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Abstract

We introduce MPLSandbox, an out-of-the-
box multi-programming language sandbox de-
signed to provide unified and comprehensive
feedback from compiler and analysis tools for
Large Language Models (LLMs). It can auto-
matically identify the programming language
of the code, compiling and executing it within
an isolated sub-sandbox to ensure safety and
stability. In addition, MPLSandbox integrates
both traditional and LLM-based code analysis
tools, providing a comprehensive analysis of
generated code. It also can be effortlessly in-
tegrated into the training and deployment of
LLMs to improve the quality and correctness
of generated code. It also helps researchers
streamline their workflows for various LLM-
based code-related tasks, reducing the devel-
opment cost. To validate the effectiveness of
MPLSandbox, we conduct extensive experi-
ments by integrating it into several training and
deployment scenarios, and employing it to op-
timize workflows for a wide range of down-
stream code tasks. Our goal is to enhance
researcher productivity on LLM-based code
tasks by simplifying and automating workflows
through delegation to MPLSandbox1.

1 Introduction

Recently, researchers have become increasingly in-
terested in the development of large language mod-
els (LLMs) for code tasks (Le et al., 2023; Shin
et al., 2023). However, LLM-generated code may

* Equal contribution.
† Corresponding author.
1MPLSandbox has been used for large-scale training and

various downstream code tasks such as code data distillation
and code optimization at Meituan Inc. The installable package
is available at: https://github.com/Ablustrund/MPLS
andbox. The demonstration Video is available at: https:
//youtu.be/ecpspPrkYrQ. MPLSandbox is licensed under
the Apache 2.0 open-source license.

contain vulnerabilities and harmful programs, mak-
ing it necessary to compile and execute the code
within a sandbox environment (Garfinkel et al.,
2003; Liang et al., 2003). Despite this necessity,
most existing sandboxes focus on only one or two
programming languages (Engelberth et al., 2012;
Ter, 2024), and are not easily integrated into the
training and deployment processes of LLMs (Cas-
sano et al., 2022; LLM, 2024). The lack of well-
developed multi-language sandbox environments
significantly limits the application of LLMs in tasks
involving multiple programming languages.

On the other hand, researchers commonly use
various code analysis tools to enhance the quality
of LLM-generated code (Liu et al., 2023; Gazzola
et al., 2019). Downstream coding tasks also require
these tools to seamlessly integrate with LLMs (Du
et al., 2024; Lu et al., 2024). The wide variety
of tools significantly increases the development
difficulty and cost for researchers (Manès et al.,
2019; Gentleman and Temple Lang, 2007), espe-
cially in multi-language programming scenarios.
Unfortunately, there is currently no out-of-the-box
code analysis toolbox that can be directly used with
LLMs for various coding tasks.

To address these issues, we propose MPLSand-
box, an out-of-the-box multi-programming lan-
guage sandbox designed to provide unified com-
piler feedback for LLM-generated code. It also
integrates over 40 code analysis tools to deliver
comprehensive analysis results from various per-
spectives. MPLSandbox can be seamlessly inte-
grated into the training and deployment of LLMs,
enhancing their performance on various code tasks
and significantly streamlining users’ workflows.
MPLSandbox consists of three core modules: (1)
the “Multi-Programming Language Sandbox En-
vironment”, which compiles and executes code to
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provide unified compiler feedback; (2) the “Code
Analysis Module”, which includes various analy-
sis tools to offer comprehensive analysis; and (3)
the “Information Integration Module”, which inte-
grates compilation feedback and analysis results to
accomplish a range of complex code-related tasks.

For the first module, the code and unit tests are
sent to the sub-sandbox of the corresponding pro-
gramming language for isolated execution. The
sandbox ensures the program executes safely with-
out jeopardizing the external environment or inter-
rupting the training process. The second module
provides a comprehensive code analysis from var-
ious perspectives, such as static analysis (e.g., po-
tential bug detection and code smell analysis) and
dynamic analysis (e.g., fuzz testing and efficiency
analysis). This module can also analyze other key
aspects beyond the code, such as evaluating unit
test coverage to help researchers improve the qual-
ity of these unit tests. Finally, the third module
integrates these results to improve the quality of
generated code and helps users enhance the conve-
nience of applying LLMs in various downstream
tasks. Specifically, the features of our proposed
MPLSandbox include:

• Security and stability. Sub-sandboxes ensure
that programs are compiled and executed in
isolation from the training environment. This
prevents LLM-generated code containing ma-
licious vulnerabilities or bugs from harming
the external environment. Moreover, vari-
ous integrated vulnerability and bug detection
tools further ensure safety.

• Multi-programming language support. We
are the first to propose a multi-programming
language sandbox that integrates over 40 code
analysis tools. MPLSandbox can automati-
cally identify the programming language of
the code, assign it to the corresponding sub-
sandbox, and thoroughly analyze it using vari-
ous tools. This significantly reduces the devel-
opment cost for researchers in deploying and
developing LLMs for downstream code tasks.

• Usability and extensibility. MPLSandbox
integrates various analysis tools for each pro-
gramming language, and users can also effort-
lessly design tool templates to integrate their
tools into the sandbox. Moreover, users can
easily construct prompt templates to combine

compiler feedback and analysis results to ac-
complish code tasks.

