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Abstract

The rapid advancement in capabilities of large
language models (LLMs) raises a pivotal ques-
tion: How can LLMs accelerate scientific dis-
covery? This work tackles the crucial first
stage of research, generating novel hypothe-
ses. While recent work on automated hypoth-
esis generation focuses on multi-agent frame-
works and extending test-time compute, none
of the approaches effectively incorporate trans-
parency and steerability through a synergistic
Human-in-the-loop (HITL) approach. To ad-
dress this gap, we introduce IRIS for interac-
tive hypothesis generationm, an open-source
platform designed for researchers to leverage
LLM-assisted scientific ideation. IRIS incorpo-
rates innovative features to enhance ideation,
including adaptive test-time compute expan-
sion via Monte Carlo Tree Search (MCTS),
fine-grained feedback mechanism, and query-
based literature synthesis. Designed to em-
power researchers with greater control and in-
sight throughout the ideation process. We addi-
tionally conduct a user study with researchers
across diverse disciplines, validating the effec-
tiveness of our system in enhancing ideation.
We open-source our code here.

1 Introduction

With the growing capabilities of large language
models (LLMs), the automation of scientific dis-
covery has captured a lot of attention (Gridach
et al., 2025). Agentic LLM based systems have
shown potential of outperforming PhD researchers
and postdocs on short-horizon scientific tasks like
question answering, summarization and contradic-
tion detection in various domains (Skarlinski et al.,
2024; Asai et al., 2024). These advancements have
spurred new opportunities of LLMs accelerating
scientific discovery, which is essential given the
exponential growth of scientific publications (Land-
huis, 2016; Fire and Guestrin, 2019).

Current solutions that leverage LLMs in scien-
tific ideation primarily remain hinged on multi-
agent frameworks or extending test-time compute
(Si et al., 2024; Hu et al., 2024; Gottweis, 2025),
and aim to validate the quality of the final ideas
through human validation or LLM-as-a-judge eval-
uations (Wang et al., 2024; Li et al., 2024; Baek
et al., 2025). However, these approaches often fail
to integrate human supervision during generation
in a truly complementary manner, neglecting the
nuanced expectations and goals of the user. Conse-
quently, despite investing significant computational
resources to develop objectively “novel” ideas, they
might not align with the user’s research goals, in-
evitably leading to dissatisfaction (Ou et al., 2022;
Kim et al., 2024).

Moreover, the importance of meaningful human
intervention in the research process cannot be over-
stated. Notably, AI models have been known to
fabricate convincing yet fraudulent scientific infor-
mation (Májovský et al., 2023). More troubling
are cases of deceptive and misaligned AI behav-
iors (Ryan Greenblatt, 2025; Booth, 2025; Betley
et al., 2025; Baker et al., 2025). Recent develop-
ments of more capable Agentic LLMs have shown
difficulties in transparently delegating sub-tasks,
leading to "reward hacking" behaviors (Anthropic,
2025). In the context of idea generation, we find
signs of similar "reward hacking" where LLMs
adopt fancy terminology e.g. "Prompt Learning
and Optimization Nexus" for building a library of
prompts, or often proposing the use of "graphs"
without any clear motivation or description behind
the design choice. We observe that naive recur-
sive feedback loops (Baek et al., 2025) forcing the
LLM to be more novel inevitably lead to gamify-
ing LLM-as-a-judge metrics without adding actual
value. Gupta and Pruthi (2025) carefully study the
results of AI-Researcher (Si et al., 2024) and advise
careful assessment of LLM generated hypotheses
due to signs of skillful plagiarism. These examples
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Figure 1: Human-in-the-loop Idea Generation with Monte-Carlo-Tree-Search. G: Research Goal, B: Research Brief

highlight the pitfalls of premature reliance on fully
automated systems, underscoring the need for well-
designed Human-in-the-Loop (HITL) systems for
scientific ideation; ensuring outcomes are accurate
and aligned with human goals.

