such datasets.

lenges. First, these pipelines typically consist of
multiple interdependent components—including
entity extraction, knowledge graph construction,
query decomposition, retrieval mechanisms, and
response generation (Lewis et al., 2020)—making
it difficult to assess the contribution of each in-
dividual module. Second, the widespread use of
publicly available RAG benchmarks in LLM pre-
training corpora complicates evaluation. As demon-
strated in Table 1, we verify that high performance
may result from model memorization rather than
true retrieval capability (Lewis et al., 2021). Fi-
nally, many GraphRAG systems rely on heuristic-
driven query decomposition, which may introduce
errors if LLMs fail to generate accurate sub-queries,
thereby degrading retrieval quality.

2See https://platform.moonshot . cn for Kimi APL

To systematically address these challenges,
we introduce ROGRAG, an Robustly Optimized
GraphRAG framework designed for knowledge-
intensive domains where the performance of
vanilla LLM remains suboptimal. Our method
yields a substantial performance improvement, in-
creasing the score from 60.0% to 75.0%, as illus-
trated in Figure 1. We improve the accuracy of
the GraphRAG system by integrating and refining
four seminal GraphRAG methodologies: DB-GPT
(Xue et al., 2023) (scalability), LightRAG (Guo
et al., 2024) (simple implementation), KAG (Liang
et al., 2024) (reasoning), and HuixiangDou (Kong
et al., 2024) (robustness), into a unified system.
This integration not only leverages the advantages
from different GraphRAG implementations, but
also enables a comprehensive ablation study on
the contributions of different indexing, retrieval,
and generation strategies. The system prioritizes
query decomposition, and degrades to fuzzy match-
ing if decomposition fails or verification is unsuc-
cessful, as shown in Figure 2. This mechanism
ensures robustness and enables continuous stream-
ing responses. ROGRAG also retrains key com-
ponents from the previous generation, including
refusal-to-answer and intent slots. Additionally,
we adopt domain-specific datasets where LLMs ex-
hibit lower baseline scores to ensure that observed
improvements reflect genuine retrieval enhance-
ments rather than model memorization effects. Our
main contributions are as follows:

* Unified GraphRAG Framework: We merge
multiple leading GraphRAG implementations
into a single, extensible pipeline for structured re-
trieval and reasoning. Additionally, we introduce
incremental database construction to dynamically
expand and refine knowledge graphs.

* Enhanced Retrieval Mechanism: We evaluate
and refine retrieval techniques, including dual-

605

https://platform.moonshot.cn

level query decomposition, logic form retrieval,
and fuzzy matching, with various result verifica-
tion to improve accuracy and adaptability.

* Rigorous Empirical Evaluation: Through com-
prehensive ablation studies on datasets where
LLMs do not achieve trivial success, we provide
insights into the key factors that contribute to
performance improvements in GraphRAG-based
QA systems. Additionally, the system is success-
fully deployed on the platform for user access.

2 Related Work

2.1 Retrieval-Augmented Generation

RAG enhances LLMs by integrating external
knowledge retrieval to improve factual accuracy
and contextual relevance (Gao et al., 2023; Fan
et al., 2024). The standard RAG pipeline (Lewis
et al., 2020) consists of three key components: in-
dexing, retrieval, and generation. Retrieval meth-
ods typically rely on semantic similarity (Khattab
and Zaharia, 2020) to identify relevant knowledge
from external sources. Recent advancements in
RAG have focused on mitigating hallucinations
and improving generation quality. For instance,
RETRO (Borgeaud et al., 2022) employs large-
scale retrieval during both training and inference,
while Lift-RAG (Cheng et al., 2024) introduces
self-memory mechanisms to leverage generated
content for subsequent retrieval. However, tradi-
tional RAG models struggle with structured data,
as they primarily rely on single-document retrieval
and fail to capture complex multi-hop relationships.

2.2 Graph Retrieval-Augmented Generation

To address the limitations of conventional RAG,
GraphRAG integrates graph-based structures, in-
cluding knowledge graphs like Freebase (Bollacker
et al., 2008) and Wikidata (Vrandeci¢ and Kr6tzsch,
2014), into the retrieval process. By leveraging
entity-relationship graphs, GraphRAG provides
richer contextual information to enhance both re-
trieval and generation tasks. Since its introduc-
tion (Edge et al., 2024), researchers have explored
how integrating graph-structured data improves the
model’s ability to capture complex dependencies
(Han et al., 2024). Meanwhile, a systematic analy-
sis of the application of GraphRAG in customizing
LLMs has also been conducted (Zhang et al., 2025).