• Distributed architecture. MPLSandbox is
designed for distributed deployment. In large-
scale training scenarios, training nodes can
access any MPLSandbox nodes. This setup
offers greater efficiency compared to deploy-
ments where both training nodes and sandbox
nodes are co-located on a single machine.

We conduct extensive experiments on three appli-
cation scenarios to validate MPLSandbox: verify-
ing code at inference time, providing compiler feed-
back in reinforcement learning, and self-correcting
and optimizing code. Moreover, we showcase that
it can streamline workflows for diverse code tasks
like unit test generation, vulnerability localization,
and code translation. Results demonstrate that
MPLSandbox integrates easily into all scenarios,
reducing development costs.

MPLSandbox is the first multi-programming lan-
guage sandbox with over 40 analysis tools, simpli-
fying the use of LLMs in code tasks. Its ease of
use and flexible module combination make it ef-
fective for many downstream tasks, while keeping
development costs low for researchers. We hope
our tool drives further research in this area.

2 MPLSandbox

In this section, we introduce the architecture,
pipeline, and usage of MPLSandbox.

2.1 Architecture

Our tool is an out-of-the-box multi-programming
language sandbox designed to provide unified com-
piler feedback and comprehensive code analysis,
enabling researchers to thoroughly analyze LLM-
generated code in any programming language
while significantly reducing development costs. It
also can streamline LLMs’ training and deploy-
ment workflows for various code tasks. The ar-
chitecture of MPLSandbox is shown in Figure 1.
If no programming language type is specified, the
built-in rule-based and model-based parsers auto-
matically detect the code’s language. Our tests on
10 million lines of code show that the classification
error rate is less than 0.1%. Subsequently, the code
is comprehensively analyzed by three core mod-
ules: (1) Multi-Programming Language Sandbox
Environment, (2) Code Analysis Module, and (3)
Information Integration Module.
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Programming Problem
Given an array of n integers, find the 
largest element of it.

Programming Language (Optional)
Python

Code
def find_max(nums):

max_num = nums[0]
for num in nums:

if num > max_num:
max_num = num

return max_num

Unit Test Samples
Inputs:       ([5, 4, 3, 2, 1], )
Outputs:    (5, ) 

Code Basic 
Information …

…

(1) Multi-Programming Language 
Sandbox Environment

Master

(2) Analysis Module

Code Smell 
Analysis

Code Bug 
Analysis

Unit Test 
Analysis

Code Efficiency 
Evaluation 

AST:

CFG:

Code Style
Code Specifications
Duplicate code
Cyclomatic Complexity
Maintainability Index
Halstead Complexity
...

Unit Test Coverage:

Test Suite Quality Metrics
...

...

Static Analysis:
Rule-based Analysis
Control Flow Analysis
Data Flow Analysis
Dynamic Analysis:
Fuzzing Test
Memory Leak Detection
...

line-by-line performance analysis:
def find_max(nums):

0 max_num = nums[0]
0 for num in nums:
0 if num > max_num:
0 max_num = num
0 return max_num

Performance Profiling

def find_max(nums):
max_num = nums[0]
for num in nums:
if num > max_num:
max_num = num

return max_num

Input

Programming Langauge
Sandbox Template

Tool 
Template

(3) Information  
Integration Module

System Prompt 
Template

def find_max(nums):
...
else:
left_half = nums[:n//2]
right_half = nums[n//2:]
left_max = find_max(left_half)
right_max = find_max(right_half)
if left_max > right_max:
return left_max

else:
return right_max

public static int findMax(int[] nums) {
...
} else {

int[] leftHalf = Arrays.copyOfRange(nums, 0, n / 2);
int[] rightHalf = Arrays.copyOfRange(nums, n / 2, n);
int leftMax = findMax(leftHalf);
int rightMax = findMax(rightHalf);
...

}
}

Unit Test Generation

Other Tasks ...

Various Code-related Tasks

Code Optimization

Code Translation

T

Self-Correct and 
Self-Refinement

Vulnerability 
Location

Improving Code at
Test Time

RL from Compiler 
Feedback

Figure 1: The architecture of MPLSandbox. It comprises three core modules: (1) Multi-Programming Language
Sandbox Environment, (2) Code Analysis Module, and (3) Information Integration Module. The Multi-Programming
Language Sandbox Environment can provide unified compiler feedback by compiling and executing the code. The
Code Analysis Module contains multiple traditional analysis tools to offer a comprehensive analysis report from
numerous perspectives. The Information Integration Module integrates compilation feedback and various analysis
results to accomplish a range of complex code-related tasks.

Multi-Programming Language Sandbox Envi-
ronment. Based on the specified programming lan-
guage, the module first sends the code and unit test
samples into the corresponding sub-sandbox for se-
cure compilation and execution. The sub-sandbox
is a container isolated from the main environment
to prevent potential vulnerabilities in the code from
affecting the external environment. It is configured
with resource constraints, such as maximum mem-
ory limit, execution time, and PIDs limit, to prevent
resource overuse that could crash the sandbox. To
further ensure stability during LLM training and de-
ployment, a driver node continuously monitors the
sandbox node in real-time and can automatically
restart it in case of a crash due to unknown reasons.
It also analyzes runtime and resource usage, and
reports analysis results during both program execu-
tion and the execution of analysis tools (detailed in
the Code Analysis Module).