Despite the recent innovations made in LLM-
based scientific ideation, several key limitations
persist. These include (1) generating hypotheses
in a single pass (Si et al., 2024) , which overlooks
the iterative nature of the ideation process. In con-
trast, Pu et al. (2024) find that researchers typically
seek to refine their hypotheses into concrete re-
search briefs. (2) Optimization through feedback
on coarse-grained criteria like rigorousness, orig-
inality, generalizability etc. (Baek et al., 2025),
while often critiquing entire ideas rather than spe-
cific components. (3) Simplistic retrieval augmen-
tation such as appending keywords or abstracts of
previous papers in context (Wang et al., 2024; Si
et al., 2024), whereas effective ideation demands
a deeper, more holistic understanding of the do-
main literature. (4) Unstructured and sub-optimal
search of the idea space through either refinement
of a generated base-idea (exploitation) (Wang et al.,
2024; Baek et al., 2025), or through initial search
and plan (exploration) without subsequent refine-
ment of promising ideas (Hu et al., 2024). Finally,
there is a lack of open-source implementations that

would encourage broader adoption. In light of these
challenges, we propose IRIS, tackling each of these
limitations while enabling human intervention at
every stage of the ideation process. Specifically,
we make the following contributions:

• HITL Framework: A user-centered design
balancing human control with automation in-
stead of entirely delegating the process of
ideation to AI

• Monte Carlo Tree Search: A systematic
method to iteratively explore the idea space
and extend test time compute via alternating
phases of exploration and exploitation (§3.2)

• Fine-grained Review based Refinement:
An exhaustive taxonomy (Table 2) with fine-
grained actionable feedback for improving hy-
potheses (Figure 2) (§3.1)

• Query-based Retrieval: Generating targeted
queries for retrieving relevant literature, with
re-ranking, clustering and summarization to
produce comprehensive, technical and cited
responses (§3.1)

• Open Source: Publicly available platform for
AI-Assisted scientific ideation

Finally, we conduct a user study with researchers
from diverse disciplines validating the effectiveness
of our designed system (§4).

593



Figure 2: IRIS Platform Interface with (L) Retrieval Panel, (C) Chat Overview Panel, (R) Research Brief Panel

2 Related Works

2.1 AI Assisted Research
The integration of (AI) into scientific research has
evolved from early concept-linking tools (Swan-
son, 1986; Sybrandt et al., 2020; Nadkarni et al.,
2021) to sophisticated systems that enhance various
research stages. In recent years, LLMs have signifi-
cantly transformed research life-cycles by assisting
in literature searches (Zheng et al., 2024; Ajith
et al., 2024; Asai et al., 2024), citation recommen-
dations (Pillai and R, 2022; Zhang and Zhu, 2022;
Press et al., 2024), review of scientific documents
or ideas (Zhou et al., 2024; Son et al., 2025; Wen
et al., 2025), experimental design (Huang et al.,
2024; Schmidgall et al., 2025), scientific claim ver-
ification (Wadden et al., 2020; Wang et al., 2025),
theorem proving (Song et al., 2025), manuscript
writing (Weng et al., 2025), and reading assistants1.
2.2 Human-AI Co-creation Systems
The emergence of Gen AI has introduced a new
dimension to Co-creation systems, setting them
apart from previous ones where machines primarily
served as supportive tools for human users (Davis
et al., 2015; Muller et al., 2020; Weisz et al., 2024).
Recent studies, such as those by Kantosalo and
Jordanous (2021); Liu et al. (2024), demonstrate
the effectiveness of Gen AI tools in creative tasks,

1JenniAI, SciSpace, ScholarAI

particularly through their steerability and explain-
ability. This has led to growing emphasis among
researchers to develop design guidelines for inte-
grating Gen AI into existing frameworks (Amershi
et al., 2019; Shneiderman, 2020). We build IRIS
for researcher-in-the-loop ideation while incorpo-
rating design principles from prior work, such as
minimizing opacity, adopting granular feedback,
encouraging AI processing delays (Amershi et al.,
2019; Liu et al., 2024), and replacing rigid post-hoc
analysis with oversight across planning, generation,
and retrospection stages (Shneiderman, 2020).