Despite these significant advancements, exist-
ing GraphRAG models still face challenges in bal-
ancing retrieval accuracy, computational efficiency,

We previously identified a (.) ;
We previously identified a

c;:ﬁ;:’ailyv‘:gﬁtzd cluster of yield-related o ®
(QTLs) including plant quanliut:live tfait loci / \o, 9
height in CR4379, a near- (QTLs) including plant e /
isogenic line from a cross height in CR4379, a near- /e
between Oryza sativa spp. 7> isogenic line fmm‘a cross. ’_f \\ @
japonica cultivar L | between Oryza sativa spp. /

‘Hwaseong’ and the wild | preprocess 7/

relative Oryza
Map-based cloning and
transgenic approaches
revealed that APX9, which
encodes an l-ascorbate
peroxidase 4, is associated
with this cluster.

@ Corpus

NER & Dump

I'd Jjaponica cultivar
‘Hwaseong’ and the wild
relative Oryza rufipogon .
Map-based cloning and
transgenic approaches
__ revealed that APX9,...)

Chunks

i Entities: QTLs, CR4379 }
i Rels: a cluster of yield-
i related quantitative trait

¢ loci (QTLs)

i ChunkID: Seffd

@ Knowledge Base

Figure 3: Architecture of GraphRAG indexing. The raw
corpus is first cleaned and segmented into manageable
chunks. Entities, relationships, keywords and descrip-
tions are then extracted from each chunk. Subsequently,
graph nodes and edges are constructed and linked back
to their corresponding text chunks.

and adaptability to diverse query structures (Peng
et al., 2024). Our work builds upon these founda-
tions by refining GraphRAG techniques to improve
retrieval precision and response coherence while
maintaining efficient knowledge integration.

3 Methodology

In this section, we describe the components of
GraphRAG, including indexing, retrieval, and gen-
eration, as well as the key methodological choices.
A comprehensive algorithmic overview can be
found in Algorithm 1 in Appendix A.1.

3.1 Graph-Based Indexing

The indexing process, represented by f in Algo-
rithm 1, consists of the preprocess, named entity
recognition (NER), and dump stages. An overview
of this indexing workflow is shown in Figure 3.
Preprocess. Corpus files from heterogeneous
sources are standardized and segmented into dis-
crete text chunks to ensure structural uniformity.
NER. (entity, relation, entity,) triplets are ini-
tially extracted from segmented text, along with
corresponding keywords, description and weight
(e.g., (Marie Curie, discovered, radium); scientist,
discovery; Marie Curie discovered radium in 1898;
4.5). Subsequently, a graph is constructed by estab-
lishing node-edge relationships to capture complex
multi-hop dependencies across the corpus.
Dump. The extracted entities, relations, and their
corresponding embeddings are stored in a struc-
tured database for efficient retrieval and analysis.

3.2 Graph-Guided Retrieval

The retrieval phase is governed by both g and
the iterative selection in Algorithm 1. There are

606

Low-level words: H ’
QTLs similarity : Entities: QTLs,

i CR4379

\
[]

1 p\q) [> i Rels:aclusterof i
/ - i yield-related :
T ® \ merge: quantitative trait loci :
9@ i (QTLs) :
Similarity i ChunkID: Seffd
cluster E .
5’& Decompose Q‘Match @ Context

Figure 4: Dual-level retrieval method. User query would
be decomposed into low-level and high-level keywords,
then match with the knowledge graph.

two main methods: dual-level and logic form.
Dual-Level Method. As illustrated in Figure 4,
the query is decomposed into two components: (i)
low-level keywords representing entities and (ii)
high-level relational descriptions. Entities are iden-
tified and matched to corresponding nodes in the
graph, often using fuzzy matching, and their as-
sociated edges are subsequently retrieved. Simi-
larly, relational keywords are mapped to edges to
retrieve connected nodes. The retrieved results are
then merged, with redundant edges, nodes, and
chunk references systematically removed to refine
the final retrieval context. This approach leverages
multi-granularity features for layered fuzzy match-
ing, improving retrieval coverage on ill-formed or
complex queries and enhancing robustness.

Logic Form Method. Inspired by knowledge-
aware reasoning frameworks, this approach utilizes
a predefined set of operators (e.g., filtering, aggre-
gation) to decompose complex queries. An LLM
is employed to transform natural language queries
into a structured sequence of retrieval operations,
which are iteratively refined to enhance the retrieval
context. The pseudocode for this approach is pre-
sented in Algorithm 2 in Appendix A.2.

