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Abstract

We introduce GEC-METRICS, a library for us-
ing and developing grammatical error correc-
tion (GEC) evaluation metrics through a unified
interface. Our library enables fair system com-
parisons by ensuring that everyone conducts
evaluations using a consistent implementation.
Moreover, it is designed with a strong focus
on API usage, making it highly extensible. It
also includes meta-evaluation functionalities
and provides analysis and visualization scripts,
contributing to developing GEC evaluation met-
rics. Our code is released under the MIT li-
cense1 and is also distributed as an installable
package2. The video is available on YouTube3.

1 Introduction

Grammatical error correction (GEC) is a task
that aims to automatically correct grammatical
and surface-level errors, e.g., spelling, tense, ex-
pression, and so on (Bryant et al., 2023). GEC
serves as a writing support and is being success-
fully applied in commercial applications such as
Grammarly. Therefore, many GEC methods have
been proposed, such as sequence-to-sequence mod-
els (Katsumata and Komachi, 2020; Rothe et al.,
2021), sequence labeling (Awasthi et al., 2019;
Omelianchuk et al., 2020), and language model-
based approaches (Kaneko and Okazaki, 2023;
Loem et al., 2023). To evaluate their performance,
some automatic GEC evaluation methods have
been proposed (see Section 2.1). These evaluation
methods are expected to exhibit a high correlation
with human judgments, and their development has
become an NLP task in itself.

Although various automatic GEC evaluation
methods have been proposed, there is no common
library that includes many of the latest studies, mak-
ing it difficult to compare their performance. In-

1§ : https://github.com/gotutiyan/gec-metrics
23 : pip install gec-metrics
3Å : https://youtu.be/cor6dkN6EfI
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Figure 1: System overview of GEC-METRICS. The
sources are sentences containing grammatical errors,
the hypotheses are their corrected version, and the ref-
erences are human-corrected sentences. Metric classes
support both corpus-level and sentence-level evaluation.
The MetaEval classes conducts meta-evaluation of met-
rics, by calculating correlations with human evaluation.
These classes also provide analysis and visualize scripts
which are useful especially for developers.

deed, this has caused several critical issues, such
as unfair evaluation, high reproduction costs, and
limited extensibility (see Section 3). In fact, most
baseline scores are cited from reported results in
previous studies, which makes it difficult to repro-
duce the original scores and to compare methods
on new datasets or settings (Maeda et al., 2022).

While GEC models are being unified through
frameworks, UnifiedGEC (Zhao et al., 2025), GEC
evaluation metrics remain fragmented and lack a
unified implementation, making consistent evalua-
tion difficult. Model development and evaluation
are inherently interconnected. For instance, the
Hugging Face Transformers (Wolf et al., 2020)
has unified various language models into a sin-
gle framework, while the Hugging Face Evalu-
ate (Von Werra et al., 2022) has similarly con-
solidated evaluation metrics into a unified library,
which has further accelerated and simplified model
development. In the same way, a unified framework
for the GEC evaluation metric is highly desired.

We introduce GEC-METRICS, a unified frame-
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Figure 2: Examples of input/output for GEC evaluation.

work library that supports a variety of GEC evalu-
ation metrics. It provides a unified interface with
many useful features for comparison and develop-
ing new evaluation methods. Figure 1 shows the
workflow overview of GEC-METRICS. In the fig-
ure, each module, i.e., “Metric class” and “MetaE-
val class”, is easily extensible. In addition, we
carefully designed GEC-METRICS to ensure trans-
parency and reproducibility. Furthermore, we pro-
vide a meta-evaluation interface that simplifies the
development of new metrics. Our meta-evaluation
experiments using the SEEDA (Kobayashi et al.,
2024b) dataset show that GEC-METRICS can effi-
ciently handle various evaluation metrics through a
unified interface.

2 Background

2.1 Preliminaries for GEC Evaluation Metrics
Figure 2 shows the overview of the GEC task
and its evaluation. The source S is a sentence
containing grammatical errors, and hypothesis H
is its corrected version made by a GEC model:
H = GECModel(S). Basically, we also have one
or more references R, which is a human-corrected
sentence, for the evaluation. The goal of the GEC
evaluation is to assess the quality of the hypothe-
sis. The evaluation metrics are broadly categorized
into reference-based and reference-free metrics, de-
pending on whether they require references R.

