
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 3: System Demonstrations), pages 513–523
July 27 - August 1, 2025 ©2025 Association for Computational Linguistics

: Organized Literature Synthesis with Attribution

Amanpreet Singh* Joseph Chee Chang∗ Chloe Anastasiades∗ Dany Haddad∗

Aakanksha Naik Amber Tanaka Angele Zamarron Cecile Nguyen Jena D. Hwang
Jason Dunkleberger Matt Latzke Smita Rao Jaron Lochner Rob Evans

Rodney Kinney Daniel S. Weld Doug Downey∗ Sergey Feldman∗

Allen Institute for AI
{amanpreets, sergey}@allenai.org

Abstract

Retrieval-augmented generation is increasingly
effective in answering scientific questions from
literature, but many state-of-the-art systems are
expensive and closed-source. We introduce Ai2
Scholar QA, a free online scientific question
answering application. To facilitate research,
we make our entire pipeline public: as a cus-
tomizable open-source Python package1 and
interactive web app, along with paper indexes
accessible through public APIs and download-
able datasets. We describe our system in detail
and present experiments analyzing its key de-
sign decisions. In an evaluation on a recent sci-
entific QA benchmark, we find that Ai2 Scholar
QA outperforms competing systems.

qa.allen.ai

§ allenai/ai2-scholarqa-lib

Å Demo Video

3 Python Package

1 Introduction

Long-form scientific question answering systems
use retrieval-augmented generation (RAG) (Lewis
et al., 2020) over scientific literature to answer com-
plex questions. These systems produce responses
that bring together relevant insights from dozens of
papers to help users rapidly learn about a body of
scientific work. Examples are OpenScholar (Asai
et al., 2024), Elicit, Consensus, and others §5.

Most of these systems are expensive to use and
closed source, relying on models, workflows, and
retrieval solutions not shared publicly. These issues
create barriers for researchers who wish to study
or build on the work. In response, we introduce
Ai2 Scholar QA, a free-to-use scientific QA system
(qa.allen.ai), and share our key components as
open source software and public APIs.

Scholar QA follows a multi-stage pipeline (Fig-
ure 1) that starts by querying paper indexes: one

* Core contributors
1We use closed state-of-the-art LLMs.

from Semantic Scholar with over 100M abstracts,
and a new index that we introduce in this work
containing 11.7M full-text scientific papers. The
pipeline then re-ranks the retrieved passages with
a cross-encoder, and finally prompts a Large Lan-
guage Model (LLM) to filter, cluster, and synthe-
size the passages into an answer. The final answer
is presented to the user in a report with expand-
able sections of prose, bulleted lists, and tables.
Claims in the answer are supported by citations,
which can be clicked to reveal the cited paper’s
title and authors (with links to their corresponding
Semantic Scholar pages), and in many cases rele-
vant excerpt(s) from the paper, allowing for quick
verification of the claim.

The system is based on open source code, en-
abling the community to reproduce and build on
it. We release the code for our pipeline, prompt-
ing workflow and Web application. The retrieval
indexes, including the new full text search index,
are available as Semantic Scholar APIs and dataset
downloads, and are continually updated with new
articles (Kinney et al., 2023). Together, these re-
sources can be combined with any generative LLM
API to power a complete long-form scientific QA
application. Our production system currently uses
Anthropic’s Claude 3.7 (Anthropic, 2024).

We present analyses that justify key design de-
cisions in our architecture in §4. Our choice of
retrieval models and configuration is informed by
evaluation over a collection of real and synthetic
user queries and accompanying passages judged for
relevance by a LLM, both of which we release pub-
licly. We compare Scholar QA’s answers against
several baselines, demonstrating that it achieves
state-of-the-art performance on the ScholarQA-CS
benchmark (Asai et al., 2024). Finally, we discuss
the reception of Scholar QA by users. The strong
majority (85%) of user feedback is positive, and the
reported issues suggest important improvements
for future work.

513

https://scholarqa.allen.ai/
https://github.com/allenai/ai2-scholarqa-lib/
https://youtu.be/augQU982aGQ
https://pypi.org/project/ai2-scholar-qa/
qa.allen.ai

Extract quotes from passages

Retrieval (§2.1) Reranker (§2.2)

Cross-Encoder
Reranker

Top 50-ranked
Passages

Query Validation
with omni-moderation-latest

11.7M
full-text

papers

INPUT User Query ScholarQA

Multi-Step Generation (§2.3)

…
Per paper,

aggregate
passages

“ ”“ ” “ ”
“ ”

Per paper,
per passage,

extract quotes

 Cluster Extracted Quotes

Build answer outline & synthesize
extracted quotes to outline. E.g.,

…
Report Generation w/ Tables

Step 3

“ ”“ ”
“ ” “ ”