3.3 Graph-Enhanced Generation

During the generation stage, most RAG archi-
tectures leverage LL.Ms to (i) format and present
the retrieved context as part of a prompt, (ii) pro-
duce the final response, and (iii) evaluate or verify
whether the generated output correctly addresses
the query. Techniques such as input formatting,
prompt engineering, and self-consistency checks
are often employed to optimize these generations.

4 Experiment

In this section, we describe the experimental
setup and overall result of our GraphRAG system.

SeedBench Subsets
QA-1 QA-2 QA-3 QA4
(Accuracy) (F1) (Rouge) (Rouge)
vanilla (w/o RAG) 0.57 0.71 0.16 0.35

Method

LangChain 0.68 0.68 0.15 0.04
BM25 0.65 069 023 0.03
RQ-RAG 0.59 062 0.17 0.33
ROGRAG (Ours) 0.75 0.79 0.36 0.38

Table 2: A comparison of the test scores between sev-
eral mainstream RAG systems and our proposed sys-
tem. The experiment is conducted using Qwen2.5-7B-
Instruct on SeedBench, while the BM25 (Jin et al., 2024)
and RQ-RAG (Chan et al., 2024) methods are imple-
mented based on FlashRAG (Jin et al., 2024). The
GraphRAG framework, ROGRAG, which we proposed,
outperforms all other methods across all four subsets
of SeedBench, demonstrating the effectiveness of the
subsequent optimizations.

4.1 Experimental Setup

Methods and Models. We adopt techniques from
HuixiangDou (Kong et al., 2024) regarding the
refusal-to-answer task. To switch between knowl-
edge bases, we use TuGraph (TuGraph, 2023)
for knowledge graph storage and BCEmbedding
(NetEase Youdao, 2023) to extract features for en-
tities and relations due to its effectiveness in gen-
erating high-quality embeddings. The extracted
features are subsequently indexed in Faiss (Douze
et al., 2024). To ensure that our experiments require
minimal computational resources, we conduct tests
on Qwen2.5-7B-Instruct, a relatively lightweight
model that offers a good balance of efficiency and
capability. Appendix B provides further details.
Data and Evaluation. We adopt the SeedBench
(Ying et al., 2025) dataset, a domain-specific bench-
mark curated by human experts to evaluate systems.
In subsequent ablation studies, we applied multiple-
choice questions from QA-1 subset of SeedBench,
with accuracy as evaluation metric.

4.2 Overall Result

Table 2 compares the test scores of several main-
stream RAG systems and our proposed system.
Initially, we evaluate the large model’s direct re-
sponse without RAG (vanilla) as baselines and then
combine the four foundational GraphRAG method-
ologies to construct our initial system. Next, we
conduct detailed ablation experiments on differ-
ent components of the system, comparing various
methods and parameters to improve each compo-
nent, thereby progressively enhancing the test out-

607

Version Nodes Edges Accuracy
Trial 20,739 19,857 0.61
Base 21,838 26,847 0.69
Optimize Prompt 29,086 35,750 0.74

Table 3: Number of nodes and edges generated by dif-
ferent Loop NER Strategies and the methods’ impact on
accuracy. Increasing the quantity can improve accuracy.

comes. Finally, we introduce ROGRAG and com-
pare it with three mainstream RAG systems, includ-
ing inverted indexing, similarity-based retrieval,
and multi-round answering techniques.

Our experiments show that ROGRAG outper-
forms all other systems and the baseline across all
four subsets of SeedBench. Additionally, it also
proves that Qwen2.5-7B-Instruct is initially unsuit-
able for these tasks and subsequent optimizations
are effective. Interestingly, on the QA-2 dataset,
the non-RAG approach even outperforms main-
stream methods. This suggests that RAG responses
could be misled by irrelevant context and applying
RAG does not always lead to higher accuracy, par-
ticularly in domains where LL.Ms lack familiarity.
The poor performance of LangChain (Chase, 2022)
and BM25 (Jin et al., 2024) methods on the QA-4
generation task may be due to parameter settings
that resulted in minimal relevant content being re-
trieved, limiting the model’s ability to generate
accurate answers.

5 Indexing Analysis

In this section, we begin by introducing different
NER strategies and then proceed to validate the
parameters associated with indexing.

