
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 3: System Demonstrations), pages 572–582
July 27 - August 1, 2025 ©2025 Association for Computational Linguistics

Mergenetic: a Simple Evolutionary Model Merging Library

Adrian Robert Minut1? , Tommaso Mencattini2? , Andrea Santilli1, Donato Crisostomi1,
Emanuele Rodolà1

1Sapienza University of Rome 2Ecole Polytechnique Fédérale de Lausanne
minut@di.uniroma1.it

Abstract

Model merging allows combining the capa-
bilities of existing models into a new one—
post hoc, without additional training. This
has made it increasingly popular thanks to its
low cost and the availability of libraries that
support merging on consumer GPUs. Recent
work shows that pairing merging with evolu-
tionary algorithms can boost performance, but
no framework currently supports flexible ex-
perimentation with such strategies in language
models. We introduce Mergenetic, an open-
source library for evolutionary model merging.
Mergenetic enables easy composition of merg-
ing methods and evolutionary algorithms, while
incorporating lightweight fitness estimators to
reduce evaluation costs. We describe its de-
sign and demonstrate that Mergenetic produces
competitive results across tasks and languages
using modest hardware. A video demo show-
casing its main features is also provided1.

https://github.com/tommasomncttn/mergenetic

1 Introduction

Recent advances in large language models (LLMs)
have shown that merging previously fine-tuned
models can yield new systems with complemen-
tary strengths — often surpassing any single con-
stituent (Yang et al., 2024). Rather than fully re-
training from scratch or fine-tuning a large foun-
dation model for every new task, merging tech-
niques compose knowledge that is already encoded
in existing checkpoints (e.g., specialized domain
knowledge, multilingual abilities, or skills).

The accessibility of model merging has ex-
panded significantly due to its inexpensive nature
coupled with easy-to-use libraries like MergeKit
(Goddard et al., 2024), enabling practitioners to
produce competitive models from existing ones us-
ing standard consumer GPUs. Indeed, at the time of

? denotes equal contribution.
1https://youtu.be/lazoVeP7ku8

Figure 1: Mergenetic makes it easy to produce new
state-of-the-art LLMs with minimal requirements.

writing, approximately 30% of models on the Hug-
ging Face Open LLM Leaderboard (Fourrier et al.,
2024) are merged models (Ilharco et al., 2022).

Recent research has shown that combining
model merging with evolutionary algorithms can
achieve superior performance (Akiba et al., 2025;
Mencattini et al., 2025). However, this approach
faces two key challenges: first, there is currently no
library for experimenting with different evolution-
ary algorithms and merging methods; second, these
methods typically require repeated computations
on validation datasets to evaluate fitness functions,
making them more computationally expensive than
standard merging techniques. These limitations
restrict access for the very user base that model
merging was intended to empower.

In this paper, we introduce Mergenetic, a sim-
ple library to easily perform evolutionary model
merging. Built on top of MergeKit (Goddard et al.,
2024) and the widely used evolutionary framework
PyMoo (Blank and Deb, 2020), our library provides:

1. Python API, CLI, and GUI. Mergenetic
provides a flexible Python API for power users
who wish to customize merging workflows,
alongside a command-line interface (CLI) and
a graphical user interface (GUI) for quick and

572

https://github.com/tommasomncttn/mergenetic
https://youtu.be/lazoVeP7ku8

intuitive setup. Through the CLI or GUI, users
can select models from the Hugging Face Hub,
configure fitness functions, and launch merg-
ing experiments without writing code.

2. Comprehensive Algorithm Support.
Mergenetic integrates 19 evolutionary
algorithms and a diverse set of merging
strategies 2, enabling both single- and
multi-objective optimization. This includes
classical methods like genetic algorithms and
state-of-the-art approaches such as NSGA-II
(Deb et al., 2002a).

3. Subsampling & Approximation. To reduce
the overhead of fitness evaluations and support
merging on consumer GPUs, Mergenetic
allows for selective evaluation over dataset
subsets and supports advanced approxima-
tion techniques for efficient fitness estimation
(Mencattini et al., 2025; Polo et al., 2024).

4. Custom Fitness Functions. The library seam-
lessly integrates with LM-Eval-Harness3

(Gao et al., 2024), offering out-of-the-box sup-
port for 8000+ tasks and metrics for fitness
computation. Users can also define their own
fitness routines tailored to specific needs.

Figure 1 and Table 1 summarize the key fea-
tures of the library. By making evolutionary model
merging more efficient, configurable, and accessi-
ble, Mergenetic expands the potential of merging
as a truly democratizing technique.

In the remainder of this paper, we describe (i)
the relevant background for Mergenetic, (ii) com-
parisons with existing solutions, (iii) its system
architecture and workflow, and (iv) empirical eval-
uations featuring cross-lingual math merges and
multi-task merges on publicly available LLMs. Fi-
nally, we conclude by discussing future extensions
and potential broader impacts of this approach.

2 Background and Related Work

Model Merging. Model merging (Ainsworth
et al., 2022; Crisostomi et al., 2025; Peña et al.,
2023; Ilharco et al., 2022; Yadav et al., 2023; Yu
et al., 2024; Matena and Raffel; Wortsman et al.,
2022; Stoica et al.) has become a powerful and
efficient alternative to ensembling, enabling the

2For all available merging methods refer to MergeKit.
3github.com/EleutherAI/lm-evaluation-harness

Features Mergenetic (Ours) MergeKit

Merging Algorithms 6 54

Evolutionary Algorithms 19 1
Multi-objective 3 7

Dataset Subsampling 3 (Random + Custom) 7

Custom Fitness Functions 3 7

GUI 3 7

Table 1: Comparison of Mergenetic and MergeKit.

integration of existing models without requiring
additional training. Mergenetic focuses on the
multi-task scenario, where the aim is to merge dif-
ferent fine-tunings of a single pretrained model
(Ilharco et al., 2022; Yadav et al., 2023; Yu et al.,
2024; Matena and Raffel; Wortsman et al., 2022;
Davari and Belilovsky, 2025; Wang et al., 2024;
Zhou et al., 2024; Gargiulo et al., 2025; Akiba et al.,
2025; Choshen et al., 2022).