2.3 Automated Hypothesis Generation
Spangler et al. (2014) demonstrate the first proof
of principle for automated hypothesis generation
through text mining of scientific literature, leverag-
ing techniques such as entity detection and graph-
based diffusion of information. Rising capabilities
of text completion models has driven significant ad-
vancements in this field (Wang et al., 2024; Lu et al.,
2024; Li et al., 2024; Hu et al., 2024; Si et al., 2024;
Kumar et al., 2024; Baek et al., 2025; Gottweis,
2025). However, current efforts focus on fully au-
tomated systems, often overlooking the critical role
of human involvement. Acceleron demonstrates
one of the first human-in-the-loop (HITL) frame-
work assisting researchers in validation of motiva-
tion behind a research problem and synthesizing a
method for the same (Nigam et al., 2024), followed
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by Pu et al. (2024); Radensky et al. (2025) making
an attempt to develop an interactive idea gener-
ation system. These approaches remain limited,
allowing idea exploration only within a predefined
framework, restricting flexibility and adaptability.
Furthermore, their system lacks sophisticated com-
ponents like automated fine-grained feedback, lit-
erature retrieval targeted to the research goal and
scaling test-time compute.

3 IRIS

Broadly, the system expects as input a research
goal G consisting of a research problem and it’s
motivation, and outputs a research brief B consist-
ing of a Title, Proposed Methodology and Experi-
ment Plan, while improving it’s quality; either in
semi-automatic manner through directions from
the researcher or autonomously exploiting Monte
Carlo Tree Search (MCTS). We provide detailed
overview of our system including the implemen-
tation of agents (§3.1) and MCTS adaptation for
hypothesis generation (§3.2).

3.1 Agent Architecture

IRIS employs a three-agent architecture consisting
of an ideation agent, a review agent, and a retrieval
agent. The ideation agent navigates the search
space of possible research ideas, while the review
and retrieval agents provide feedback and relevant
scientific context respectively.

Ideation Agent generates and iteratively im-
proves the research brief. It can toggle between
a semi-automatic mode, to receive guidance from a
researcher to refine research briefs through steering
reviews, retrievals or employing custom feedback,
and a completely autonomous mode to explore and
exploit the idea space by leveraging actions which
support iterative refinement of the research briefs
through MCTS.

Review Agent is accountable for two tasks
namely providing reward and feedback. For eval-
uation of an idea, we have defined a hierarchical
taxonomy of aspects grounded in real-world scien-
tific critique (For example, (Ghosal et al., 2022),
(Kennard et al., 2022), (Dycke et al., 2023)), de-
tailed in Table 2. Review Agent is auto-triggered
after each new generation of the research brief to
provide a reward averaged over the scores assigned
to distinct aspects, based on the evaluation provided
for the complete research brief.

As opposed to the parallel works (Wang et al.,
2024; Baek et al., 2025) that focus on coarse-level
criteria and provide broad evaluation of the en-
tire generated research brief, usually, a feedback
with respect to an aspect is applicable to only spe-
cific parts of the research brief. For example, only
some component of the brief can be infeasible or
some other component requires more clarity. Ad-
dressing this need, when explicitly triggered by
the researcher, the review agent switches to a fine-
grained evaluation, delivering targeted, actionable
feedback on each aspect of the taxonomy for dis-
tinct segments of the current research-brief (Fig-
ures 1 and 2 (R) ). This fine-grained feedback is
verified by the researcher and omitted if deemed
irrelevant. Then the review agent computes reward
based on the scores of the verified aspects of the
feedback. This adept human intervention coupled
with granular feedback, successfully mitigates “re-
ward hacking” behavior of LLMs.