5.1 Loop NER Strategies

To maximize the recall of the NER, GraphRAG
tends to iteratively call the LLM in order to ex-
tract as many entities as possible. The common
stopping condition is based on the LLM’s judg-
ment of whether any entities have been missed. We
compare two implementations of iterative NER,
as shown in Algorithm 3 in Appendix A.3. The
trial version (trial) follows a standard procedural
logic: it performs NER first, then queries the LLM
whether further extraction is needed, and proceeds
only if the response is affirmative. In contrast, Base-
line version (base) deviates from this flow. After
performing NER, it informs the LLM that more

Max Length Accuracy
32k 0.67
64k 0.65

Table 4: Impact of different maximum context lengths of
LLM on accuracy. When the model’s maximum length
is sufficient, a smaller rope_scaling is preferred.

entities may exist and requests further extraction
before entering the if-condition.

As shown in Table 3, the larger nodes and edges
in the knowledge graph is positively correlated with
higher precision, and the erroneous entities gener-
ated by LLM have minimal impact on the overall
graph structure and final accuracy. Therefore, we
can optimize the prompt by specifying entity types
and splitting examples to improve accuracy.

5.2 Max LLM Context Length

While LLMs typically perform well in needle-in-
a-haystack experiments, RAG systems often need
to focus more on subtle and implicit expressions
within the corpus. To extend the maximum input
length in YaRN (Peng et al., 2023), we modify the
parameter rope_scaling , which modifies the ro-
tary position embedding (RoPE) scaling strategy in
order to accommodate longer contexts. Our empiri-
cal results show that increasing the length from 32k
to 64k leads to a noticeable 2% drop in precision.
Therefore, a smaller rope_scaling setting is gen-
erally preferable, as shown in Table 4. Similarly,
reducing chunk size may lead to better results, as it
allows for more accurate information extraction.

6 Retrieval & Generation Analysis

In this section, we first validate the parameters
that impact performance, followed by a comparison
of different retrieval and verification methods.

6.1 Representation and Matching Granularity

Based on the previous conclusions, we hypothe-
size that the essence of the dual-level method lies
in approximate matching. The richer the repre-
sentations derived from the corpus and query, the
higher the overall precision. To validate this, we
conducted experiments in two opposite directions.
Extended Queries and Low-Level Keys. Since
LLMs often struggle with domain-specific data
(e.g., mistaking entities for relationships), we ex-
pand the maximum length of the query representa-
tion (R, in Algorithm 1) and increase the number

608

Method Accuracy
Dual-level 0.650
+28k context length 0.690
+expand low-level keys 0.695
Exact matching method 0.635

Table 5: Validations of dual-level retrieval method in
two opposite directions. It is hypothesized that increas-
ing the length of 17, and R will lead to improved accu-
racy, and the results support this hypothesis.

Method
Optimized dual-level

Avg length Accuracy
9863 0.74
1699 0.55

Logic form

Table 6: Average output context length of dual-level and
logic form and methods’ impact on accuracy. Although
the logic form retrieval method shows suboptimal preci-
sion, it provides higher information density.

of low-level keys. This approach aims to allow
the query to incorporate more detailed information,
thereby enhancing the accuracy of matching.
Exact Matching. Instead of concatenating the en-
tity list, we independently store the features of each
entity during the indexing phase and match individ-
ual entities during query time. This method aims to
improve precision by avoiding the noise typically
introduced by approximate matching.

Our hypotheses are validated in Table 5. Increas-
ing the maximum length of R, to 28k results in a
4% improvement in precision compared to baseline.
Expanding the number of low-level keys helps fix
some rare bad cases. In contrast, switching to exact
matching leads to a decrease in precision. This sug-
gests that fuzzy matching is essential for capturing
the nuances of the query, as exact matching fails
to account for the implicit keywords derived from
the query. This aligns with common sense, as exact
matching is too rigid for complex queries.

6.2 Dual-Level vs. Logic Form

We compare the results of dual-level and logic
form methods in Table 6. Although the dual-level
method achieves higher precision, it fails to provide
convincing answers to questions that require calcu-
lations (e.g., “How much taller is Zhefu 802 than its
parent?”). In our real-world scenario evaluations,
responses generated by the logic form method are
more concise and exhibit a clearer logical progres-
sion, preferred by domain experts.

Method Accuracy
Argument Checking 0.75
Result Checking 0.72

Table 7: Performance comparison of checking strategies
on logic form retrieval method. The results indicate that
the argument checking yields better performance.