Evolutionary Algorithms. Evolutionary Algo-
rithms (EAs) are black-box optimization tech-
niques that operate on a population of candidate
solutions, evolving them over successive genera-
tions using operators such as selection, mutation,
recombination, and crossover (Bäck and Schwe-
fel, 1993; Pétrowski and Ben-Hamida, 2017; Das-
gupta and Michalewicz, 1997; Real et al., 2019;
Vincent and Jidesh, 2023). A key component of
EAs is the fitness function, which quantifies the
quality of each candidate and steers the evolution-
ary process by promoting higher-performing solu-
tions (Eiben and Smith, 2015). Applying EAs to
model merging, evolutionary merging techniques
(Akiba et al., 2025; Mencattini et al., 2025) auto-
matically search for effective merging recipes using
the performance of the merged model on a held-out
validation dataset as the fitness function.

Comparison with other libraries. The most
closely related library to Mergenetic is MergeKit
(Goddard et al., 2024), which provides the un-
derlying merging strategies (e.g., TIES, DARE,
SLERP) that we build upon in our evolutionary
pipelines. However, when it comes to search ca-
pabilities, MergeKit supports only a single evo-
lutionary algorithm – CMA-ES (Hansen, 2023) –
offering limited flexibility in how the optimization
landscape is explored. In contrast, Mergenetic
integrates with pymoo, enabling users to choose
from a broad range of single- and multi-objective
evolutionary strategies, as shown in Table 5.

4This number refers to the supported merging methods in
evolutionary merging as per the documentation.

573

https://github.com/arcee-ai/mergekit
https://github.com/EleutherAI/lm-evaluation-harness
https://github.com/arcee-ai/mergekit/blob/main/docs/evolve.md

from mergenetic.merging.linear_merger import LinearMerger
from mergenetic.optimization.merging_problem import MergingProblem
from pymoo.algorithms.soo.nonconvex.ga import GA
from mergenetic.searcher import Searcher

Initialize the merger with base model , finetuned models , and output paths
merger = LinearMerger(run_id="demo_run",

path_to_base_model="my/base/model",
model_paths =["finetunedA", "finetunedB"],
path_to_store_yaml="configs/merging_config.yaml",
path_to_store_merged_model="merged_checkpoints/",
dtype="float16")

Define the optimization problem for merging
problem = MergingProblem(

merger = merger , # Merger object
search_df = my_dev_data , # Dataset used to compute fitness
n_var = 2, # Number of variables (weights for the models)
n_obj = 1 # Number of objectives (usually a single metric)

)

algorithm = GA(pop_size =10) # Genetic algorithm with population size 10

Create searcher to run GA over the merging problem
searcher = Searcher(problem , algorithm , results_path="results/",

n_iter =50, seed=42, run_id="demo_run")

searcher.search () # Run the evolutionary search for optimal weights
searcher.test() # Evaluate the final merged model

Figure 2: Example on how to use the Python API for power users who wish to customize merging workflows.

Supported Merging Method Multi-Model Base Model

Task Arithmetic (Ilharco et al., 2023) 3 3

Model Soups (Wortsman et al., 2022) 3 7

SLERP 7 3

TIES (Yadav et al., 2023) 3 3

DARE (Yu et al., 2024) + TIES 3 3

DARE (Yu et al., 2024) + Task Arithmetic 3 3

Table 2: Tested merging methods in Mergenetic

Most importantly, MergeKit assumes that the fit-
ness function must be computed over the full evalu-
ation dataset, which significantly increases runtime
and computational demands – often making the en-
tire process impractical on consumer hardware. In
contrast, Mergenetic supports sub-sampled eval-
uation and advanced fitness estimation techniques
(e.g., IRT-based estimators (Polo et al., 2024; Men-
cattini et al., 2025)), dramatically reducing evalua-
tion cost and enabling high-quality merging to be
performed efficiently, even on a single GPU.

3 Design and guiding principles

The design of Mergenetic reflects our goal of sup-
porting evolutionary model-merging experiments
on consumer hardware. We outline the guiding
principles that drove our design decisions before
diving into key modules and functionalities in §4.

Research-Oriented A central motivation for
Mergenetic is to enable researchers to easily ex-
plore and compare different evolutionary algo-
rithms, merging strategies, and optimization ob-
jectives. Rather than locking users into a fixed rou-
tine, Mergenetic supports a flexible mix of merg-
ing methods (e.g., TIES, DARE, SLERP from
MergeKit (Goddard et al., 2024)), evolutionary
algorithms (e.g., GA, NSGA-II, DE from PyMoo
(Blank and Deb, 2020)), and evaluation backends
(e.g., LM-Eval-Harness or user-defined). This mod-
ularity supports systematic experimentation, such
as comparing single- vs. multi-objective merges
or testing different data sampling strategies – and
allows defining custom objectives.