Each programming language sub-sandbox
comes pre-installed with widely used dependency
libraries. Users can also write a configuration file to
easily install additional libraries. It can report miss-
ing libraries based on compiler feedback, allowing
users to identify and install required dependencies
effortlessly. We have predefined eight commonly
used programming languages: Python, Java, C++
(C), C#, Bash, Go, JavaScript (JS), and TypeScript
(TS). Expanding to additional programming lan-
guages is straightforward. Users can create their
own sub-sandbox and seamlessly integrate it into

the sandbox environment.

Code Analysis Module integrates over 40 vari-
ous analysis tools to provide a comprehensive re-
port on the code from various perspectives. It can
also assess key aspects beyond the code, such as
evaluating unit test coverage to help researchers
improve the quality of their unit test samples. We
categorized these analysis tools into five groups
based on their purpose and analysis results: (1)
basic information analysis, (2) code smell analy-
sis, (3) code vulnerability analysis, (4) unit test
analysis, and (5) code efficiency evaluation.

(1) Basic information analysis provides de-
tailed information on code structure and semantics,
such as Abstract Syntax Trees (AST) and Control
Flow Graphs (CFG), to help LLMs and users better
understand the code. This information can enhance
LLM performance in tasks like code completion,
refactoring, security analysis, and code translation
(Zhou et al., 2025; Wan et al., 2024; Liu et al.,
2025). (2) Code smell analysis identifies patterns
in code that may indicate issues affecting maintain-
ability, readability, and extensibility, such as code
complexity, overengineering, and duplicated code.
It can significantly assist in various tasks, includ-
ing improving code quality, aiding in code reviews
by identifying potential issues, offering refactor-
ing suggestions for cleaner code, and enhancing
code understanding through contextual and struc-
tural insights. (3) Code bug analysis is essential in
software development for ensuring quality and sta-
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Type Python Java C++ (C) C# Bash Go JavaScript TypeScript

Basic Information Analysis ASTPretty &
Pyflowchart

Javalang &
Soot Clang Roslyn - GoAst Viewer &

Angr Joern Ts-morph

Code Smell Analysis Pylint &
Radon Pmd CPPCheck StyleCop.Analyzers ShellCheck golangci-lint ESLint &

Shkjem
ESLint &

TSLint

Code Bug Analysis Bandit Checkstyle PVS-Studio &
CPPCheck SonarQube Shellcheck govulncheck &

gosec NodeJsScan Snyk

Unit Test Analysis Coverage Jacoco GCOV Coverlet shcov gocov Istanbul Istanbul

Code Efficiency Evaluation Line_profile Jprofile Benchmark.NET BenchmarkDotNet bashprof pprof V8 Profiler V8 Profiler

Table 1: Overview of code analysis tools integrated within MPLSandbox.

bility, comprising both static and dynamic analysis.
The former detects errors and vulnerabilities with-
out executing code, while the latter identifies run-
time issues, including through fuzz testing. These
tools assist in various aspects, such as improving
code security, aiding LLM self-debugging and self-
correction, and generating comprehensive docu-
mentation, making the code more reliable. (4) Unit
test analysis involves evaluating the effectiveness
and coverage of unit tests to ensure code quality
and reliability. It helps LLMs identify uncovered
code lines, generate new test cases, diagnose errors,
and offer code quality suggestions, making devel-
opment and testing more efficient and automated.
(5) Code efficiency evaluation assesses code per-
formance and resource utilization by analyzing as-
pects such as time and space complexity, line-level
execution time, and resource usage. It can enhance
LLM performance in various code tasks by identify-
ing inefficiencies, pinpointing bottlenecks, provid-
ing optimization suggestions, enabling automated
improvements, and offering continuous feedback.

Table 1 lists over 40 commonly used tools in-
tegrated for each programming language. Users
can also easily add their analysis tools by writing
tool templates. These tools provide comprehen-
sive information about the code, helping LLMs and
users better understand and optimize code. More-
over, the combination of these tools with LLMs
enhances their performance in various code tasks.
We demonstrate the ease of use and applicability
of MPLSandbox in several tasks, as detailed in
Section 3 and 3.3.

Information Integration Module collects com-
piler feedback from the Multi-Programming Lan-
guage Sandbox Environment and various analysis
results from the Code Analysis Module to enhance
the quality of generated code and help LLMs ac-
complish complex code-related tasks. It includes
rich templates to reconstruct these results and then
feed them into LLMs. Users can also create custom
prompt templates to combine these results, stream-
lining LLM workflows in various downstream tasks

and reducing development costs. For example,
users can enable LLMs to generate diverse and
comprehensive unit tests based on unit test analysis
and compiler feedback, and improve code transla-
tion by leveraging structural, semantic, and execu-
tion information. More usage cases are provided in
Appendix C and our GitHub repository.

User MPLSandbox

Training Node

Driver Node

MPLSandbox

Training and Employment

User Calls
Programming Problem, 
LLM-generated Code, 

Programming Language Class 
(Optional), Unit Test Samples

Unified Compiler Feedback
Traditional analysis outputs
LLM-based analysis outputs

Figure 2: The pipeline of MPLSandbox. It can be de-
ployed as either a standalone system for individual users,
or as a distributed system for large-scale LLM training
and deployment.