6.3 Argument Checking vs. Result Checking

RAG systems often employ LLM to verify the
correctness of results. We compare two approaches:
argument checking and result checking. The argu-
ment checking verifies whether the provided con-
text can answer the question before generating the
final response, while the result checking examines
the question, context, and response together for
overall coherence. The pseudocode is shown in
Algorithm 4 in Appendix A.4. The results are sum-
marized in Table 7, which shows that argument
checking is preferred. From the aspect of inference,
the response diverts part of the LLM’s attention,
thereby reducing its ability to focus on the core
question. From the aspect of model, Qwen-2.5-7B-
Instruct is a causal model, where correct reasoning
within the context typically leads to correct results.
Therefore, result checking is redundant.

7 Conclusion

In this work, we introduce ROGRAG, a robustly
optimized GraphRAG framework that addresses
the limitations of existing retrieval-augmented
generation pipelines in handling specialized and
domain-specific queries. By combining dual-level
and logic form methods in a multistage retrieval
process, ROGRAG enhances retrieval robustness.
The system is further enhanced with result verifica-
tion methods and an incremental knowledge graph
construction strategy. The empirical studies show
that the logic form method, with its step-by-step
approach, is more acceptable by domain experts.
This method aligns well with human reasoning and
provides clear and logical answers that are easy
to interpret and validate. Lastly, future work shall
focus on building a high-accuracy verifier, refining
LLM decomposition steps, and exploring further
enhancements to improve overall performance. For
a more detailed discussion, see Appendix C.

609

Limitations

Due to the large workload, we have only used
Qwen2.5-7B-Instruct to conduct experiments on
a single domain-specific dataset for the time be-
ing. In the future, we will explore the application
of ROGRAG to more general models, test its per-
formance on a broader range of domain-specific
datasets, and enhance its robustness. However, de-
veloping the GraphRAG system presents several
challenges, such as the difficulty of constructing
an effective high-accuracy verifier, which is essen-
tial for further improving precision. On the other
hand, due to the inherent limitations of large mod-
els and the noisy or incomplete corpus provided,
errors in entity extraction, query decomposition, or
knowledge retrieval within the GraphRAG method
may propagate throughout the system, exacerbating
inaccuracies in response generation. In addition,
heuristic-driven query decomposition remains a po-
tential bottleneck, as errors in subquery formation
may degrade retrieval performance.

Acknowledgments

This work was supported by Shanghai Artificial
Intelligence Laboratory. The authors would like
to thank Chenyang Wang from Huawei Technolo-
gies Co., Ltd and Zhe Ma from Shanghai Artificial
Intelligence Laboratory for academic support.

References

Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim
Sturge, and Jamie Taylor. 2008. Freebase: a collabo-
ratively created graph database for structuring human
knowledge. In Proceedings of the 2008 ACM SIG-
MOD International Conference on Management of
Data, pages 1247-1250.

Sebastian Borgeaud, Arthur Mensch, Jordan Hoff-
mann, Trevor Cai, Eliza Rutherford, Katie Milli-
can, George Bm Van Den Driessche, Jean-Baptiste
Lespiau, Bogdan Damoc, Aidan Clark, et al. 2022.
Improving language models by retrieving from tril-
lions of tokens. In International Conference on Ma-
chine Learning, pages 2206-2240. PMLR.

Chi-Min Chan, Chunpu Xu, Ruibin Yuan, Hongyin Luo,
Wei Xue, Yike Guo, and Jie Fu. 2024. Rqg-rag: Learn-
ing to refine queries for retrieval augmented genera-
tion. arXiv preprint arXiv:2404.00610.

Harrison Chase. 2022. LangChain.

Xin Cheng, Di Luo, Xiuying Chen, Lemao Liu,
Dongyan Zhao, and Rui Yan. 2024. Lift yourself

up: Retrieval-augmented text generation with self-
memory. Advances in Neural Information Processing
Systems, 36.

Matthijs Douze, Alexandr Guzhva, Chengqi Deng, Jeff
Johnson, Gergely Szilvasy, Pierre-Emmanuel Mazaré,
Maria Lomeli, Lucas Hosseini, and Hervé Jégou.
2024. The faiss library.

Darren Edge, Ha Trinh, Newman Cheng, Joshua
Bradley, Alex Chao, Apurva Mody, Steven Truitt,
and Jonathan Larson. 2024. From local to global: A
graph rag approach to query-focused summarization.
arXiv preprint arXiv:2404.16130.