Score =

{
Metric(H|S,R) (Ref.-based)
Metric(H|S) (Ref.-free)

(1)

Edit-level Metrics The reference-based metrics
is often conducted by an edit-level evaluation. The
GEC field often handles sentence rewriting by de-
composing into the granular level of editing. By
using automatic edit extraction method such as ER-
RANT (Felice et al., 2016; Bryant et al., 2017), we
extract two edit sets: hypothesis edit set Hedit by
comparing S and H , and reference edit set Redit

from S and R. In Figure 3, you can see there are
two edits in each of Hedit and Redit. Then, we

He goes to the school .
Reference:

He go to the school .
Source:

He goes to a school .
Hypothesis:

Edit-level
H_edits

[go → goes]

R_edits
[the → ]

[the → a]

n-gram-level (n=1)
Src

He
to

school
a
HypRef

the

goes

Sentence-level
Src

Hyp

LLM,
BERT,

etc.

Reference-based metrics

Reference-free metrics

TD

TK
OD UD

OIUI TI Group
name

Figure 3: Categories of the current GEC metrics. The
edit-level metrics considers the overlap of edits. The n-
gram level metrics categorize n-gram into seven groups
and use the n-gram count for each group. The sentence-
level metrics employ neural models and estimate score
without references.

set the weight we for each edit e, and calculate
weighted scores: precision, recall, and Fβ score 4

by considering the intersection between Hedit and
Redit: I = (Hedit ∩ Redit) in Equation (2). For
instance, a single edit [go → goes] is in both Hedit

and Redit, thus I = {[go → goes]} in Figure 3.

Precision =

∑
e∈I we∑

e∈Hedit
we

,Recall =
∑

e∈I we∑
e∈Redit

we

(2)
ERRANT (Felice et al., 2016; Bryant et al.,
2017) sets we = 1.0 for all of edits, and
PT-ERRANT (Gong et al., 2022) computes a
weight by BERTScore (Zhang et al., 2020) or
BARTScore (Yuan et al., 2021). GoToScorer (Go-
tou et al., 2020) uses the error correction difficulty,
which is based on the correction success ratio of
the predefined systems, as a weight5.

n-gram level Metrics The n-gram level met-
rics have also been employed for the reference-
based evaluation. Koyama et al. (2024) provided a
generic interpretation by an n-gram Venn diagram.
Figure 3 shows an example for n = 1. Each group
in the Venn diagram is named as True Keep (TK),
True Delete (TD), True Insert (TI), Over Delete
(OD), Over Insert (OD), Under Delete (UD), Un-
der Insert (UI). In Figure 3, you can see that He,
to, school are TK, the is TD, a is OI, and goes is
TI. Similar to edit-based metrics, n-gram level met-
rics calculates precision or Fβ score from n-gram
intersection. GLEU (Napoles et al., 2015, 2016)
is a precision-based metric and GREEN (Koyama
et al., 2024) uses Fβ score. Further detailed expla-
nations are described in Appendix A.

4Fβ =
(1+β2)Precision×Recall

β2Precision+Recall
5Precisely, the GoToScore additionally considers the non-

corrected spans.
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Sentence-level Metrics Reference-free metrics
are primarily designed as sentence-level metrics
and are built using pretrained language models.
SOME (Yoshimura et al., 2020) focuses on gram-
maticality, fluency, and meaning preservation; they
fine-tuned BERT (Devlin et al., 2019) with regres-
sion head respectively optimize to human evalua-
tion directly. Scribendi (Islam and Magnani, 2021)
evaluates corrected sentences based on perplexity
computed by a pretrained language model, and
surface-level similarity. IMPARA (Maeda et al.,
2022) combines similarity scores between S and
H with an quality estimation score for H . The
quality estimation score is predicted using a BERT-
based regression model trained to distinguish dif-
ferent levels of text quality. LLM-S (Kobayashi
et al., 2024a) performs 5-stage evaluation using a
large language model. LLM-E (Kobayashi et al.,
2024a) inputs edit sequences instead of corrected
sentences.

2.2 Meta-Evaluation of GEC Metrics
The quality of GEC evaluation metrics is meta-
evaluated by calculating the agreement between
human evaluation results and metric-based evalu-
ation results. Meta-evaluation is conducted from
two perspectives: sentence-level and system-level.

In sentence-level evaluation, GEC evaluation
methods score the hypothesis of multiple GEC sys-
tems associated with each source sentence. Pair-
wise comparisons of hypotheses are performed for
each source, and agreement between the human and
metric evaluation results is accumulated over the
entire data set. The reported scores are Accuracy
(Acc.) and Kendall rank correlation coefficient (τ ).