2.2 Pipeline

MPLSandbox can be deployed as a standalone sys-
tem for individual users or several LLMs, or as a
distributed system for large-scale training and de-
ployment scenarios. Figure 2 shows its pipeline
in these two scenarios. First, users can deploy
MPLSandbox on their personal computers or re-
mote servers and easily invoke it via an IP address
and port number for comprehensive analysis and
evaluation of LLM-generated code. Users can also
integrate MPLSandbox into small-scale LLM train-
ing and deployment workflows to enhance the ef-
fectiveness of LLMs, such as deploying it to verify
the codes at inference time or to provide compiler
feedback in Reinforcement Learning from Com-
piler Feedback (RLCF). More various usage cases
provided in Appendix C and our GitHub repository
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show that MPLSandbox can optimize workflows
for various downstream code tasks.

Moreover, MPLSandbox can be integrated into
large-scale distributed training and deployment en-
vironments. We can deploy multiple sandbox node
servers and manage them centrally through a driver
node. Sandbox nodes can be custom-assigned
to training nodes to provide services, and to pre-
vent memory and CPU pressure, sandbox nodes
and training nodes can be deployed separately.
MPLSandbox streamlines the workflow of large-
scale LLM training and deployment, effectively
saving researchers’ development time.

2.3 Usage
MPLSandbox is designed with flexibility in mind,
allowing users to configure workflows and integrate
their analysis tools, while providing appropriate
abstractions to mitigate concerns about low-level
implementation details. It is ready-to-use and can
be easily invoked with just a few lines of code. We
briefly outline the MPLSandbox’s analysis process
for a code segment through a case. The case can
be represented as follows:

question = ’’’
-----Description-----
Write a example function calculation()

...’’’
code = ’’’def calculation(): ...’’’
unit_cases =
{"inputs":["51","120","211"],
"required_outputs":[’[1, 3, ... 1326]’,

’[1, 2, ... 1728001]’,
’[1, 2,... 9129330]’]}

lang = "AUTO" # Automatic language detection
case = {"code": code, "question": question,
"unit_cases": unit_cases, "lang": lang}

It contains the code segment to be verified and other
information for compiling, executing, and analyz-
ing this code including the description, unit tests,
and the optional programming language type. The
language type also can be automatically detected.

We first instantiate a verification class by using
its dictionary or JSON file. Then, we can simply
obtain the analysis results of this code by invoking
the run method:

from MPLSandbox import MPLSANDBOX
tobeverified = MPLSANDBOX(case)
report = tobeverified.run(analysis="all")
# support selecting specific analysis

The executor first calls the Code Analysis Mod-
ule to analyze the code from five different per-
spectives. It then integrates these analysis results
through the Information Integration Module and

returns the final results to the user. Users can easily
specify the code analysis information they wish
to obtain through the analysis parameter. More
detailed usage methods and cases are provided in
Appendix C and our GitHub repository.

3 Applications

In this section, we showcase three main application
scenarios of MPLSandbox in improving the quality
of LLM-generated code and helping users stream-
line LLM workflows of various downstream code
tasks. We also provide more application scenarios
and cases in a wide range of tasks in Section 3.3
and our GitHub repository.

3.1 Setup
We conduct all experiments using the TACO
dataset (Li et al., 2023), which comprises pro-
gramming problems sourced from the APPS+
(Dou et al., 2024) dataset, the CodeContests
dataset (Li et al., 2022), and various contest sites.
We validate our tool on a wide range of LLMs,
including DeepSeek-Coder-Instruct-6.7B (Guo
et al., 2024), DeepSeek-Coder-V2-Lite-Instruct-
16B (Zhu et al., 2024), Qwen2.5-Coder-1.5B-
Instruct (Team, 2024), Qwen2.5-Coder-7B-Instruct
(Team, 2024), Codestral-v0.1-22B (mis, 2024),
Llama-3.1-Instruct-70B (Dubey et al., 2024), and
GPT-4o (OpenAI, 2023), to enhance their ability
on code tasks. We report Pass@k results (Chen
et al., 2021) in our experiments. For Pass@1 and
Pass@10 settings, the sampling temperatures are
set to 0.2 and 0.8, respectively. All inference ex-
periments are conducted on a single node equipped
with eight A100-80G GPUs, while all training ex-
periments are conducted on 16 training nodes and
two MPLSandbox nodes. Detailed system tem-
plates for multi-programming language code gen-
eration and other code tasks, descriptions of the
foundation models, and implementation informa-
tion, including RL training specifics, are provided
in our GitHub.