Wengqi Fan, Yujuan Ding, Liangbo Ning, Shijie Wang,
Hengyun Li, Dawei Yin, Tat-Seng Chua, and Qing
Li. 2024. A survey on rag meeting llms: Towards
retrieval-augmented large language models. In Pro-
ceedings of the 30th ACM SIGKDD Conference on
Knowledge Discovery and Data Mining, pages 6491—
6501.

Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia,
Jinliu Pan, Yuxi Bi, Yi Dai, Jiawei Sun, and Haofen
Wang. 2023. Retrieval-augmented generation for
large language models: A survey. arXiv preprint
arXiv:2312.10997.

Zirui Guo, Lianghao Xia, Yanhua Yu, Tu Ao, and Chao
Huang. 2024. Lightrag: Simple and fast retrieval-
augmented generation.

Haoyu Han, Yu Wang, Harry Shomer, Kai Guo, Jiayuan
Ding, Yongjia Lei, Mahantesh Halappanavar, Ryan A
Rossi, Subhabrata Mukherjee, Xianfeng Tang, et al.
2024. Retrieval-augmented generation with graphs
(graphrag). arXiv preprint arXiv:2501.00309.

Jiajie Jin, Yutao Zhu, Xinyu Yang, Chenghao Zhang,
and Zhicheng Dou. 2024. Flashrag: A modular
toolkit for efficient retrieval-augmented generation
research. CoRR, abs/2405.13576.

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick
Lewis, Ledell Wu, Sergey Edunov, Dangi Chen, and
Wen-tau Yih. 2020. Dense passage retrieval for
open-domain question answering. arXiv preprint
arXiv:2004.04906.

Omar Khattab and Matei Zaharia. 2020. Colbert: Effi-
cient and effective passage search via contextualized
late interaction over bert. In Proceedings of the 43rd
International ACM SIGIR Conference on Research
and Development in Information Retrieval, pages

39-48.

Huanjun Kong, Songyang Zhang, Jiaying Li, Min Xiao,
Jun Xu, and Kai Chen. 2024. Huixiangdou: Over-
coming group chat scenarios with llm-based technical
assistance.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio
Petroni, Vladimir Karpukhin, Naman Goyal, Hein-
rich Kiittler, Mike Lewis, Wen-tau Yih, Tim Rock-
taschel, et al. 2020. Retrieval-augmented generation

610

https://github.com/langchain-ai/langchain
http://arxiv.org/abs/2401.08281
http://arxiv.org/abs/2410.05779
http://arxiv.org/abs/2410.05779
https://doi.org/10.48550/ARXIV.2405.13576
https://doi.org/10.48550/ARXIV.2405.13576
https://doi.org/10.48550/ARXIV.2405.13576
http://arxiv.org/abs/2401.08772
http://arxiv.org/abs/2401.08772
http://arxiv.org/abs/2401.08772

for knowledge-intensive nlp tasks. Advances in Neu-
ral Information Processing Systems, 33:9459-9474.

Patrick Lewis, Yuxiang Wu, Linging Liu, Pasquale Min-
ervini, Heinrich Kiittler, Aleksandra Piktus, Pontus
Stenetorp, and Sebastian Riedel. 2021. Paq: 65 mil-
lion probably-asked questions and what you can do
with them. Transactions of the Association for Com-
putational Linguistics, 9:1098-1115.

Lei Liang, Mengshu Sun, Zhengke Gui, Zhongshu Zhu,
Zhouyu Jiang, Ling Zhong, Yuan Qu, Peilong Zhao,
Zhongpu Bo, Jin Yang, Huaidong Xiong, Lin Yuan,
Jun Xu, Zaoyang Wang, Zhigiang Zhang, Wen Zhang,
Huajun Chen, Wenguang Chen, and Jun Zhou. 2024.
Kag: Boosting llms in professional domains via
knowledge augmented generation.

Bonan Min, Hayley Ross, Elior Sulem, Amir
Pouran Ben Veyseh, Thien Huu Nguyen, Oscar Sainz,
Eneko Agirre, Ilana Heintz, and Dan Roth. 2023.
Recent advances in natural language processing via
large pre-trained language models: A survey. ACM
Computing Surveys, 56(2):1-40.

Inc. NetEase Youdao. 2023. Bcembedding: Bilin-
gual and crosslingual embedding for rag. https:
//github.com/netease-youdao/BCEmbedding.