In system-level evaluation, the focus is on com-
paring the overall relative quality of systems.
System-level rankings are generally computed by
averaging or accumulating sentence-level results.
The metrics for system-level evaluation are Pearson
(r) and Spearman (ρ) correlation coefficients.

To facilitate this, some meta-evaluation datasets
have been proposed, such as GJG15 (Grundkiewicz
et al., 2015) and SEEDA (Kobayashi et al., 2024b),
which are derived from CoNLL-2014 shared task
submissions (Ng et al., 2014). Nonetheless, the
number of available meta-evaluation datasets re-
mains limited. One contributing factor is the lack
of a unified framework for GEC evaluation metrics,
which hinders consistent and comprehensive vali-
dation and increases the cost of implementing base-
lines when constructing meta-evaluation datasets.

Metric Reported paper r ρ

Scribendi Islam and Magnani (2021) .951 .940
Maeda et al. (2022) .303 .729
Kobayashi et al. (2024b) .890 .923

IMPARA Maeda et al. (2022) .974 .934
Kobayashi et al. (2024b) .961 .965

Table 1: Previously reported meta-evaluation results on
GJG15 (Grundkiewicz et al., 2015). The r and ρ are
Pearson’s correlation and Spearman rank correlation.
The results are inconsistent across studies, due to a lack
of implementations and an open pre-trained model.

3 Problems of Existing Implementations

Inconsistent interfaces. Although many GEC
evaluation metrics have been proposed, their im-
plementations are designed with their own inter-
faces and lack compatibility, such as input/output
formats. This makes cross-metric evaluation dif-
ficult and limits multifaceted discussions. For ex-
ample, recent evaluations of GEC model develop-
ment heavily rely on ERRANT, while other metrics
with high correlation to human evaluation, such as
IMPARA, are seldom reported. If the interfaces
were unified, the complex experimental procedures
caused by inconsistent implementations could be
eliminated, which would facilitate better develop-
ment and evaluation of GEC models.

Lack of official resources. Some metrics do not
provide official resources. For example, Scribendi
and LLM-{S, E} did not release their implementa-
tions, and IMPARA did not provide its fine-tuned
weights. Therefore, we must reproduce these met-
rics, which can lead to discrepancies in reported
results, as shown in Table 1. Moreover, some met-
rics no longer work with their official code, such as
GLEU, which is written in Python 2. To avoid the
cost of reproduction, most papers cite scores from
previous studies, which compromises transparency.

API support. Since most original implementa-
tions are developed for specific experiments, they
are typically intended to be executed using CLI-
based scripts. As a result, they do not support an
extensible ecosystem such as APIs, which limits
their flexibility and reusability. When evaluation
metrics are used as components in other methods,
such as a reward function in reinforcement learn-
ing (Sakaguchi et al., 2017), a utility function in
MBR decoding (Raina and Gales, 2023), or a qual-
ity estimation model for ensembling (Qorib and
Ng, 2023), APIs facilitate easier integration.
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4 GEC-METRICS

Our library, GEC-METRICS, compiles recent GEC
evaluation methods into a unified interface. It sup-
ports not only the use of GEC metrics by users and
GEC system developers but also meta-evaluation
for GEC metric developers. GEC-METRICS sup-
ports both command-line usage and Python API
access, enabling integration into a wide range of
applications. It resolves all the limitations of exist-
ing implementations highlighted in Section 3. We
have verified that the results obtained using GEC-
METRICS are consistent with those from official
implementations for all publicly available metrics.

4.1 Supported Methods

GEC evaluation metrics. GEC-METRICS sup-
ports all of ten metrics described in Section 2.1.
For reference-based metrics, it supports ERRANT,
PT-ERRANT, and GoToScorer as edit-level met-
rics, GLEU and GREEN as n-gram level met-
rics. For reference-free metrics, it supports SOME,
Scribendi, IMPARA, LLM-S, and LLM-E6 as
sentence-level metrics. We carefully designed the
library for extensibility and ease of changing hyper-
parameters and base models, supporting various
use cases such as modifying the value of n in n-
gram or switching the language models. Notably,
LLM-{S, E} support the OpenAI and Gemini APIs,
as well as all causal language models available in
Hugging Face Transformers (Wolf et al., 2020),
and also provides simplified prompts for applying
to any data and scenario, as detailed in Appendix C.