“ ”
•
•

:

Background
section

Bulleted
sections

Summary
paragraphs

w/ LLM

w/ LLM Step 2 w/ LLM

OUTPUT
Long-form answer report

+

Keyword search (100M papers)

Passage search

Search APIs:

Query Decomposer
• Query rephrase, dense & sparse
• Paper filters

Step 1 Step 2 Step 3
w/ LLM w/ LLM

Figure 1: Scholar QA Pipeline Overview

2 Pipeline
The Scholar QA architecture (Figure 1) has three
primary components: 1) retrieval to identify rel-
evant passages from a corpus of scientific litera-
ture; 2) a neural cross-encoder that re-ranks the
passages to select the most relevant top-k; and 3)
multi-step LLM generation to process the passages
into a comprehensive report. Next, we describe
each component of the pipeline in detail.
Query Validation. Prior to processing a query,
we employ OpenAI’s omni-moderation-latest2

model for safeguarding against potentially harmful
content and return appropriate error messages.

2.1 Retrieval
We use the Semantic Scholar API (Kinney et al.,
2023) for retrieval, specifically its endpoint for key-
word search over paper abstracts, and our new end-
point for querying snippets from open-access pa-
pers. A query decomposer re-formulates the user
query for each endpoint and retrieves up to 256
snippets and 20 abstracts. These texts are referred
to as "passages" below.
Query Decomposer. The two retrieval endpoints
differ in their effective query formats (one targets
keyword and the other semantic queries) and filter-
ing of results based on the user’s preferences for pa-
per metadata (paper year, venue, field of study). In
our query decomposition step, an LLM is prompted
to re-format the user query into paraphrases appro-
priate for each endpoint, and to extract the user’s
requested settings for the metadata filters. We use
the outputs of this step for retrieval.
Search APIs. The Semantic Scholar keyword
search API is described in Kinney et al. (2023). We
introduce a new /snippet/search endpoint, which
searches over a corpus of passages extracted from
S2ORC (Lo et al., 2020), loaded into a Vespa clus-
ter with papers and passages. Papers include meta-
data for filtering. Passages are derived from a pa-

2https://platform.openai.com/docs/guides/
moderation

per’s title, abstract, or body and can be filtered at
the paper level. The index includes 11.7M full-text
papers across the fields of study listed here, and a
total of 285.6M passages.

Each passage is limited to 480 tokens and trun-
cated at sentence and section boundaries where
possible, having an overlap of one sentence (up
to 64 tokens) with the preceding and follow-
ing passages. Passage text is embedded with
mxbai-embed-large-v1 (Lee et al., 2024) with
binary quantization, and placed into a dense (ap-
proximate nearest neighbor) index, as well as a
traditional sparse keyword index.

We first retrieve a union of embedding and
keyword-based matches, applying any specified fil-
ters. The filtered results are ranked with a weighted
sum of embedding similarity and bm25 scores.

2.2 Reranking

The passages obtained from the retrieval step are
subsequently passed to a neural re-ranker and the
top 50 results are retained. The re-ranker is a
cross-encoder that encodes both the query and a
candidate document simultaneously and outputs a
relevance score used to rank the documents. We
selected mxbai-rerank-large-v1 (Shakir et al.,
2024) based on the results in §4.2 and host it on
Modal with a single NVIDIA L40S GPU.

2.3 Multi-step Generation

The generation phase employs a three-step ap-
proach: first, the retrieved passages are processed
to extract more precise quotes relevant to the query;
second, the quotes are thematically clustered into
separate sections appropriate for the answer; finally,
a controlled generation process composes the final
report one section at a time, synthesizing the quotes
assigned to that section.

Quote extraction. Passages from the retrieval
stage can be lengthy and may contain extraneous
information not useful for answering the user query
(Asai et al., 2023). The quote extraction stage aims

514

https://api.semanticscholar.org/api-docs/#tag/Snippet-Text/operation/get_snippet_search
https://docs.vespa.ai/
https://platform.openai.com/docs/guides/moderation
https://platform.openai.com/docs/guides/moderation
https://api.semanticscholar.org/api-docs/#tag/Snippet-Text/operation/get_snippet_search
www.modal.com

to select only the most relevant quotes from the
passages to improve the precision of the answer.

We instruct an LLM to extract verbatim quotes
that directly contribute to answering the query (Slo-
bodkin et al., 2024). As input to the extraction, we
gather all passages from the re-ranker for a given
paper, and concatenate these to the abstract of the
paper. This aggregation helps create a richer con-
text conducive to extracting relevant quotes. The
LLM processes each paper’s content independently
and returns the selected quotes separated by el-
lipses. If the entire paper context is deemed irrele-
vant, it is discarded from further processing.