Boci Peng, Yun Zhu, Yongchao Liu, Xiaohe Bo,
Haizhou Shi, Chuntao Hong, Yan Zhang, and Siliang
Tang. 2024. Graph retrieval-augmented generation:
A survey. arXiv preprint arXiv:2408.08921.

Bowen Peng, Jeffrey Quesnelle, Honglu Fan, and En-
rico Shippole. 2023. Yarn: Efficient context window
extension of large language models.

Hongjin Qian, Peitian Zhang, Zheng Liu, Kelong Mao,
and Zhicheng Dou. 2024. Memorag: Moving to-
wards next-gen rag via memory-inspired knowledge
discovery.

Qwen, :, An Yang, Baosong Yang, Beichen Zhang,
Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin,
Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Yang,
Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang,
Keming Lu, Keqin Bao, Kexin Yang, Le Yu, Mei Li,
Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji
Lin, Tianhao Li, Tianyi Tang, Tingyu Xia, Xingzhang
Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang
Zhang, Yu Wan, Yuqiong Liu, Zeyu Cui, Zhenru
Zhang, and Zihan Qiu. 2025. Qwen2.5 technical
report.

Adam Roberts, Colin Raffel, and Noam Shazeer. 2020.
How much knowledge can you pack into the pa-
rameters of a language model? arXiv preprint
arXiv:2002.08910.

TuGraph. 2023. Tugraph: A high performance graph
database.

Denny Vrandeci¢ and Markus Krotzsch. 2014. Wiki-
data: a free collaborative knowledgebase. Communi-
cations of the ACM, 57(10):78-85.

611

Sigiao Xue, Caigao Jiang, Wenhui Shi, Fangyin Cheng,
Keting Chen, Hongjun Yang, Zhiping Zhang, Jian-
shan He, Hongyang Zhang, Ganglin Wei, et al.
2023. Db-gpt: Empowering database interactions
with private large language models. arXiv preprint
arXiv:2312.17449.

Jie Ying, Zihong Chen, Zhefan Wang, Wanli Jiang,
Chenyang Wang, Zhonghang Yuan, Haoyang Su,
Huanjun Kong, Fan Yang, and Nanqing Dong. 2025.
Seedbench: A multi-task benchmark for evaluating
large language models in seed science. In Proceed-
ings of the 63nd Annual Meeting of the Association
for Computational Linguistics, Vienna, Austria. As-
sociation for Computational Linguistics.

Qinggang Zhang, Shengyuan Chen, Yuanchen Bei,
Zheng Yuan, Huachi Zhou, Zijin Hong, Junnan Dong,
Hao Chen, Yi Chang, and Xiao Huang. 2025. A
survey of graph retrieval-augmented generation for
customized large language models. arXiv preprint
arXiv:2501.13958.

http://arxiv.org/abs/2409.13731
http://arxiv.org/abs/2409.13731
https://github.com/netease-youdao/BCEmbedding
https://github.com/netease-youdao/BCEmbedding
http://arxiv.org/abs/2309.00071
http://arxiv.org/abs/2309.00071
http://arxiv.org/abs/2409.05591
http://arxiv.org/abs/2409.05591
http://arxiv.org/abs/2409.05591
http://arxiv.org/abs/2412.15115
http://arxiv.org/abs/2412.15115
https://github.com/TuGraph-family/tugraph-db
https://github.com/TuGraph-family/tugraph-db

A Additional Details on Methodology

A.1 GraphRAG

Let the corpus be denoted by C' and the user
query by). The GraphRAG framework, defined
as graphrag = (f, g, d), consists of three primary
functions:

* Indexing function f, which extracts structured
representations from C, yielding R..

* Retrieval function g, which derives representa-
tions from @, producing R,.

¢ Graph-based augmentation function d, which
iteratively constructs paths linking R. and R,
refining the retrieval context.

Algorithm 1 GraphRAG

Compute corpus representations: R, = f(C)
Compute query representations: R, = g(Q)
Initialize the retrieval set: Sy C R,
fork=1,2,...do

Select the most relevant element: e; =
argmingep \s, , dist(Sk—1 U {e}, Ry)

A

6: Remove the least relevant element: e, =
arg minecg, , dist(Sx—1 \ {e}, Ry)

7: Update retrieval set: Sy = Sp_1 U {e} } \
{6}

8: if dist(Sj, R,) does not improve then

: Terminate retrieval process
10 end if
11: end for

The indexing and retrieval processes are formal-
ized in Algorithm 1. At each iteration, an element
e;: is selected for inclusion if it minimizes the re-
trieval distance dist(S_1, R,), while an element
e;; is removed if it similarly optimizes the retrieved
set. The stopping criterion ensures termination

when no further improvements can be achieved.