Meta-evaluation. GEC-METRICS also supports
all of two meta-evaluation frameworks: GJG15
and SEEDA as introduced in Section 2.2. It accom-
modates all detailed configurations for each frame-
work, ensuring comprehensive support. Specif-
ically, both datasets contain human Expected
Wins (Bojar et al., 2013) rankings and human
TrueSkill (Herbrich et al., 2006) rankings. GJG15
adopts Expected Wins as the final human evalua-
tion result, while SEEDA uses TrueSkill. While
system-level evaluation scores are typically re-
ported using simple aggregation methods such
as averaging, our library also provides the op-
tion to follow Goto et al. (2025) by aggregating

6Notably, our implementations of LLM-{S, E} are the first
publicly available resource of Kobayashi et al. (2024a). We
contacted the authors, received some codes and prompts, and
had several discussions to clarify the implementation details.
We are deeply grateful for their support and contributions.

1 from gec_metrics.metrics import ERRANT
2 from gec_metrics.meta_eval import

MetaEvalSEEDA
3 metric = ERRANT(ERRANT.Config(beta=0.5))
4 SRCS = ["He go to the school."] * 100
5 HYPS = ["He goes to the school."] * 100
6 REFS = [["He goes to school."] * 100]
7
8 # Corpus-level scoring
9 system_score: float = metric.score_corpus(

10 sources=SRCS, hypotheses=HYPS,
references=REFS

11 ) # Output: 0.833
12 # Sentence-level scoring
13 sent_score: list[float] =

metric.score_sentence(sources=SRCS,
hypotheses=HYPS, references=REFS

14 ) # Output: [0.833, 0.833, ...]
15
16 ### Meta-evaluation on SEEDA ###
17 meta = MetaEvalSEEDA(
18 MetaEvalSEEDA.Config(system='base')
19 )
20 # System-level meta-evaluation
21 meta_system = meta.corr_system(metric)
22 print(f"SEEDA-S: {meta_system.ts_sent}")
23 # Output: MetaEvalBase.Corr(pearson=0.539,

spearman=0.342)
24 # Sentence-level meta-evaluation
25 meta_sentence = meta.corr_sentence(metric)
26 print(f"SEEDA-S: {meta_sentence.sent}")
27 # Output: MetaEvalBase.Corr(accuracy=0.594,

kendall=0.188)

Listing 1: An example of the implementation of
evaluation and meta-evaluation using ERRANT as a
metric and SEEDA as a meta-evalution framework.

system-level results using either Expected Wins
or TrueSkill. Furthermore, SEEDA includes two
evaluation settings: SEEDA-S, where human eval-
uation is conducted at the sentence level, and
SEEDA-E, where evaluation is performed at the
edit level. It also provides two configurations: Base
and +Fluency. GEC-METRICS fully supports all of
these settings, enabling easy assessment of evalua-
tion performance under diverse conditions.

4.2 Interfaces
GEC-METRICS supports three types of interfaces:

CLI, Python API, and GUI. While we primarily
focus on the Python API, the other interfaces are
demonstrated in Appendix D.

Listing 1 shows an example Python code for eval-
uation using ERRANT and meta-evaluation using
SEEDA. Evaluation can be performed simply by
passing a list of sentences to the score_**() func-
tions in L8 and L12. Similarly, meta-evaluation
is supported through a simple interface, where the
corr_**() functions in L20 and L23 take a metric
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System-level Sentence-level

Metric GJG15 SEEDA-S SEEDA-E GJG15 SEEDA-S SEEDA-E
Base +Fluency Base +Fluency Base +Fluency Base +Fluency

r ρ r ρ r ρ r ρ r ρ Acc. τ Acc. τ Acc. τ Acc. τ Acc. τ

ERRANT .647 .687 .539 .343 -.592 -.156 .682 .643 -.508 .033 .654 .307 .594 .189 .544 .087 .608 .217 .558 .116
PT-ERRANT .704 .786 .700 .629 -.548 .077 .788 .874 -.471 .231 .655 .310 .583 .166 .540 .080 .592 .184 .550 .100
GoToScorer .668 .615 .726 .601 .439 .499 .816 .762 .514 .635 .579 .159 .550 .100 .511 .021 .563 .126 .524 .048
GREEN .786 .720 .925 .881 .185 .569 .932 .965 .252 .618 .660 .319 .600 .199 .552 .105 .574 .148 .537 .073
GLEU .706 .626 .886 .902 .155 .543 .912 .944 .232 .569 .673 .346 .672 .343 .616 .231 .673 .347 .625 .249
SOME .957 .923 .892 .867 .931 .916 .901 .951 .943 .969 .779 .559 .778 .555 .765 .531 .766 .532 .754 .509
IMPARA .956 .885 .916 .902 .887 .938 .902 .965 .900 .978 .747 .495 .753 .506 .738 .475 .752 .504 .743 .486
Scribendi .855 .835 .620 .636 .604 .714 .825 .839 .715 .842 .728 .457 .660 .320 .623 .245 .672 .345 .648 .295