Answer Outline and Clustering. For generating
a comprehensive research report, the effective or-
ganization of reference materials is essential for its
overall coherence. We propose a thematic outline
framework where the answer is divided into sec-
tions representing topics, and the reference quotes
are assigned to these topics. This mapping allows
the system to selectively focus only on the pertinent
subset of quotes when synthesizing a section.

First, the LLM is instructed to generate a list of
themes in logical order and the appropriate syn-
thesis format for each theme, independent of the
quotes from the previous step. The first section is al-
ways an introduction or background to provide the
user the basics for understanding the answer. The
format of each section can be either a paragraph or
a bulleted list, serving different information needs.
Paragraphs convey nuanced summaries from multi-
ple papers, while bulleted lists enumerate related
papers (e.g., models, datasets, or interactive sys-
tems). These list are also the catalyst for generating
the comparison tables (see §2.3). Following this,
the sections are assigned 0 or more quotes. In case
no quote is assigned to a section, it is generated
completely from the LLM weights.

Report Generation. With the answer outline in
place, each section of the report is synthesized se-
rially conditioned on the query, reference sources,
and the sections prior to it. The LLM is also in-
structed to generate a TLDR for each section. The
references are either the quotes assigned to the sec-
tion or abstracts of papers that are cited within these
quotes. This citation following method allows the
LLM to condition on and cite foundational sources
which are not uncovered in retrieval. The LLM is
instructed to cite the sources for each claim in the
generated section text and cite generations from its
parameters as LLM Memory.

Paper Comparison Table Generation. Since bul-
leted list sections typically include closely related
papers (e.g., different datasets), we additionally
generate tables that compare and contrast all pa-
pers cited in that section using common aspects
(e.g., size and annotation method). This pipeline is
detailed in Newman et al. (2024). At a high level,
the inputs are the query to Scholar QA, the section
title, and the abstracts of all papers cited in the
section. An LLM first produces a set of common
aspects (columns) to compare papers (rows). Each
cell (paper-aspect pair) is filled with a value using
the full-text of the paper. Finally, as not all aspects
are applicable to every paper (e.g., one paper might
not be about a dataset), we filter out columns and
rows with a high proportion of missing values. Fig-
ure 3 [A] shows an expanded table in Scholar QA
where related papers from a section are compared
across a set of common aspects ([B]).

3 Scholar QA: Interface and Source Code

Scholar QA is open-sourced as an extensible
Python package (ai2-scholar-qa) and a Type-
script and React-based interactive web application.
The LLM functionality of Scholar QA is imple-
mented with litellm, which supports swapping a
variety of models using your own keys. Thus, the
community can build upon Scholar QA and easily
visualize the results (examples in Appendix A). Be-
low we describe the user experience of the demo.3

Progress and Section Streaming. High system
latency can hinder usability. On average, Scholar
QA produces a full report in 2.5 minutes (N=500,
σ=70s), which is comparable to modern LLM-
based research tools. To further improve usability,
the following designs were used: 1) Displaying
detailed real-time progress of the system (Nielsen,
1994) so users can examine the number of papers,
passages, and sections being processed. 2) Present-
ing each section as soon as it is generated, so users
can begin browsing the first section in 50 seconds
(N=500, σ=24s) post issuing a query (Appendix H).

Expandable Sections. By default, sections are
collapsed showing only their titles, TLDR sum-
maries, and number of cited sources. This gives
users a gist of the information included in the re-
port (Figure 2 [A]). Users can then click on the title
of a section they wish to read to expand it ([B]).

3Our production system has a few additional features like
downloadable reports, login and links to other Ai2 systems.

515

Figure 2: Multi-section [B] report generated by Scholar QA. References are linked to supporting excerpts [C].
Thumbs and free text feedback are collected for the full report [A], and also for each section and inline table.

References and Evidence Excerpts. To verify
the claims in the report, users can click on the inline
citations (Figure 2 [C]) or the pink excerpt icon in
the inline table cells (Figure 3 [C]) to bring up a
popup paper card. From the paper card, they can
see the relevant excerpts used during the generation
or click on the title to open the paper directly.

User Feedback Collection. We collect thumbs
up/down or textual feedback for the whole report
(Figure 2 [A]) and at each section and inline table.

4 Evaluation

4.1 Retrieval

We tuned our retrieval setup by optimizing rank-
ing over a dev set of 500 synthetic queries (see
Appendix C) and the top 1000 passages for each
based on GIST embedding distance (Solatorio,
2024). We generated binary relevance labels with
gpt-4-turbo (see Appendix B for the prompt),
which were found to have 80% agreement with

Figure 3: Inline tables compare papers [A] with com-
mon aspects [B] with values linked to supporting ex-
cerpts from the papers [C].