A.2 Logic Form Retrieval

Logic Form method. Inspired by knowledge-
aware reasoning frameworks, this approach em-
ploys a predefined set of operators (e.g., filtering,
aggregation) to decompose complex queries.

A.3 Loop NER

Two implementations of iterative NER, includ-
ing a trial version and a base version.

Algorithm 2 Logic Form Retrieval

1: Input: Operator set O = {01,02,...,0,},
where each o; = (operator;, function,)

2: Input: User query)

3: Output: History

4: Decompose query (Q into a list of subqueries
L using LLM

5: L — {(ql,al),(qQ,az),...,(qm,am)},
where each a; € O

6: for (¢j,a;) € L do

7: Identify the corresponding operator o; for
aj

Execute a; < 0;(q;)

9: end for

10: Concatenate all sub-queries and sub-answers
a; into history

11: return History

Algorithm 3 Loop NER

1: Initialize input text 7'

2: Initialize maximum attempts M AX

3: Initialize history H <— NER_init(T)
4.

5: function TRIAL

6: fori =0to MAX do

7: continue < LLM _judge(H)
8: if continue == "no" then

9: break

10: end if

11: result < NER_continue(T, H)
12: H + H Uresult

13: end for

14: end function

15:

16: function BASE
17: fori =0to M AX do

18: result <— NER_continue(T, H)
19: H +— H Uresult

20: continue < LLM _judge(H)
21: if continue == "no" then

22: break

23: end if

24: end for

25: end function

A.4 Retrieval Verifier

Two implementations of iterative retrieval ver-
ifier, including two methods: pre-check and post-
check.

612

& SeedLLM
/

[-+ New Conversation |

o /

Click the button above or
enter text below to start a
conversation.

Joint R&D Units

& SeedLLM

©
@

4’

Participating Units

Q user X i

Figure 5: User interface of the deployment platform. The system enables natural language interaction for agricultural

knowledge retrieval and question answering.

Algorithm 4 Retrieval Verifier

1: Initialize:
2: context < logic_form_retrieve()

function ARGUMENT CHECKING
if LLM _judge(query, context)
== "support" then
return LLM (query, context)
end if
end function

® >R

9: function RESULT CHECKING
10: reply < LLM (query, context)
11: if LLM _judge(query, context, reply)

12: == "support" then
13: return reply
14: end if

15: end function

B Detailed Experimental Setup

We adopt techniques from (Kong et al.,
2024) regarding the refusal-to-answer task.
Specifically, for text splitting, we employ
ChineseRecursiveTextSplitter? for Chinese
text, which takes into account both maximum
length and punctuation positions. For English text,
we use RecursiveCharacterTextSplitter?
with a chunk overlap of 32. In both cases, the
default chunk size was set to 768 tokens.

C Additional Discussion on Experiments

Our experiments highlight several key factors
that affect the performance of the GraphRAG sys-

Shttps://github.com/chatchat-space/
Langchain-Chatchat

tem. Our analysis of iterative NER methods shows
that increasing the number of extracted entities can
improve accuracy, as erroneous entities will be-
come isolated nodes and will not significantly af-
fect retrieval accuracy. When evaluating the LLM
context length, a smaller rope_scaling yields bet-
ter performance when the maximum length of the
model is sufficient. A larger context length (64k)
leads to a slight decrease in accuracy, possibly be-
cause the increased volume of information makes it
harder to extract meaningful entities and relations.
In retrieval and generation analysis, we find that
expanding the query representation and incorporat-
ing more low-level keys improves accuracy while
switching to exact matching leads to performance
degradation. This result suggests that fuzzy match-
ing is critical to capturing subtle query semantics,
as strict exact matching cannot account for implicit
query variations. Comparing retrieval methods, we
observe that while the dual-level method achieves
higher accuracy, it lacks the ability to provide con-
vincing reasoning on real queries. In contrast, the
logic form method provides higher information
density and is more concise and clear. Finally, in
the validator design, we find that argument check-
ing is more effective than result checking.

D Application

ROGRAG is deployed on an online research plat-
form SeedLLM?, as illustrated in Figure 5.

4https://seedllm.org.cn

613

https://github.com/chatchat-space/Langchain-Chatchat
https://github.com/chatchat-space/Langchain-Chatchat
https://seedllm.org.cn