User-Friendly To democratize model merging
for researchers and practitioners with standard
GPU setups, Mergenetic is designed to be both
configuration-centric and user-friendly. Users can
define merges, tasks, algorithms, and evaluators us-
ing simple YAML files, a command-line interface,
or an interactive GUI — minimizing the engineer-
ing overhead typical of large-scale experiments.
The library is optimized for consumer GPUs by sup-
porting approximate evaluation methods (e.g., IRT-

574

based estimators), dataset sub-sampling, and partial
model loading. It integrates seamlessly with LM-
Eval-Harness, supporting more than 8000 tasks
and metrics already defined in the library (e.g.,
GSM8K and ARC), while also making it easy to
plug in custom datasets and evaluations for fitness
computation. Together, these features enable mean-
ingful evolutionary merging on a single GPU, low-
ering the barrier for smaller research groups and
individual practitioners.

4 Mergenetic

Modules and Functionalities The implementa-
tion relies on MergeKit (Goddard et al., 2024) for
merging the models, PyMoo (Blank and Deb, 2020)
for optimizing the objective function through evo-
lutionary algorithms, and LM-Eval-Harness (Gao
et al., 2024) for implementing some of the fitness
functions. In table 2 we outline the supported merg-
ing methods, while in table 5 we outline the cur-
rently available evolutionary algorithms.

The Mergenetic library is divided into distinct
modules that reflect the core stages of evolutionary
model merging: (i) defining the workflow (Python
API, CLI, GUI), (ii) performing the merge of the
models (Merger), (iii) formulating the optimiza-
tion problem (Optimization) as a MergingProblem ,
(iv) evaluating merged models (Evaluator), and
(v) orchestrating the evolution loop (Searcher).
Below, we briefly describe each module and link it
to the broader system design.

4.1 Python API, CLI, and GUI
Python API. Figure 2 provides an example us-
age of the API. The Searcher and Problem classes
form the core of the Python API. Users can instanti-
ate an optimization problem (e.g., merging multiple
language models), select an algorithm from PyMoo,
and call searcher.search() to launch the evolu-
tionary procedure. A typical workflow involves:

1. Defining evaluation datasets and relevant per-
formance metrics through an Evaluator .

2. Instantiating a Merger to specify how weights
are combined.

3. Passing these to a MergingProblem class, de-
scribing the evolutionary search space and the
experiment’s objectives.

4. Choosing a GeneticAlgorithm (e.g., NSGA-
II, GA, DE) from PyMoo.

5. Running the search through the Searcher , op-
tionally calling .test() on the best solutions.

CLI. For users who prefer a command-line
approach without manually writing scripts, the
Mergenetic CLI is invoked via:

python mergenetic.py –eval-method <lm-
eval|custom> –merge-type <single|multi>

Internally, it launches an interactive wizard to guide
users through selecting models, tasks, algorithms,
and merging methods. The CLI can handle four
main modes: single- or multi-language merges,
each with either LM-Eval-Harness or custom eval-
uations. By abstracting away many details, the CLI
lets users prototype merges quickly with no code.

GUI. A Gradio5-based (Abid et al., 2019) graph-
ical interface provides a further layer of accessibil-
ity, especially for non-technical users or demonstra-
tion purposes (See Fig. 3). It reuses the same core
configuration concepts but wraps them in a step-
by-step wizard: (1) load base model(s), (2) specify
tasks/languages, (3) set evolutionary parameters,
and (4) run merging with real-time logs. The GUI
allows merging without coding.

4.2 Core components

The core components are as follows.

4.2.1 Merger

The Merger module handles the core weight-
combination logic by interfacing with MergeKit.
Each merger class (e.g., SlerpMerger ,
TiesDareMerger , TaskArithmeticMerger) gen-

erates a YAML configuration specifying the base
checkpoints, interpolation method, and merge
coefficients. This configuration is passed to
MergeKit, which performs the actual merging
and produces a new model checkpoint. The
merger supports both standard and multi-model
merges, including advanced strategies like TIES
combined with DARE (Yadav et al., 2023; Yu
et al., 2024). Additionally, Mergenetic manages
GPU memory during the evolutionary search,
helping avoid out-of-memory errors. During
optimization, the evolutionary algorithm proposes
weight combinations, which the merger translates
into actual models ready for evaluation.

5https://github.com/gradio-app/gradio

575

https://github.com/gradio-app/gradio

Figure 3: Screenshot of the Gradio-based GUI described in section 4.1. The user is guided through a step-by-step
process to define every ingredient of the evolutionary merging pipeline.

4.2.2 Optimization

At the core of Mergenetic, the optimization mod-
ule casts model merging as a black-box optimiza-
tion problem. The decision variables correspond to
the targeted parameters from the merging configu-
ration file (the genotype), such as the interpolation
or pruning coefficients. Objective functions define
the fitness criteria to be optimized, such as accu-
racy, perplexity, or other task-specific metrics.

The MergingProblem class defines how to:
(i) Convert a genotype to a merged model (by call-
ing the Merger). (ii) Evaluate the merged model
via an Evaluator . (iii) Return the resulting fitness
or multi-objective scores to the algorithm.

Through PyMoo (Blank and Deb, 2020), we sup-
port both single- and multi-objective methods.
Single-objective approaches optimize one metric
(e.g., math accuracy). Multi-objective strategies
balance multiple metrics, e.g., math accuracy and
general fluency, and find a Pareto front of suitable
models, allowing the final user to choose based on
their preference of the individual metrics.