3.2 Results
As a Verifier at inference time. First, We integrate
MPLSandbox into the deployment environment of
LLMs to verify the correctness of generated code
at inference time, as shown in Table 2. Results
show that it reliably verifies model-generated code
in multiple programming languages. This can sim-
plify deployment scenarios such as code evaluation,
data production, filtering, and automated testing.
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Model Size Pass@K Python Java C++(C) C# Go Bash JavaScript TypeScript

Qwen2.5-Coder-Instruct 1.5B K=1 2.4% 2.8% 2.8% 0.4% 1.1% 0.0% 0.4% 0.4%
K=10 13.9% 4.9% 8.5% 7.3% 4.9% 4.5% 2.4% 1.7%

Qwen2.5-Coder-Instruct 7B K=1 7.0% 14.3% 11.9% 11.5% 3.5% 4.9% 9.1% 3.8%
K=10 24.7% 23.7% 32.1% 28.6% 23.7% 20.6% 25.4% 17.8%

DeepSeek-Coder-Instruct 6.7B K=1 9.4% 10.5% 9.1% 8.0% 3.8% 2.4% 7.0% 3.1%
K=10 23.7% 24.7% 22.3% 25.1% 21.6% 16.4% 21.6% 15.3%

DeepSeek-Coder-V2-Lite-Instruct 16B K=1 29.6% 26.8% 25.1% 23.7% 10.5% 5.6% 12.9% 8.0%
K=10 50.2% 47.7% 44.6% 42.9% 35.5% 19.9% 39.4% 25.1%

Codestral-v0.1 22B K=1 9.8% 21.3% 22.0% 20.2% 12.2% 10.1% 9.8% 7.0%
K=10 34.2% 41.8% 38.7% 41.1% 34.8% 28.9% 34.8% 28.6%

Llama-3.1-Instruct 70B K=1 15.0% 17.4% 15.7% 13.2% 6.6% 7.4% 9.4% 6.1%
K=10 38.0% 38.3% 34.5% 35.5% 35.5% 17.1% 33.5% 14.6%

GPT-4o - K=1 39.3% 47.4% 46.3% 16.0% 43.6% 33.8% 44.6% 40.4%
K=10 52.6% 68.6% 65.9% 47.4% 64.5% 58.2% 66.2% 63.4%

Table 2: Results of integrating MPLSandbox into the deployment environment. It indicates that it provides reliable
verification and feedback.

Python Java C++ (C) C# Go Bash JS TS
Programming Language
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Figure 3: Pass@1 results on improvement in reinforce-
ment learning from compiler feedback. Users can effort-
lessly obtain reliable compiler feedback and streamline
their LLM training workflow through MPLSandbox.

For instance, it is used by the data engineering
and evaluation teams of Meituan Inc. to bulk filter
LLM-generated code and provide compiler feed-
back in various evaluation environments.

Providing feedback signals in RL. We validate
its effectiveness in providing compiler feedback
by integrating it into RLCF to enhance LLM code
generation. We initialize the policy model using
DeepSeek-Coder-Instruct and employ PPO as the
RL algorithm. The optimization objectives and
reward design are detailed in our GitHub repos-
itory. Experimental results, shown in Figure 3,
indicate significant improvements in LLM code
generation, demonstrating the stability and accu-
racy of our tool’s feedback. It enables users to by-
pass trivial tasks like isolating and building multi-
language execution environments. By simply in-
voking MPLSandbox, users can focus more on de-
veloping and optimizing their training algorithms.

We also provide more application scenarios and
cases in Appendix C, such as unit test genera-
tion, vulnerability localization, and code transla-
tion. These indicate the effectiveness of MPLSand-

box for various workflows which can significantly
reduce development effort.

Self-correction and self-optimization. Self-
correcting and optimizing LLM-generated code
is essential yet often complex and laborious, ne-
cessitating detailed information about code errors,
complexity, execution efficiency, and adherence
to coding standards, which in turn requires nu-
merous cumbersome code analysis tools. With
MPLSandbox, users can seamlessly analyze LLM-
generated code and achieve self-debugging and
self-refinement. To demonstrate its utility, we em-
ployed our tool to enable GPT-4 to both correct
erroneous code and refine accurate code. Sys-
tem prompts for these operations are available in
our GitHub repository. After one round of self-
correction, Pass@1 results improve by 3.7% for
Python, 4.9% for Java, 2.7% for C++ (C), 6.5%
for C#, 5.0% for Go, 4.8% for Bash, 4.1% for
JavaScript, and 3.1% for TypeScript. These re-
sults indicate that it can provide accurate compiler
feedback across various programming languages,
enabling GPT-4 to solve more programming prob-
lems. Moreover, the code produced exhibits greater
compliance with programming specifications, as
detailed on our GitHub repository.

Case study on self-optimization. We utilize an
instance from the test set to illustrate the process
of self-refinement, as shown in Figure 4. It begins
with Code Smell Analysis for smell detection, iden-
tifying code issues such as No Docstrings and Lack
of Comments, Unclear Variable Naming, Hard-
coded Limits, High Complexity, and Redundant
Sorting. Subsequently, the built-in LLM-based
system proposes corresponding improvements for
these suggestions. Finally, these suggestions are
incorporated into system prompts to achieve self-
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def find_interesting_numbers():

    # Read number of test cases

    T = int(input())  

    for _ in range(T):  

        M = int(input())  

        interesting_nums = []  

        

        for A in range(1, M + 1):  

            for B in range(A, M + 1):  

                if (A * B) % M == 0:  

                    if (A * B) // M == A + B:  

                        interesting_nums.append(A)  

                        break  

                        

        interesting_nums = sorted(set(interesting_nums))  

        

        # Output results

        print(len(interesting_nums))  

        for num in interesting_nums:  

            print(num)

find_interesting_numbers()

def find_interesting_numbers():

    """

    This function identifies all interesting numbers for given positive integers M.