Retrieval Agent: For the input research goal,
the retrieval agent synthesizes queries targeted to
retrieve literature relevant to the research goal. For
answering each query, it adopts Ai2 Scholar QA
API (Singh et al., 2025). The pipeline consists of
two-stage retrieval followed by three-stage gener-
ation. The Semantic Scholar API’s (storing over
200M open access papers) snippet search endpoint
(Kinney et al., 2023) extracts relevant passages,
which are re-ranked to retain top-k passages and
aggregated at the paper level. With the finalized set
of passages, the retrieval agent (i) extracts quotes
from the passages relevant to the query, (ii) gener-
ates a plan to produce an organized report with sec-
tions, and clusters the top-k passages accordingly,
and (iii) generates cited sections-wise reports along
with summaries (Figure 2 (L)). Our motivation for
adopting ScholarQA stems from the limitations of
naive RAG failing to appropriately answer global
questions targeted at a corpus as opposed to a sin-
gle document (Edge et al., 2025). We also provide
the ability for the researcher to upload papers in
the form of PDF documents, which they think to
be relevant but have been missed out as the part of
the retrieval. The retrieval agent parses the PDF
through Grobid based doc2json tool2 and appends
the most relevant chunks to the context for the
ideation agent to refine the research brief.

2https://github.com/allenai/s2orc-doc2json
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3.2 Monte Carlo Tree Search Framework

To systematically explore the vast space of poten-
tial research ideas, IRIS employs Monte Carlo Tree
Search (MCTS) (Kocsis and Szepesvári, 2006).
MCTS allows the system to effectively extend test-
time compute similar to recent work in augmenting
LLM reasoning (Qi et al., 2024; Guan et al., 2025).
Unlike applications with objective rewards (e.g.,
mathematics, code generation), scientific ideation
quality is subjective. We adapt MCTS by using the
LLM-based Review Agent as a proxy judge to esti-
mate the quality (reward) of generated hypotheses.

Formally, given a research goal G, our system
constructs a search tree T rooted with G. A state s
encapsulates the current {research brief b, reward
estimate r, latest review feedback f (if applicable,
else ϕ), and retrieved knowledge k (if applicable,
else ϕ)}. Edges represent actions a taken by the
Ideation Agent to transition between states. We
define a comprehensive action space A = {a1: gen-
erate, a2: refine w/ retrieval, a3: refine w/ review,
a4: refine w/ user feedback}. The MCTS process
iteratively builds the tree over N iterations, guided
by the Upper Confidence Bound for Trees (UCT)
algorithm (Coquelin and Munos, 2007). UCT of a
node n is defined by:

UCT(n) =
Q(n)

N(n)
+ c

√
lnN(np)

N(n)
(1)

where Q(n) is the total reward at child node n
accumulated from its children, N(n) is its visit
count, N(np) is the visit count of the parent node
of n , and c is the exploration constant. Algorithm
1 outlines the MCTS process. Each node n stores
its state sn as defined above, Q(n) and N(n).

Algorithm 1 MCTS for Research Idea Generation
Require: Research goal G, iterations N , max

depth dmax, actions A, constant c
1: Initialize tree T with root n0 (state s0 = G,

Q(n0) = 0, N(n0) = 0).
2: for i = 1 to N do
3: nleaf ← SELECT(n0, c)
4: r ← EVALUATE(nleaf)
5: if depth < dmax then
6: EXPAND(nleaf,A)
7: end if
8: BACKPROPAGATE(nleaf, r)
9: end for

10: return BESTCHILD(n0)

Each iteration involves four phases:
SELECT(nroot, c): Traverse the tree from the

root n0 to select a leaf node nleaf. At each node
n during traversal, if n has any unvisited children
(Q(n) = 0), one such child is randomly selected.
If all children of n have been visited, the next node
is chosen by: argmaxn′∈children(n)(UCT(n′)).

EVALUATE(nleaf): Obtain reward r for the state
sleaf of nleaf via the Review Agent.

EXPAND(nleaf,A): If nleaf is non-terminal and
below dmax, create child nodes n′ for each applica-
ble action a ∈ A, with Q(n′) = 0, N(n′) = 0.

BACKPROPAGATE(nleaf, r): Update Q and N
values for nleaf and its ancestors with reward r.

BESTCHILD(n0): After N iterations, select the
child of n0 with the highest average reward Q/N .

Memory: Agents maintain trajectory-level mem-
ory. For instance, the Ideation Agent recalls gen-
erated briefs, the Retrieval Agent remembers past
queries, and the Review Agent tracks prior feed-
back. This helps steer the generation towards non-
redundant refinements.
Cost: MCTS can be computationally intensive.
IRIS incorporates budget controls, allowing users
to set limits. For tighter budgets, the system pri-
oritizes exploitation by lowering the exploration
constant c, ensuring delivery of few refined outputs
rather than numerous low-quality ones.