4.2.3 Evaluator

Evaluators compute a merged model’s performance
on the chosen task(s). In Mergenetic, they appear
both as direct evaluators (e.g., running on a small

dataset) or as IRT-based estimators using anchors
(Mencattini et al., 2025). In particular, we highlight
two categories of Evaluators:

LM-Eval-Harness Evaluators. Mergenetic
can natively call out to the LM-Eval-Harness (Gao
et al., 2024) library, passing the merged checkpoint
and a chosen benchmark (e.g., ARC, GSM8K).
This approach covers many standard tasks and
yields consistent comparisons. However, it
can be relatively expensive if one repeatedly
evaluates large datasets on many candidate
merges. To offset this problem, Mergenetic wraps
LM-Eval-Harness and allows explicit subsamples
through the plug-and-play ConfigPE , which
allows subsampling without the need to instantiate
a new LM-Eval-Harness config file.

Custom Evaluators. Users can alternatively de-
fine their own logic for computing correctness—
e.g., MultilingualMathFGEvaluator that checks
whether the extracted answer is correct and in the
target language. Or a MultipleChoiceEvaluator

that compares the chosen letter (A, B, C, D) to
the ground truth. These evaluators easily allow ad-
vanced users to combine partial correctness checks
with domain constraints (e.g., “the predicted chem-
ical formula must be balanced”).

576

Italian English German Dutch
0.3

0.4

0.5

0.6

0.7

0.8

A
cc

u
ra

cy

MERGE3

0.69

MERGE3

0.79

MERGE3

0.72

MERGE3

0.69

IT

0.61

EN

0.75

DE

0.61

NL

0.50

Figure 4: Evolving a multi-lingual model spanning Ital-
ian, English, German and Dutch.

4.2.4 Searcher
Finally, the Searcher orchestrates the evolutionary
loop: it begins with the initialization of a popu-
lation of random genotypes (weight vectors), fol-
lowed by merging/evaluation, where each geno-
type is merged into a checkpoint and scored on
user-specified tasks/datasets. Then comes selec-
tion/variation, where parent genotypes are chosen
based on fitness and modified via crossover and
mutation to produce children. Steps 2 and 3 re-
peat for T generations in the main loop. There-
fore, the Searcher class essentially wraps all
these elements (Problem , Merger , Evaluator ,
and PyMoo’s Algorithm) in an easy-to-use API.

During the search process, intermediate results
(population genotypes, partial solutions, logs) are
stored in CSV or JSON files, facilitating real-time
monitoring. At completion, test() re-merges the
best solutions and evaluates them on an unseen test
set to quantify final performance.

5 Case Studies

To demonstrate the capabilities of the Mergenetic
library, we reproduce here two evolutionary model
merging pipelines: MERGE3 (Mencattini et al.,
2025) and EvoLLM-JP (Akiba et al., 2025). For an
in-depth analysis of the performance improvements
provided by evolutionary model merging over stan-
dard merging strategies, we refer the reader to the
original works by Akiba et al. (2025) and Mencat-
tini et al. (2025). Additionally, for a detailed treat-
ment of estimator-based fitness approximations and
their effectiveness, we refer to the estimator analy-
sis in Mencattini et al. (2025).

5.1 Evolving a multi-lingual model

We demonstrate how Mergenetic can be used to
merge individually fine-tuned models for four lan-
guages — Italian, English, German, and Dutch —

Sh
iS

A-G
am

m
a-

7B

Arit
hm

o2
-7

B

Abel-
7B

Evo
LLM

-J
P-7

B 10
0

0.0

0.1

0.2

0.3

0.4

A
cc

u
ra

cy

0.01
0.04

0.24

0.42

Figure 5: Cross-lingual transfer of math solving capa-
bilities from English to Japanese.

into a single multilingual model. This setup formu-
lates the objective function as explicitly multi-task,
assigning one evaluation metric per language to
promote balanced cross-lingual performance. De-
tails on the specific models used per language are
provided in Appendix A.2. As shown in fig. 4, the
merged model consistently outperforms each of its
language-specific constituents, achieving up to a
19% accuracy gain on the ARC-Challenge bench-
mark (Clark et al., 2018). Notably, it surpasses
all endpoints across the board, highlighting the ef-
fectiveness of evolutionary merging in facilitating
positive knowledge transfer across languages.

5.2 Cross-lingual transfer

To showcase the ability of Mergenetic to sup-
port cross-lingual skill transfer, we merge a math-
specialized English model with a Japanese fine-
tuned version of Mistral-7B (Jiang et al., 2023),
and evaluate the result on the Japanese translation
of the GSM8K dataset (Cobbe et al., 2021). This
experiment follows the general setup proposed by
Akiba et al. (2025), using a subset of 100 samples
for the fitness evaluation instead of the full dataset.
As shown in fig. 5, the merged model achieves a
10-20% accuracy improvement over each of its indi-
vidual components, demonstrating effective cross-
lingual transfer enabled by evolutionary merging.

5.3 Technical Analysis

We conducted additional experiments to assess the
practicality of evolutionary model merging using
Mergenetic on different GPU models. Specifi-
cally, we measured evaluation and merging run-
times across three common GPUs: NVIDIA 3090,
4090, and V100, using Mistral-7B (Jiang et al.,
2023) in 4-bit precision with SLERP on 10 exam-
ples. The results, summarized in Table 3, show

577

that Mergenetic achieves practical runtimes even
on consumer architectures. While the NVIDIA
4090 yields the fastest evaluation (45s) and merg-
ing (160s), both the 3090 and V100 maintain feasi-
ble execution times, underscoring accessibility for
users with varying hardware.

Table 3: Evaluation and merge times, in seconds, across
different GPU models. We merged Mistral-7B fine-
tuned models, using 10 samples per fitness computation.