    An interesting number A has at least one integer B (A <= B) such that:

        - A * B is divisible by M

        - (A * B) / M = A + B

    It reads multiple test cases, calculates the interesting numbers for each M,

    and prints the results.

    """

    # Read number of test cases

    T = int(input("Enter the number of test cases: "))

    for _ in range(T):

        divisor = int(input("Enter a positive integer M: "))

        interesting_nums = set()  # Use a set to store unique interesting numbers

        # Find interesting numbers

        for interesting_num in range(1, divisor + 1):

            if (divisor % interesting_num) == 0:

                multiplier = (divisor // interesting_num) + interesting_num

                # Check if A * B is divisible by M and meets the condition

                if (interesting_num * multiplier) % divisor == 0:

                    interesting_nums.add(interesting_num)

        # Convert to sorted list

        interesting_nums = sorted(interesting_nums)

        # Output results

        print(len(interesting_nums))

        for num in interesting_nums:

            print(num)

find_interesting_numbers()

Lines: 1, 2,11,18 Lines: 1--9, 16, 23

No Docstrings and 
Lack of Comments

Added a docstring 
and comments

Lines: 8, 12, 13 Lines: 13, 14, 19

Unclear Variable 
Naming

M -> divisor
A -> interesting_num
B -> multiplier

Lines: 12 Lines: 17

Hardcoded Limits
Focused the logic to 
avoid unnecessary 
computations

Lines: 12, 13 Lines: 18, 19

High ComplexityUse a single loop and 
mathematical properties

Lines: 19 Lines: 24

Redundant Sorting
Use a single loop and 
mathematical 
properties

SuggestionCode Smell Smell Detection Refinement

Figure 4: Self-refinement process.

refinement. The supplementary material in our
GitHub repository also shows the results of ana-
lyzing certain metrics of the code before and after
refinement using maintainability analysis, quanti-
fying the effectiveness of the refinement. Results
show that the overall cyclomatic complexity and
Halstead Volume of the code have decreased, re-
sulting in an increase in the Maintainability Index,
further showing the positive feedback of the entire
refinement on code maintainability.

3.3 Examples for Application Scenarios

We also showcase how to use MPLSandbox for
other tasks, including unit test generation, code
translation, and vulnerability localization, signifi-
cantly improving development efficiency.

Unit test generation. When code is more com-
plicated, unit tests often struggle to comprehen-
sively cover the generated code, leaving untested
code segments at risk of latent defects. Prior work
(Jiang et al., 2024) shows that users can identify
uncovered code segments by using unit test analy-
sis tools and integrate them into prompts to drive
LLMs to generate supplementary test cases to val-
idate uncovered segments. MPLSandbox stream-
lines this process, allowing users to accomplish this
task by directly designing system prompts, thereby
enhancing the performance of test completeness
and reliability.

Code translation. LLMs have been extensively
applied in code translation. Research ((Tao et al.,
2024; Luo et al., 2024)) shows that integrating in-
formation such as unit tests and CFGs into sys-
tem prompts can significantly enhance LLMs’ code
comprehension capabilities, improving translation
success rates. MPLSandbox can effortlessly ac-
complish code translation tasks by integrating the
above helpful results from the code analysis mod-
ule into the information integration module using
system prompts.

Vulnerability location. LLMs also empower
developers to identify code security vulnerabilities.

Some work ((Lu et al., 2024; Akuthota et al., 2023))
shows that integrating results from static vulnerabil-
ity analysis tools into prompts enhances detection
accuracy, enabling function-level vulnerability lo-
calization. MPLSandbox enables users to achieve
this task by directly utilizing the required analy-
sis results and constructing their system prompts,
significantly reducing development costs.

The system prompts used in all scenarios are
provided in our GitHub repository.

4 Conclusion

We introduce MPLSandbox, an out-of-the-box
multi-programming language sandbox for unified
compiler feedback and comprehensive code analy-
sis of LLM-generated code. Researchers can use it
to analyze codes and integrate it into training and
deployment to improve code correctness and qual-
ity. MPLSandbox can also enhance LLM perfor-
mance on various code tasks through flexible tool
combinations. Our goal is to support and advance
further research in LLMs for software engineer-
ing by simplifying the complexity of training and
employing LLMs in various code tasks.

Limitations

First, although we have pre-installed numerous
dependency packages for each programming lan-
guage sub-sandbox, it is evident that we cannot
install every package a user needs. However, users
can easily install the required packages by using
scripts. Secondly, we have built-in support for eight
commonly used programming languages. Users
can simply create sub-sandboxes to support addi-
tional programming languages. In the future, we
plan to support more programming languages. Fi-
nally, our sandbox requires Docker to run. If the
user’s training node is itself a Docker container, this
sandbox cannot run within it, as the Docker cannot
be nested inside another Docker container. To re-
solve this, we can run the sandbox in a distributed
manner on a physical machine and remotely invoke
the sandbox via IP address and port number.
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A Related Work