GPT-4-E .383 .357 .085 .027 -.817 -.393 .312 .307 -.764 -.279 .473 -.053 .520 .041 .582 .165 .538 .077 .591 .183
GPT-4-S -.073 -.181 .848 .748 .322 .613 .923 .958 .390 .714 .674 .348 .607 .214 .582 .165 .603 .206 .591 .183
Gemini-S -.205 -.318 .776 .622 .461 .714 .891 .902 .521 .802 .628 .257 .597 .195 .577 .154 .600 .200 .575 .150
Qwen2.5-S -.247 -.274 .920 .839 .788 .942 .893 .916 .790 .930 .595 .191 .588 .177 .574 .148 .594 .189 .576 .153

Ensemble .808 .840 .887 .823 .350 .691 .953 .984 .436 .803 – – – – – – – – – –
(aboves w/o LLM)

Table 2: Meta-evaluation results using our GEC-METRICS library. We use Pearson (r) and Spearman (ρ) for the
system-level meta-evaluation, and accuracy (Acc.) and Kendall (τ ) for the sentence-level meta-evaluation. Bold is
the highest value in each column, underline is the second one.

instance as input. In addition, parameters and set-
tings are separated via a **.Config() dataclass.
If switching to another metric, the process is simple
and easy, thanks to the unified API interface.

Extensibility. All classes are implemented by in-
heriting from an abstract class. The abstract class
defines the minimal required methods, such as
score_sentence(), which must be overridden in
the derived classes. This ensures that the interface
remains consistent regardless of who implements
the metric. Similarly, adding new meta-evaluation
also requires only minimal implementation7.

Reproducibility. CLI supports configuration in-
put in YAML format. This allows users to share the
exact settings used for running a metric, e.g., what
model is used, contributing to high reproducibility.

4.3 Analyses and Visualizations
Meta-evaluation is not limited to correlation coef-
ficients such as Pearson or Kendall but can also
involve more detailed analyses. For example, the
window analysis (Kobayashi et al., 2024b) enables
discussions on evaluation performance by focusing
on competitive systems in human evaluation, and
the edit-level attribution shows which edit opera-
tion a metric focuses on in the evaluation (Goto
et al., 2024). GEC-METRICS provides tools for
such analyses and result visualization.

7We provide the documentation, including usage in-
structions, detailed API references, examples, and quick
start guides: https://gec-metrics.readthedocs.io/en/
latest/index.html.

Pairwise-analysis. Previous sentence-level meta-
evaluations have primarily focused on Accuracy
and Kendall’s τ , which reflect overall agreement
but offer limited interpretability. Therefore, we
propose pairwise analysis, which focuses on the
relationship between differences in human rank-
ings and agreement rates in sentence-level meta-
evaluation. The difference between human- and
metric-scored rankings for the same source can be
calculated for each system pair, allowing agreement
to be grouped and analyzed by ranking difference.
Intuitively, the greater the difference in rankings as-
signed by humans, the more accurately a metric is
expected to make judgments, reflecting how well it
aligns with human evaluation at the sentence level.

5 Experiments

Settings. Using our GEC-METRICS library, we
conducted meta-evaluations of GEC evaluation
metrics. We employed all metrics listed in Sec-
tion 4.1, and used GJG15 and SEEDA as meta-
evaluation datasets. For system-level evaluation,
we used the Expected Wins rankings from GJG15
and the TrueSkill rankings from SEEDA-{S, E}.
Appendix B provides the detailed experimental set-
tings, which serve as the default configuration and
generally follow those used in the original papers.

Extensive evaluation for LLM-{S, E}. We con-
ducted several variations using different LLMs
to provide extensive evaluation for LLM-{S,
E} (Kobayashi et al., 2024a). Notably, we re-
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Figure 4: Window-analysis results for IMPARA. The x-
axis indicates the start rank in the human-evaluation, and
y-axis means Pearson (blue line) or Spearman (orange
line) correlation.

port results on GJG15 for the first time, re-
vealing that the trend differs from SEEDA. De-
tailed motivations and settings are provided in
Appendix C. We use gpt-4o-mini-2024-07-18
(GPT-4-S, GPT-4-E) (OpenAI et al., 2024),
gemini-2.0-flash (Gemini-S) (Team et al.,
2025), and Qwen2.5-14B-Instruct (Qwen2.5-
S) (Qwen et al., 2025) to emphasize extendability
of our library for other language models.