GPU Model Eval Time (s) Merge Time (s)

NVIDIA 3090 24GB 65 135
NVIDIA 4090 24GB 45 160
NVIDIA V100 32GB 80 220

Table 4: Throughput in evaluated models per hour for
different sample sizes per fitness computation on GSM8K.
A single NVIDIA 4090 with 24GB of VRAM was used.

Sample size 1000 100 50 30 20

Throughput (Models/Hour) 0.67 8.33 14.17 16.67 17.08

To evaluate scalability, we also assessed the
throughput of model evaluation under different
dataset sizes using a 4090 with 24GB VRAM. For
full evaluations on 1000 samples, throughput was
0.67 complete-model-evaluations per hour, while
smaller sample sizes yielded up to 17 models/hour.
While more extensive studies with both larger mod-
els (e.g., 70B parameters) and lower-end GPUs
should be analyzed, these findings support the use
of Mergenetic for efficient experimentation even
on single consumer-grade GPUs, making evolution-
ary merging widely accessible.

6 Conclusions

Mergenetic bridges the gap between cutting-edge
evolutionary model merging and practical usabil-
ity on consumer hardware. By combining flexi-
ble merging strategies, diverse evolutionary algo-
rithms, and lightweight fitness approximators, it
empowers researchers and practitioners to explore
high-quality model compositions without requiring
large-scale infrastructure. While more extensive
studies that include both larger models and lower-
tier GPUs are still warranted, our current results
already demonstrate that Mergenetic enables effi-
cient experimentation even on a single consumer-
grade GPU, making evolutionary merging broadly
accessible. Through its Python API, CLI, and GUI,

Mergenetic supports both systematic experimen-
tation and user-friendly workflows. We hope the
library will serve as a stepping stone for future
research in multilingual, multi-task, and efficient
evolutionary model merging, and invite the com-
munity to build upon and extend its capabilities.

Limitations

While Mergenetic significantly lowers the entry
barrier for evolutionary model merging, several
limitations remain:

Dependence on Existing Fine-Tuned Models.
Model merging requires access to pre-trained or
fine-tuned base models with relevant capabilities
(e.g., math reasoning, language-specific fluency).
As such, the technique currently cannot be directly
applied to extremely low-resource languages or do-
mains where such models are unavailable. This lim-
its its immediate applicability in truly zero-resource
settings. Future work could explore integrating
lightweight fine-tuning or retrieval-based augmen-
tation prior to merging to alleviate this dependency.

Hardware Requirements. Although we de-
signed Mergenetic for consumer-grade GPUs, it
still requires relatively high-tier hardware (e.g.,
NVIDIA RTX 2080 or better) due to the size of
language models involved and the need to load and
evaluate them during evolution. Most laptops or
low-memory GPUs may not have sufficient VRAM
to support repeated merging and evaluation steps.
We see this as a broader limitation of current LLM
infrastructure and hope that advances in model
quantization, sparse evaluation, and efficient load-
ing techniques will further democratize access to
frontier AI tools like Mergenetic.

LLM-Centric Design. While the foundational
methods behind model merging and evolution-
ary optimization are, in theory, applicable across
various domains, the current implementation of
Mergenetic is limited to large language models
(LLMs). This constraint primarily arises from its
dependence on MergeKit (Goddard et al., 2024)
as the core merging backend, which is specifically
tailored for transformer-based LLMs and lacks ro-
bust support for models in other modalities such
as vision or speech. Consequently, Mergenetic
inherits this modality-specific restriction. Future
extensions could consider adapting or substituting
the backend to enable broader applicability across
diverse model architectures and domains.

578

References

Abubakar Abid, Ali Abdalla, Ali Abid, Dawood Khan,
Abdulrahman Alfozan, and James Zou. 2019. Gradio:
Hassle-free sharing and testing of ml models in the
wild. arXiv preprint arXiv:1906.02569.

Samuel Ainsworth, Jonathan Hayase, and Siddhartha
Srinivasa. 2022. Git Re-Basin: Merging models mod-
ulo permutation symmetries. In The Eleventh Inter-
national Conference on Learning Representations.

Takuya Akiba, Makoto Shing, Yujin Tang, Qi Sun, and
David Ha. 2025. Evolutionary optimization of model
merging recipes. Nature Machine Intelligence.

J. Blank and K. Deb. 2020. pymoo: Multi-objective op-
timization in python. IEEE Access, 8:89497–89509.

Thomas Bäck and Hans-Paul Schwefel. 1993. An
overview of evolutionary algorithms for parameter
optimization. Evolutionary Computation, 1(1):1–23.

Leshem Choshen, Elad Venezian, Noam Slonim, and
Yoav Katz. 2022. Fusing finetuned models for better
pretraining. arXiv preprint arXiv:2204.03044.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot,
Ashish Sabharwal, Carissa Schoenick, and Oyvind
Tafjord. 2018. Think you have solved question an-
swering? try arc, the AI2 reasoning challenge. CoRR,
abs/1803.05457.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, et al. 2021. Training verifiers to solve math
word problems. arXiv preprint arXiv:2110.14168.

Donato Crisostomi, Marco Fumero, Daniele Baieri, Flo-
rian Bernard, and Emanuele Rodolà. 2025. c2m3:
Cycle-consistent multi-model merging. In Advances
in Neural Information Processing Systems, vol-
ume 37.

Dipankar Dasgupta and Zbigniew Michalewicz. 1997.
Evolutionary algorithmsan overview. Evolutionary
algorithms in engineering applications, pages 3–28.

MohammadReza Davari and Eugene Belilovsky. 2025.
Model breadcrumbs: Scaling multi-task model merg-
ing with sparse masks. In European Conference on
Computer Vision, pages 270–287. Springer.