4 Evaluation

To assess the effectiveness and usability of IRIS,
we conduct automated evaluations and user studies.

4.1 Experiment Setup

System Implementation: IRIS’s user interface is
developed using HTML, CSS, JavaScript. The core
LLM functionalities are powered by Gemini-2.0-
Flash (DeepMind, 2024) accessed via LiteLLM3,
which allows users to substitute other LLMs of
their choice. We utilize Gemini’s built-in safety
filters to mitigate harmful or inappropriate queries.

Metrics: We employ LLM-as-a-judge, popu-
larly adopted in parallel literature (Baek et al.,
2025; Gottweis, 2025). We use two methods
guided by our pre-defined criteria (Table 2). abso-
lute score: each generated hypothesis (1-10), and
relative score: aggregating head-to-head compar-
isons and preferences to compute ELO ratings.

3https://docs.litellm.ai/docs/
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To contextualize the alignment of LLM-as-a-
judge with human preferences in the context of sci-
entific ideation, we prompt baselines Gemini-2.0-
Flash, ChatGPT, ChatGPT w/ search and Claude
3.5 Haiku to generate novel research briefs. Then
ask users and LLMs to rate the generations in the
order of their preference.

4.2 User Study
We conducted a user study with 8 researchers (N=8)
from diverse fields (AI/NLP, Chem, Physics, HCI)
and experience levels. Two users voluntarily partic-
ipated twice (10 total case studies). Each ∼60 min
session involved: 1) Defining a research goal, 2)
Blindly ranking initial set of hypotheses, 3) Inter-
acting with IRIS, 4) Completing a post-task survey.

4.3 Results and Analysis
Metric Validation: Human baseline rankings cor-
related moderately with LLM based ELO scores
(Pearson’s r=0.60) but weakly with LLM based ab-
solute scores (r=0.45). With this learning we plan
to replace the LLM-as-the-judge scores, displayed
to showcase the quality of the idea, with the ELO
ratings.

Automated Evaluation: LLM-as-a-judge eval-
uations (Figure 3) showed that user interaction
within IRIS consistently improved hypothesis qual-
ity, increasing average absolute scores by 0.5 points
and ELO ratings by 12 points for a tree depth of 3.

(a) Absolute Score Improve-
ment.

(b) ELO Rating Improve-
ment.

Figure 3: Iterative improvement in hypothesis quality
within IRIS over interaction depth (up to depth 3). Inter-
action enhances both absolute scores and ELO ratings.

User Study Feedback: Quantitative ratings (Ta-
ble 1) show users found the fine-grained feedback
highly insightful and unpromptedly mentioned bet-
ter usability and control over other reading assistant
interfaces mentioned in §2.

Additionally, through qualitative feedback we
arrived at the following insights:

• Steerability: All users valued the MCTS tree
for control and transparency over ideation.

Feature / Aspect Mean Rating (± Std Dev)

Usefulness of Fine-grained Feedback 4.3 ± 0.7
MCTS Tree Interface (Steerability) 4.2 ± 0.6
Quality of Lit. Summaries 3.7 ± 0.8
Usability and control 4.5 ± 0.7
Overall Satisfaction (Final Research Brief) 3.9 ± 0.7

Table 1: User ratings (1-5 Likert scale) for key IRIS
features and overall satisfaction (N=10).

• Feedback: Critiques often reflected user’s
own concerns (87.5% users) and sometimes
sparked novel insights (50% cases).

• Retrieval: Found to be facilitating grounding
of ideas, but quality varied with domains such
as chemistry and physics research, matching
the lower rating (3.7/5). We attribute this to
reduced availability of relevant literature in
the semantic scholar corpus.

• Relevance: hypotheses often shared similar-
ities with or extended users’ ongoing work
(62.5% users).