Results. Table 2 shows the experimental results.
ERRANT and PT-ERRANT show a higher correla-
tion with SEEDA-E than with SEEDA-S, empha-
sizing the importance of aligning the evaluation
granularity between human and automatic evalua-
tions. Meanwhile, under the +Fluency setting, the
correlation becomes negative, indicating the diffi-
culty of evaluating GEC systems that focus on im-
proving fluency. In contrast, SOME and IMPARA
achieve high correlations even in the +Fluency set-
ting. These results align with the trends reported
in SEEDA (Kobayashi et al., 2024b). On the other
hand, for LLM-based metrics, while they achieve
relatively high correlations in SEEDA, their perfor-
mance is lower in GJG15. Our study is the first
to apply LLM-based metrics to GJG15, suggest-
ing that the evaluation capability of LLMs does
not necessarily generalize and that there is room
for improvement. Similarly, GPT-4-E fails to re-
produce the results reported by (Kobayashi et al.,
2024a), indicating the need for further discussion
on the validity of the approach. Figure 4 shows the
window-analysis results for IMPARA. We used hu-
man TrueSkill rankings of SEEDA-S and used 4 as
the window size. An observation is that the correla-
tions suddenly drops at x = 7, which is consistent
with Kobayashi et al.’s (2024b) observation.

Metric Ensemble. GMEG-Metric (Napoles
et al., 2019) proposed an ensemble approach
for evaluation metrics and reported robust per-
formance across different domains. Given that
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Figure 5: Results of the pairwise-analysis. (a) shows
the agreement rates between IMPARA and SEEDA-S
annotation, and (b) shows the rates between ERRANT
and SEEDA-E.

new metrics continue to be developed after this
work, ensemble techniques are expected to remain
important for achieving reliable evaluations.
Since ensembling requires results from multiple
metrics, using a unified implementation like
GEC-METRICS facilitates experimentation. As a
simple experiment to explore this, we consider
using the negative average ranking across different
metrics as the final evaluation score. For instance,
if a system is ranked 2nd by a metric and 1st by
another metric, its final evaluation score would be
-1.5. By ensembling metrics other than LLM-based
metrics listed in Table 2, we achieved a Spearman
rank correlation of 0.984 on SEEDA-E. This is the
highest correlation in our experiment. This short
experiment shows that GEC-METRICS facilitates
the exploration of novel evaluation metrics.

Analysis for Sentence-level Scores. Figure 5
presents the results of an experiment using human
evaluation data from the SEEDA dataset. Rank
A and Rank B correspond to the human-assigned
rankings of a hypothesis pair. Both of results are
showing a trend where agreement increases as the
difference in rankings grows (toward the upper
right side in each figure). This suggests that current
metrics reflect human evaluative tendencies, but
there is room for improvement in distinguishing
minor differences in quality.

6 Conclusion

In this paper, we proposed a library, GEC-METRICS,
to address issues in evaluation caused by incon-
sistencies in existing metric implementations and
the lack of official resources. GEC-METRICS is
designed with a strong focus on API usability, mak-
ing it easier to apply not only for evaluation but
also for other purposes. Furthermore, it supports
developers in improving evaluation metrics by pro-
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viding an interface for meta-evaluation. We hope
that our library will lead to further diverse applica-
tions and advanced research. We will continue to
develop our library, incorporating diverse methods
and languages, and contribute to the community.

Ethics Statement and Broader Impact

Contribution for research ethics. Using GEC-
METRICS improves the reproducibility and trans-
parency of experiments, which is crucial from a
research ethics standpoint. The inclusion of ques-
tions about implementation and experimental set-
tings in the ACL Rolling Review checklist8 high-
lights the community’s emphasis on these aspects.
By continuing to maintain and develop metric im-
plementations, GEC-METRICS aims to support and
strengthen these efforts.