K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. 2002a.
A fast and elitist multiobjective genetic algorithm:
Nsga-ii. IEEE Transactions on Evolutionary Compu-
tation, 6(2):182–197.

K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. 2002b.
A fast and elitist multiobjective genetic algorithm:
Nsga-ii. IEEE Transactions on Evolutionary Compu-
tation, 6(2):182–197.

Kalyanmoy Deb, Karthik Sindhya, and Tatsuya Okabe.
2007. Self-adaptive simulated binary crossover for
real-parameter optimization. In Proceedings of the
9th Annual Conference on Genetic and Evolution-
ary Computation, GECCO ’07, page 11871194, New
York, NY, USA. Association for Computing Machin-
ery.

A.E. Eiben and J.E. Smith. 2015. Introduction to Evolu-
tionary Computing. Springer.

Clémentine Fourrier, Nathan Habib, Alina Lozovskaya,
Konrad Szafer, and Thomas Wolf. 2024. Open
llm leaderboard v2. https://huggingface.
co/spaces/open-llm-leaderboard/open_llm_
leaderboard.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman,
Sid Black, Anthony DiPofi, Charles Foster, Laurence
Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li,
Kyle McDonell, Niklas Muennighoff, Chris Ociepa,
Jason Phang, Laria Reynolds, Hailey Schoelkopf,
Aviya Skowron, Lintang Sutawika, Eric Tang, An-
ish Thite, Ben Wang, Kevin Wang, and Andy Zou.
2024. A framework for few-shot language model
evaluation.

Antonio Andrea Gargiulo, Donato Crisostomi,
Maria Sofia Bucarelli, Simone Scardapane, Fabrizio
Silvestri, and Emanuele Rodolà. 2025. Task singular
vectors: Reducing task interference in model
merging. Preprint, arXiv:2412.00081.

Charles Goddard, Shamane Siriwardhana, Malikeh
Ehghaghi, Luke Meyers, Vladimir Karpukhin, Brian
Benedict, Mark McQuade, and Jacob Solawetz. 2024.
Arcee’s MergeKit: A toolkit for merging large lan-
guage models. In Proceedings of the 2024 Confer-
ence on Empirical Methods in Natural Language
Processing: Industry Track, pages 477–485, Miami,
Florida, US. Association for Computational Linguis-
tics.

N. Hansen. 2023. The cma evolution strategy: A tuto-
rial. arXiv preprint arXiv:1604.00772.

G. Ilharco, M.T. Ribeiro, M. Wortsman, S. Gururan-
gan, L. Schmidt, H. Hajishirzi, and A. Farhadi. 2023.
Editing models with task arithmetic. arXiv preprint
arXiv:2212.04089.

Gabriel Ilharco, Marco Tulio Ribeiro, Mitchell Worts-
man, Suchin Gururangan, Ludwig Schmidt, Han-
naneh Hajishirzi, and Ali Farhadi. 2022. Editing
models with task arithmetic. The Eleventh Interna-
tional Conference on Learning Representations.

A.Q. Jiang, A. Sablayrolles, A. Mensch, C. Bam-
ford, D.S. Chaplot, D. de las Casas, F. Bressand,
G. Lengyel, G. Lample, L. Saulnier, L.R. Lavaud, M.-
A. Lachaux, P. Stock, T. Le Scao, T. Lavril, T. Wang,
T. Lacroix, and W. El Sayed. 2023. Mistral 7b. arXiv
preprint arXiv:2310.06825.

A. Joulin, E. Grave, P. Bojanowski, and T. Mikolov.
2016. Bag of tricks for efficient text classification.
arXiv ă preprint arXiv:1607.01759.

579

https://doi.org/10.1038/s42256-024-00975-8
https://doi.org/10.1038/s42256-024-00975-8
https://doi.org/10.1162/evco.1993.1.1.1
https://doi.org/10.1162/evco.1993.1.1.1
https://doi.org/10.1162/evco.1993.1.1.1
https://arxiv.org/abs/1803.05457
https://arxiv.org/abs/1803.05457
https://doi.org/10.1109/4235.996017
https://doi.org/10.1109/4235.996017
https://doi.org/10.1109/4235.996017
https://doi.org/10.1109/4235.996017
https://doi.org/10.1145/1276958.1277190
https://doi.org/10.1145/1276958.1277190
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard
https://doi.org/10.5281/zenodo.12608602
https://doi.org/10.5281/zenodo.12608602
https://arxiv.org/abs/2412.00081
https://arxiv.org/abs/2412.00081
https://arxiv.org/abs/2412.00081
https://doi.org/10.18653/v1/2024.emnlp-industry.36
https://doi.org/10.18653/v1/2024.emnlp-industry.36
https://arxiv.org/abs/1604.00772
https://arxiv.org/abs/1604.00772
https://arxiv.org/abs/2212.04089
https://arxiv.org/abs/2310.06825

Michael Matena and Colin Raffel. Merging models
with fisher-weighted averaging.

Tommaso Mencattini, Adrian Robert Minut, Donato
Crisostomi, Andrea Santilli, and Emanuele Rodolà.
2025. Merge3: Efficient evolutionary merging on
consumer-grade gpus. Preprint, arXiv:2502.10436.

Fidel A Guerrero Peña, Heitor Rapela Medeiros,
Thomas Dubail, Masih Aminbeidokhti, Eric Granger,
and Marco Pedersoli. 2023. Re-basin via implicit
sinkhorn differentiation. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 20237–20246.