LLMs are increasingly popular in software engi-
neering applications (Ren et al., 2024; Le et al.,
2022). However, the code generated by these mod-
els can contain malicious vulnerabilities. To ensure
security and stability, and provide robust monitor-
ing capabilities, it is essential to execute these com-
pilation and execution processes within an isolated
sandbox environment (Garfinkel et al., 2003; Liang
et al., 2003). Despite this necessity, the develop-
ment of open-source sandboxes is still in its infancy.
Most sandboxes developed for LLM-generated
code are typically focused on a single or two pro-
gramming languages (Engelberth et al., 2012; pro,
2024; Dif, 2024). MultiPL-E (Cassano et al., 2022),
LLMSandbox (LLM, 2024), and SandboxFusion
(Liu et al., 2024) are multi-programming language
sandboxes. However, MultiPL-E is limited to its
MultiPL-E dataset, which is hard to integrate with
online training tasks. LLMSandbox uses standard
images for its environment, which lacks numerous
commonly used dependency libraries. MPLSand-
box was released prior to SandboxFusion. More-
over, our tool integrates over 40 diverse code anal-
ysis tools, providing comprehensive feedback sig-
nals such as static analysis and efficiency evalua-
tion. Moreover, applying LLMs to code tasks is
often accompanied by the use of a plethora of code
analysis tools (Shojaee et al., 2023; Silva et al.,
2023). Researchers usually spend significant time
and effort on tasks like environment setup and re-
solving versioning and dependency issues.

B Docker Containerization Overhead
Analysis

As shown in Figure 5, the introduction of Docker
containerization in MPLSandbox incurs measur-
able but justifiable resource overhead: CPU uti-
lization increases by 1-5%, and memory consump-
tion rises by 7-80MB across programming lan-
guages. This overhead primarily stems from virtu-
alization penalties in process scheduling and mem-
ory management. For instance, C++ exhibits the
highest CPU impact (+5%) due to compilation-
intensive operations, while Java shows the most
significant memory increase (+80MB) due to JVM
optimization constraints within containers. Cru-
cially, this trade-off delivers essential security and
stability benefits: Docker effectively isolates ma-
licious code execution, prevents system-wide fail-
ures through resource constraints, and ensures con-
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Figure 5: Docker containerization overhead analysis in
MPLSandbox.

sistent environment reproducibility. Through ar-
chitectural optimizations including warm sandbox
pools that reduce startup latency by 90% and dis-
tributed scheduling that isolates training resources,
MPLSandbox effectively contains this overhead to
under 5% of total processing time in production
deployments, validating the design choice as a net
positive for secure, reliable code analysis across
diverse programming environments.

C Case Study on Usage

In this section, we conduct case studies centered
around the five analysis methods based on the afore-
mentioned configuration example in Section 2.3.

Code Basic Analysis returns a Basic Feedback
along with Abstract Syntax Tree (AST) and Control
Flow Graph (CFG). As shown in Figure 6, the basic
feedback includes fields such as Reward, Compiler
Feedback, Correct Rate, Unit Inputs, Required Out-
puts and Language. From the compiler feedback,
it can be seen that the code has successfully passed
all unit tests, achieving a correct rate of 1.0 and a
reward of 1.0.

The AST presents the syntactic structure of the
code in a tree diagram, where each node represents
a syntactic element in the code. This structure helps
to understand the logic and hierarchical relation-
ships of the code, facilitating code optimization
and error detection. The CFG graphically displays
the execution paths and decision points of the code,
including basic blocks and edges, which helps to
reveal the execution order of the program and po-
tential branching conditions.

Code Smell Analysis and Code Bug Analysis
modules are designed to identify potential issues
or vulnerabilities in the code, reporting specific
line numbers along with the categories of smells
or bugs. To better demonstrate this functionality,
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(b) AST （c）CFG(a) Basic Feedback

----Reward----

 1.0 

----Compiler Feedback---- 

"All Unit tests Pass!"

----Correct Rate---- 

1.0 

----Unit Inputs----

["51","120","211"], 

"Required Outputs"

["[1, 3, 6, 10, ..., 1176, 

1225, 1275, 1326]", "[1, 2, 

5, 10, 17, 26,...,13925, 

14162, 1728001]", "[0, 4, 8, 

12, 16, 20, 24, 28, 32, ..., 

1377, 1458, 1539, 1620, 

1701, 1782, 1863]"]

----Language----

"python" 

Figure 6: Reports of code basic analysis.
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def calculation():

    """This function does some calculations.

    It processes the input through various statements"""

    # Get input from user

    n = int(input())  

    if n <= 100:

        result = [i * (i + 1) // 2 for i in range(1, n + 1)]  

    elif n <= 200:

        # Some calculation

        result = [i ** 2 for i in range(n)] 

        if n % 3 == 0:

            result.append(n ** 3)

    elif n < 300:

        result = []

        if n % 2 == 0:

            for i in range(n):

                if i % 2 == 0:

                    result = [i + 1 for i in result]

                else:

                    result.append(i ** 3)

        else:

            for i in range(2, 10):

                for j in range(n):

                    if j % i == 0:

                        result.append(i * j)

    else:

        if n % 2 == 0:

            result = [i + 1 for i in result] 

        else:

            result = [i for i in range(n)]

    print(result) 

calculation()

l Vague Comments

Lines: 2, 3, 10

lUndefined Variable

Lines: 30

Figure 7: Reports of code smell and
bug analysis.