Impacts for the community. GEC-METRICS

serves as a powerful tool for researchers to eas-
ily develop evaluation methods. It also accelerates
their application in the GEC field, including bias
investigations, integration with learning and infer-
ence methods such as reinforcement learning and
ensembling, and use as a scorer in shared tasks.
In fact, it has already been adopted as a scorer in
a shared task competition at a domestic Japanese
conference that examined metric vulnerabilities9.
These cases demonstrate that GEC-METRICS is be-
ginning to contribute to advancing research. At the
same time, we recognize the importance of main-
tenance and management. We are committed to
providing long-term support and actively incorpo-
rating new methods and pull requests responsibly.

License. We have also confirmed that there are
no licensing issues with the code, methods, or data
used in our implementation. GEC-METRICS is re-
leased under the MIT license.
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error correction approaches for multi-languages with
a unified framework. In Proceedings of the 31st Inter-
national Conference on Computational Linguistics:
System Demonstrations, pages 37–45, Abu Dhabi,
UAE. Association for Computational Linguistics.

A Details for ngram level metrics.

GLEU is a precision-based metric. By using the
Venn diagram in the Figure 3, it is formulated by:

pn =
TIn + TKn − UDn

TIn + TKn + OIn + UDn
. (3)

Note that TIn,TKn . . . represents the n-gram
count of each group. The pn is a precision for
n-gram and is usually computed for each n from
1 to 4. Then, the brevity penalty (Papineni et al.,
2002) is taken into account after taking the geomet-
ric mean. GREEN (Koyama et al., 2024) is also an
n-gram-level metric, but it computes the precision,
recall, and Fβ score:

Precisionn =
TIn + TDn + TKn

TIn + TDn + TKn + OIn + ODn
,

(4)

Recalln =
TIn + TDn + TKn

TIn + TDn + TKn + UIn + UDn
,

(5)

Fβ =

(
1 + β2

)
Precision × Recall

β2Precision + Recall
. (6)

After calculating the geometric mean for each of
precision and recall using n from 1 to 4, the Fβ

score is calculated.

B Details of experimental setup

For the reference-based metrics, we used the
official two references of CoNLL-2014 shared
task (Ng et al., 2014). The below describes the
detail exoerimental settings for each metric.

ERRANT. We use errant==3.0.0. Note that the
extraction ways of edits have changed slightly
between ≥v3.0.0 and <v3.0.0. We use F0.5 as
the score. The sentence-level scores are computed
by choosing the best reference, which makes the
highest F0.5 score, for each source sentence.

PT-ERRANT. PT-ERRANT uses F -score of the
BERTScore with bert-base-uncased for the
edit-level weight computation. It rescales the
weights by the baseline, but does not use the
idf importance weighting. These are the same
configurations as the official implementation10.

10https://github.com/pygongnlp/PT-M2

After computing edit-level weights, we compute
weighed precision, recall, and F0.5 score as in ER-
RANT. The computation method of the sentence-
level scores is also the same as that of ERRANT.

GoToScorer. We used the first reference and all
system outputs, including input sentences, for cal-
culating the error correction difficulty.

GLEU. We use word-level GLEU and set 500 as
the iteration count. The maximum n is 4 for n-
gram. The sentence-level scores are defined as
the average of each reference.

GREEN. We use word-level GREEN and F2.0.

Scribendi. We use GPT-2 (Radford et al., 2019)
as a language model to compute perplexity. The
threshold for the maximum values of Levenshtein-
distance ratio and token sort ratio is 0.8.

SOME. We use the official pre-trained weights,
which are available from the official repository 11.
The weights for the grammaticality score, fluency
score, and meaning preservation score are set to
0.55, 0.43, and 0.02, respectively.

IMPARA. For IMPARA, we reproduce the train-
ing experiments because no trained model is pub-
licly available. As follows Maeda et al. (2022),
we generated 4,096 instances using CoNLL-
2013 (Ng et al., 2013) as the seed corpus, and split
them into 8:1:1 for training, development, and
evaluation sets. Thus, we used 3,276 instances
as training data to fine-tune bert-base-cased
and made public the pre-trained weights12. GEC-
METRICS does not contain the training scripts, but
we make them public in a separate repository13.
bert-base-cased is used for computing the sim-
ilarity score with the threshold 0.9.