Alain Pétrowski and Sana Ben-Hamida. 2017. Evolu-
tionary algorithms. John Wiley & Sons.

Felipe Maia Polo, Lucas Weber, Leshem Choshen,
Yuekai Sun, Gongjun Xu, and Mikhail Yurochkin.
2024. tinybenchmarks: evaluating llms with fewer
examples. In Forty-first International Conference on
Machine Learning.

Esteban Real, Alok Aggarwal, Yanping Huang, and
Quoc V Le. 2019. Regularized evolution for image
classifier architecture search. In Proceedings of the
aaai conference on artificial intelligence, volume 33,
pages 4780–4789.

Freda Shi, Mirac Suzgun, Markus Freitag, Xuezhi Wang,
Suraj Srivats, Soroush Vosoughi, Hyung Won Chung,
Yi Tay, Sebastian Ruder, Denny Zhou, et al. 2022.
Language models are multilingual chain-of-thought
reasoners. arXiv preprint arXiv:2210.03057.

George Stoica, Daniel Bolya, Jakob Brandt Bjorner,
Pratik Ramesh, Taylor Hearn, and Judy Hoffman.
Zipit! merging models from different tasks without
training. In The Twelfth International Conference on
Learning Representations.

Klaudia Thellmann, Bernhard Stadler, Michael Fromm,
Jasper Schulze Buschhoff, Alex Jude, Fabio Barth,
Johannes Leveling, Nicolas Flores-Herr, Joachim
Köhler, René Jäkel, and Mehdi Ali. 2024. Towards
cross-lingual llm evaluation for european languages.
Preprint, arXiv:2410.08928.

Amala Mary Vincent and P Jidesh. 2023. An improved
hyperparameter optimization framework for automl
systems using evolutionary algorithms. Scientific
Reports, 13(1):4737.

Ke Wang, Nikolaos Dimitriadis, Guillermo Ortiz-
Jimenez, François Fleuret, and Pascal Frossard. 2024.
Localizing task information for improved model
merging and compression. In Proceedings of the
41st International Conference on Machine Learning,
volume 235 of Proceedings of Machine Learning
Research, pages 50268–50287. PMLR.

Mitchell Wortsman, Gabriel Ilharco, Samir Ya Gadre,
Rebecca Roelofs, Raphael Gontijo-Lopes, Ari S Mor-
cos, Hongseok Namkoong, Ali Farhadi, Yair Car-
mon, Simon Kornblith, and Ludwig Schmidt. 2022.

Model soups: averaging weights of multiple fine-
tuned models improves accuracy without increasing
inference time. In Proceedings of the 39th Interna-
tional Conference on Machine Learning, volume 162
of Proceedings of Machine Learning Research, pages
23965–23998. PMLR.

Prateek Yadav, Derek Tam, Leshem Choshen, Colin A
Raffel, and Mohit Bansal. 2023. Ties-merging: Re-
solving interference when merging models. In Ad-
vances in Neural Information Processing Systems,
volume 36, pages 7093–7115. Curran Associates,
Inc.

Enneng Yang, Li Shen, Guibing Guo, Xingwei Wang,
Xiaochun Cao, Jie Zhang, and Dacheng Tao. 2024.
Model merging in llms, mllms, and beyond: Meth-
ods, theories, applications and opportunities. arXiv
preprint arXiv:2408.07666.

Le Yu, Bowen Yu, Haiyang Yu, Fei Huang, and Yongbin
Li. 2024. Language models are super mario: Absorb-
ing abilities from homologous models as a free lunch.
In Proceedings of the 41st International Conference
on Machine Learning, volume 235 of Proceedings
of Machine Learning Research, pages 57755–57775.
PMLR.

Luca Zhou, Daniele Solombrino, Donato Crisos-
tomi, Maria Sofia Bucarelli, Fabrizio Silvestri, and
Emanuele Rodolà. 2024. Atm: Improving model
merging by alternating tuning and merging. arXiv
preprint arXiv:2411.03055.

580

https://arxiv.org/abs/2502.10436
https://arxiv.org/abs/2502.10436
https://arxiv.org/abs/2410.08928
https://arxiv.org/abs/2410.08928
https://proceedings.mlr.press/v235/wang24k.html
https://proceedings.mlr.press/v235/wang24k.html
https://proceedings.mlr.press/v162/wortsman22a.html
https://proceedings.mlr.press/v162/wortsman22a.html
https://proceedings.mlr.press/v162/wortsman22a.html
https://proceedings.mlr.press/v235/yu24p.html
https://proceedings.mlr.press/v235/yu24p.html

A Additional Details

A.1 Cross-Lingual Case Study Details

For the cross-lingual case study, we conduct evolu-
tionary search on the Japanese subset of the MGSM
dataset (Shi et al., 2022), a multilingual extension
of GSM8K (Cobbe et al., 2021). The final merged
model is evaluated on the MGSM test set, following
the evaluation protocol of Akiba et al. (2025). Un-
like their setup, which used 1069 search datapoints
(the remaining part of the GSM8K test set that was
not included in MGSM), we use only a subset of
100 examples for computational efficiency. Our
approach employs a single-objective evolutionary
algorithm based on a Genetic Algorithm (Dasgupta
and Michalewicz, 1997), incorporating a Simulated
Binary Crossover (SBX) operator (Deb et al., 2007)
for recombination and a Polynomial Mutation op-
erator (Deb et al., 2007) for exploration. We set
the population size to 25 and run the algorithm for
7 generations. Fitness and evaluation metrics are
computed by extracting the final numeric answer
using a regular expression and verifying both the
mathematical correctness and the linguistic accu-
racy of each response. Language identification is
performed using the method described in (Joulin
et al., 2016). Only responses that are both mathe-
matically and linguistically correct are considered
valid. The models evaluated in this experiment in-
clude Arithmo2-Mistral-7B, Abel-7B-002, and
shisa-gamma-7b-v1.