Overall Improvement: Post-interaction, 25%
(2/8) found the hypothesis substantially better, 50%
(4/8) marginally better, and 25% (2/8) similar qual-
ity. Crucially, all users reported enhanced under-
standing of the proposed methodology, and consid-
ered it to be promising.

5 Conclusion

We introduce IRIS, an Interactive Research
Ideation System, to augment automated scientific
hypothesis generation with human expertise. We
apply MCTS to iteratively explore the idea space,
refine ideas with fine-grained segment level reviews
and targeted query based multi-document retrieval;
offering a steerable environment for researchers
during LLM-driven scientific ideation. Our user
study validates the usability and effectiveness of
our system, demonstrating consistent improvement
in hypothesis quality increasing average absolute
scores by 0.5 points and ELO ratings by 12 points
for a tree depth of 3. Crucially, users frequently
considered the generated hypotheses plausible and
worthy of further investigation. We position that
the potential of LLMs, particularly within human-
AI collaborative frameworks, for developing novel
scientific hypothesis remains a heavily underex-
plored avenue. We present IRIS as a concrete step
towards realizing this untapped potential.
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Limitations

Currently the system relies on the researcher as
the judge to verify the quality of the emerging
idea at each iteration, augmented by LLM-as-the-
judge. This reliance is based on the assumption of
sufficient domain expertise of the researcher. As
opposed to this in future we aim for a true Hu-
man AI Co-creation System, where more founda-
tional LLMs with scientific expertise, questions
researchers for the choices he or she has made lead-
ing to a two way socratic review and refinement
communication, simulating a more realistic sce-
nario of brain-storming between colleagues or a
mentor and a mentee.

Due to budget constraints, we have not explored
frontier LLMs such as Claude 3.7 Sonnet, Grok-3
or reasoning models like Gemini-2.5-Pro, o1 etc.
The quality of produced hypothesis in terms of
novelty and effectiveness would likely benefit from
stronger base models.
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A Review Taxonomy

Aspect Sub-aspect Definition

Originality Lack of Novelty The idea does not introduce a significant or
meaningful advancement over existing work,
lacking originality or innovation.

Assumptions The idea relies on untested or unrealistic as-
sumptions that may weaken its validity or ap-
plicability.

Clarity Vagueness The idea is presented in an unclear or ambigu-
ous manner, making it difficult to understand
its core components or contributions.

Contradictory Statements The idea contains internal inconsistencies or
conflicts in its assumptions, methods, or con-
clusions.

Alignment The idea is not aligned with the problem state-
ment and its objectives.

Feasibility Feasibility and Practicality The idea is not practical or achievable given
current technological, theoretical, or resource
constraints.

Justification for Methods The idea does not provide sufficient reasoning
or evidence to explain why specific methods,
techniques, or approaches were chosen.

Effectiveness Evaluation and Validation Issues The idea lacks rigorous evaluation methods,
such as insufficient benchmarks, inadequate
baselines, or poorly defined success metrics.

Reproducibility and Robustness The idea does not provide sufficient detail or
transparency to allow others to replicate or ver-
ify its findings, and is not resilient to variations
in input data, assumptions, or environmental
conditions. The degree to which the solution
consistently produces accurate and dependable
results is low, making it less reliable.

Impact Overgeneralization and Over-
statement

The idea extends its conclusions or applicabil-
ity beyond the scope of the context provided
or exaggerates its claims, significance, or po-
tential impact beyond what is supported by
evidence or reasoning.

Impact The idea is not impactful or significant. It
does not solve a real problem. It does not cre-
ate value by solving a significant problem or
fulfilling a need for individuals, organizations,
or society.

Ethical and Social Considera-
tions

The idea does not adhere to ethical standards
and is harmful to individuals, communities, or
the environment.

Table 2: Hierarchical Review Taxonomy
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(a) Baseline Comparison (Absolute Score). (b) Baseline Comparison (ELO Rating).

Figure 4: Top: Comparison of hypothesis quality generated by baseline methods (ChatGPT, ChatGPT+Search,
Claude 3.5 Haiku, Gemini-2.0-Flash) using LLM-as-a-judge absolute scores and ELO ratings. Bottom: User Survey
Feedback Form Questions.
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