LLM-S and LLM-E. For GPT-4-S, we use
beta.chat.completions.parse API for
the OpenAI models and use OUTLINES li-
brary (Willard and Louf, 2023)14 for the
HuggingFace models, to ensure the output is
in JSON structure. While Kobayashi et al.
(2024a) uses gpt-4-1106-preview, we used
gpt-4o-mini-2024-07-18 model in our ex-
periments to avoid using it due to the high

11https://github.com/kokeman/SOME
12https://huggingface.co/gotutiyan/IMPARA-QE
13https://github.com/gotutiyan/IMPARA
14https://github.com/dottxt-ai/outlines
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The goal of this task is to rank the presented targets
based on the quality of the sentences.
After reading the source sentence and target sen-
tences, please assign a score from a minimum of
1 point to a maximum of 5 points to each target based
on the quality of the sentence (note that you can as-
sign the same score multiple times).
# source
[SOURCE]
# targets
... <omitted>

Figure 6: Our modified instruction for LLM-S.

experimental cost. We believe that not everyone
can afford to use expensive models.

C Our Modifications of the LLM-based
Metrics

As described in Section 5, we have made mod-
ifications to the LLM-based metric proposed by
Kobayashi et al. (2024a). The first modification is
the exclusion of contextual information from pre-
ceding and following sentences. Some datasets do
not include surrounding context, and Kobayashi
et al. (2024a) does not specify how to handle such
cases. To ensure that evaluation is feasible for
any dataset, we employed a prompt that does not
incorporate contextual information, which also ne-
cessitated changes to the instruction text. We show
the instruction text in Figure 6.

The second modification clarifies the sampling
method for input correction hypotheses. Their met-
ric accepts up to five hypotheses simultaneously,
but when evaluating a large number of systems,
the number of different correction hypotheses may
exceed five. In such cases, some method of se-
lecting five sentences is required to proceed with
evaluation. Kobayashi et al. (2024a) describes only
the experimental setup for meta-evaluation using
SEEDA, where pre-sampled correction hypotheses
are used as input. However, this approach can-
not be directly applied when evaluating a different
set of systems or when working with a different
dataset. Since Kobayashi et al. (2024a) does not
define an experimental procedure for such scenar-
ios, we adopted a method that selects five sentences
based on their frequency, where frequency is de-
fined as the number of systems that produce the
same correction hypothesis. Note that multiple sys-
tems may output the same corrected sentence. The
selected hypotheses are all unique, and the evalua-

1 gecmetrics-eval --src <src> \
2 --hyps <hyp1> <hyp2> ... \
3 --refs <ref1> <ref2> ... \
4 --metric errant \
5 --config config.yaml

Listing 2: Commandline usage of GEC-METRICS . Each
variable within < > indicates a path to a raw text file.
You can use another metrics by specifying the - -metric
argument e.g. “- -metric impara”.

gec-metrics App
Choose a metric:

errant

Choose the configurations:

beta

0.50

language

en

Enter sources

Enter sources (one per line)

He go to the school .

Or, upload sources file

Drag and drop file here
Limit 200MB per file • TXT

Browse files

Enter hypotheses

Enter hypotheses (one per line)

He goes to a school .

Or, upload hypotheses file

Drag and drop file here
Limit 200MB per file • TXT

Browse files

Enter references0

Enter references0 (one per line)

He goes to school .

Or, upload references0 file

Drag and drop file here
Limit 200MB per file • TXT

Browse files

Add references

Evaluate

2025/03/28 12:58 app
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Meta-evaluation

seeda

Choose the configurations:

system

base

Do window analysis

Do pairwise analysis

Meta-evaluate

Meta-evaluation Results

 ew_edit ew_sent ts_edit ts_sent

Pearson 0.686 0.518 0.682 0.539

Spearman 0.657 0.371 0.643 0.343

Pairwise-analysis results.

2025/03/28 12:58 app

163.221.132.168:8501 2/3(b) Meta-evaluation GUI

Figure 7: GUI of GEC-METRICS . (a) is for metrics, and
(b) is for meta-evaluation, which includes visualization
of the analysis. They are actually combined on a single
page.

tion score assigned to each hypothesis is expanded
across all systems that produced it. By selecting
correction hypotheses with higher frequency, we
maximize the number of systems that can be evalu-
ated. We use a single RTX3090 for experiments.

D CLI and GUI Interfaces

Listing 2 provides an example of CLI. It can receive
raw text files as inputs, the metric id to - -metric,
and YAML-based configuration input using the
- -config argument.

Figure 7 shows a GUI example, which is de-
veloped via STREAMLIT library15. You can eas-
ily perform the evaluation for any dataset and the
meta-evaluation, without coding. Furthermore, it
has visualization features for the analysis results
of meta-evaluation: window-analysis and pairwise-
analysis, such as shown in Figure 5. The code for
GUI is provided in a separate repository: https:
//github.com/gotutiyan/gec-metrics-app.

15https://github.com/streamlit/streamlit
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