Unit Input: "51" Unit Input: "120" Unit Input: "211"
Code Lines

Hits Time Per 
Hits %Time Hits Time Per 

Hits %Time Hits Time Per 
Hits %Time

1

1 2.3 2.3 7 1 2.4 2.4 2.2 1 2.5 2.5 0.7 2

1 0.7 0.7 2 1 0.7 0.7 0.6 1 0.7 0.7 0.2 3

1 17.1 17.1 52 4

1 0.4 0.4 0.4 1 0.4 0.4 0.1 5

1 58.1 58.1 54.7 6

1 0.8 0.8 0.8 7

1 1.7 1.7 1.6 8

1 0.4 0.4 0.1 9

1 0.4 0.4 0.1 10

1 0.8 0.8 0.1 11

12

13

14

15

16

17

9 4.6 0.5 0.3 18

1696 543.7 0.3 39.4 19

1688 593.7 0.4 43.0 20

391 189.0 0.5 13.7 21

1 0.9 0.9 2.7 1 0.6 0.6 0.6 1 0.6 0.6 0 22

1 23.2 23.2 21.8 23

1 12 12 36.4 1 18.3 18.3 17.2 1 27 27 7.7 24

def calculation():

    n = int(input())

    if n <= 100:

        result = [i * (i + 1) // 2 for i in range(1, n + 1)]

    elif n <= 200:

        result = [i ** 2 for i in range(n)]

        if n % 3 == 0:

            result.append(n ** 3)

    elif n < 300:

        result = []

        if n % 2 == 0:

            for i in range(n):

                if i % 2 == 0:

                    result.append(i * 2)

                else:

                    result.append(i ** 3)

        else:

            for j in range(2, 10):

                for i in range(n):

                    if i % j == 0:

                        result.append(i * j)

    if n % 2 == 0:

        result = [i + 1 for i in result]

    return result

    

Figure 8: Reports of code efficiency evaluation.

def calculation():
    n = int(input())
    if n <= 100:
        result = [i * (i + 1) // 2 for i in         
range(1, n + 1)]
    elif n <= 200:
        result = [i ** 2 for i in range(n)]
        if n % 3 == 0:
            result.append(n ** 3)
    elif n < 300:
        result = []
        if n % 2 == 0:
            for i in range(n):
                if i % 2 == 0:
                    result.append(i * 2)
                else:
                    result.append(i ** 3)
        else:
            for j in range(2, 10):
                for i in range(n):
                    if i % j == 0:
                        result.append(i * j)
    if n % 2 == 0:
        result = [i + 1 for i in result]
    return result
calculation()
    

overlap coverage 

unit input: "120" unit input: "211"

unit input: "51"

Unit Input "51" "120" "211"

Total Lines 23

Executed Lines 7 11 14

Coverage Rate 0.3 0.48 0.61

Avg. Coverage Rate 0.46

(a) Code Execution Status (d) Unit Input - Coverage Rate Distribution

(c) Coverage Information

(b) Executed Code Legend

Figure 9: Reports of unit test analysis.

we have intentionally introduced some code smell
patterns and vulnerabilities into the code. In Fig-
ure 7, the yellow warning boxes indicate the loca-
tions where MPLSandbox has detected code smells,
while the red warning boxes mark the positions of
identified code bugs.

Code Efficient Evaluation provides an analy-
sis of code execution efficiency for different test
cases. Figure 8 reports the Hits (the number of
times a code line is executed), Time (the total exe-
cution time of the code line in milliseconds), Per
Hits (the average time required for each execution
of the code line in milliseconds), and %Time (the
percentage of the total execution time taken by the
execution time of the code line). As shown in Fig-
ure 8, code lines 2, 3, 5, 22 and 24 have common
execution records under different test inputs, with
some code lines taking a longer execution time un-
der specific inputs. For example, code line 6 takes
58.1 milliseconds to execute under the input "120"
because in this case, line 6 is a loop that iterates
120 times. Code line 23 takes 33.2 milliseconds to
execute under the input "210" because this line of
code contains a loop that iterates based on the vari-
able result, which is strongly related to the input
210. Code lines 12, 13, and 14 have a large number
of executions under the input "210", because this
part involves the processing of a large range loop.

Therefore, these perceptions of code line execu-
tion efficiency undoubtedly provide very important
basis for further performance optimization.

Unit Test Analysis returns a comprehensive cov-
erage report for the given unit tests. As shown
in Figure 9, green lines represent the overlapping
parts of the executed lines for different unit inputs,
while yellow, blue, and red lines represent the non-
overlapping parts of the executed lines for the test
cases "51", "120", and "210", respectively. With
the unit input "51", a total of 7 lines of code were
executed, achieving a coverage rate of 0.3. For a
total of 23 lines of code, the overall average cover-
age rate is 0.46. This indicates that the current test
cases do not fully cover the code paths.

Furthermore, Unit Test Analysis has conducted
a complete coverage statistics for all test inputs
within the given range. It can be observed that
within the range of unit input 0 <= n < 300, this set
of code has resulted in 7 different coverage possi-
bilities, with the highest being 0.65 and the lowest
being 0.35. The distribution of unit inputs across
various coverage rates is relatively even. It is ev-
ident that after iterating through all possible test
inputs, the code coverage remains at a relatively
low level, suggesting that the logical framework
of the code itself still has significant room for im-
provement.
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