A.2 Multilingual case study details

For the multilingual case study, we perform evo-
lutionary model merging across four languages —
Italian, Dutch, German, and English — using the
translated ARC dataset from the Hugging Face
repository (Thellmann et al., 2024)6. We employ
a multi-objective optimization setup with NSGA-
II (Deb et al., 2002b), configuring the evolutionary
process with a population size of 25 and 7 iterations.
As the merging strategy, we use a combination of
TIES and DARE. The fitness and test evaluations
are performed by extracting the final answer choice
(A, B, C, or D) from the model’s output using a
regular expression. For each language, we use a
reduced dataset of 20 translated examples from
ARC to compute fitness scores, keeping the pro-
cess efficient and GPU-friendly. The models used
in this experiment are Mistral-Ita-7B, GEITje-

6https://huggingface.co/openGPT-X/arcx

7B-ultra, leo-mistral-hessianai-7B, and the
base model is Mistral-7B-v0.1.

A.3 Supported evolutionary algorithms
Table 5 lists all the evolutionary algorithms
provided by PyMoo and hence supported in
Mergenetic, stating whether they are single- or
multi-objective and if they allow constraints to be
defined, along with a brief description.

A.4 Performance Estimator
To reduce the computational cost associated with
evaluating the fitness of candidate models during
evolutionary merging, the Mergenetic library sup-
ports estimator-based approximations inspired by
Mencattini et al. (2025) and Polo et al. (2024).
These methods allow us to estimate model per-
formance using a reduced subset of the evaluation
dataset, significantly accelerating the evolution pro-
cess without sacrificing accuracy.

In particular, Mergenetic provides implementa-
tions of both standard and model merging-specific
IRT-based estimators, which leverage latent abil-
ity inference to approximate full-dataset correct-
ness. These estimators vary in their assumptions
and complexity, offering a trade-off between com-
putational efficiency and estimation fidelity.

Table 6 provides an overview of the currently
supported estimators, including a brief description
and a qualitative rating of their performance.

A.5 License
The library is licensed under Apache 2.0. This
means that it can be freely used, modified, and
redistributed by anyone, including for commer-
cial purposes. The license is designed to pro-
mote widespread adoption by offering a permis-
sive legal framework that imposes minimal re-
strictions on end users. Developers are allowed
to modify the source code and distribute deriva-
tive works under different terms, provided that
the original license and copyright notice are re-
tained. Mergenetic builds upon two key depen-
dencies: PyMoo and MergeKit. The former is dis-
tributed under the same Apache 2.0 license as
Mergenetic, ensuring compatibility and permis-
sive use. However, MergeKit introduces additional
licensing constraints in versions beyond v0.1.0.
Specifically, it adopts a Business Source License,
which restricts production use based on organiza-
tional scale and revenue. Users intending to deploy
Mergenetic for commercial purposes are advised

581

https://huggingface.co/openGPT-X/arcx

Algorithm Class Obj. Constr. Description

Genetic Algorithm GA single X Customizable evol. operators for broad problem categories
Differential Evol. DE single X Variants for continuous global optimization
BRKGA BRKGA single X Advanced variable encoding for combinatorial opt.
Nelder Mead NelderMead single X Point-based algorithm using simplex operations
Pattern Search PatternSearch single X Iterative approach with exploration patterns
CMAES CMAES single Model-based sampling from dynamic normal distribution
Evol. Strategy ES single Real-valued optimization strategy
SRES SRES single X ES with stochastic ranking constraint handling
ISRES ISRES single X Improved SRES for dependent variables
NSGA-II NSGA2 multi X Non-dominated sorting and crowding
R-NSGA-II RNSGA2 multi X NSGA-II with reference points
NSGA-III NSGA3 many X NSGA-II for many-objective problems
U-NSGA-III UNSGA3 many X NSGA-III optimized for fewer objectives
R-NSGA-III RNSGA3 many X NSGA-III with aspiration points
MOEAD MOEAD many Multi-objective optimization via decomposition
AGE-MOEA AGEMOEA many Estimates Pareto-front shape instead of crowding
C-TAEA CTAEA many X Sophisticated constraint-handling for many objectives
SMS-EMOA CTAEA many X Uses hypervolume during environmental survival
RVEA RVEA many X Reference direction with angle-penalized metric

Table 5: Supported Optimization Algorithms and their description.

Estimator Description Performance

Random Baseline estimator using random sample correctness.
Simple but noisy and unreliable.

??

P-IRT Standard Item Response Theory estimator, uses sub-
set to estimate ability, not tailored for merging.

? ? ?

GP-IRT Generalized P-IRT with better smoothing but still not
designed for merging.

? ? ?

MP-IRT MERGE3’s merged-performance IRT estimator as-
suming linear combination of abilities.

? ? ? ?

GMP-IRT Generalized version of MP-IRT, combines predic-
tions and observations with learned weights.

? ? ? ?

Full Dataset Ground truth performance by running evaluation on
the full dataset.

? ? ? ? ?

Table 6: Comparison of different performance estimators.

to review these terms carefully and install a ver-
sion of MergeKit that aligns with their intended
usage scenario. If unrestricted commercial use is
required, it is recommended to use version 0.1.0
of MergeKit, which remains under the Apache 2.0
license, or to contact the licensor for alternative
licensing arrangements.

582