516

Figure 4: Embedding ranking performance for various
compression methods and matryoshka cutoffs. The x-
axis indicates the size of the vector index based relative
to using int8 quantization and the full embedding size.
The red circle indicates the selected configuration. Em-
bedding size is notated next to each point.

human annotators on a sample of 100 queries.

Pipeline Tuning. We optimized several aspects
of retrieval over this dev set: embedding model
selection and quantization method for it, the com-
ponents and weights in the final ensemble, and
(when relevant) the target Matryoshka dimension
for the embeddings (Kusupati et al., 2024).

We experimented with medium sized embedding
models based on top performers on the retriever
and ranking tasks of the MTEB (Muennighoff
et al., 2022) leaderboard on HuggingFace. Table 4
in Appendix D lists our candidate models. The
mxbai-embed-large-v1 (Lee et al., 2024) embed-
dings performed best over our dev set. Figure 4 val-
idates our choice of quantization method and target
Matryoshka dimension for these embeddings. We
chose ubinary quantization with no Matryoshka
truncation, (indicated by a red circle on the plot)
since it satisfied our storage constraints without a
large drop in performance. We experimented with
ensembling SparseEmbed (Kong et al., 2023), em-
bedding cosine similarity, BM25, and chose the
latter two (weight split of (0.6, 0.4) respectively)
based on the results (See Appendix E). The BM25
scores are normalized with min-max scaling before
computing the ensemble score.

4.2 Reranking

We chose the re-ranker based on evaluation over a
mixture of real scientific questions from the Stack
Exchange Computer Science, Math, and Statistics
communities, real research queries written by the
authors and their colleagues, and synthetic ones
generated by fine-tuning GPT-4o-mini over ques-
tions from the ScholarQA-CS dataset (Asai et al.,

Model (Size)
Latency

(sec/query)
nDCG
@10

mRR

bge-reranker-v2-m3 (568M) 0.14 0.913 0.973
akariasai/ranker_large (568M) 0.14 0.906 0.970
jina-reranker-v2-base (278M) 0.06 0.907 0.972
mxbai-rerank-large-v1 (435M) 0.46 0.927 0.975
mxbai-rerank-base-v1 (184M) 0.19 0.919 0.974
mxbai-rerank-xsmall-v1 (70M) 0.11 0.911 0.970
mxbai-rerank-base-v2 (0.5B) 0.40 0.918 0.974
mxbai-rerank-large-v2 (1.5B) 0.70 0.911 0.975

Table 1: Cross encoder re-ranker results on our dataset
of GPT-4o labels. The best results are highlighted.

2024). For a given query, passages are retrieved
and then awarded a relevance score in the range
0-3 with GPT-4o. We experiment with multiple
state-of-the-art re-rankers (Chen et al., 2024; Shakir
et al., 2024; Asai et al., 2024), and, as shown in
Table 2, mxbai-rerank-large-v1 gives the best
results across the board (even outperforming its v2
model on our task). To reduce latency for deploy-
ment, we implemented optimizations like Pytorch
model compilation. We release the evaluation data
consisting of 2,426 queries and 225,618 passages.

4.3 Generation

We evaluate the final output of Scholar QA on the
ScholarQA-CS dataset which consists of expert-
annotated rubrics for 100 Computer Science re-
search questions. The question-specific expert
rubrics account for 60% of the final score, while
the rest is computed based on global metrics of
length, expertise and citations. We use GPT-4o
(Hurst et al., 2024) as a judge with the utility pro-
vided by Asai et al. (2024) for automatic evaluation
and compare against several baselines.

As shown in Table 2, our system outperforms
popular LLMs: Llama 3.1 (Dubey et al., 2024),
GPT 4.1 and Claude Sonnet 3.7 (Anthropic, 2024).
It even outperforms reasoning models such as Son-
net 3.7 Thinking (Anthropic, 2025), o1-mini (Ope-
nAI, 2024b) and o3-mini (Zhang et al., 2025) over-
all on the Scholar QA-CS benchmark. This setup
lacks any retrieval so the models generate the re-
sponses completely from parametric memory. The
benchmark rewards attribution and supporting ev-
idence as a measure of trust in the system, so
these models score lower overall. The reasoning
based models perform better than our system on
the rubrics score, which suggests that they may be
superior backbones for our system. However, due
to the additional reasoning tokens, these models
are more expensive and also significantly increase
latency.

517

For contemporary QA systems, we compare
against OpenScholar with GPT-4o4, PaperQA2
(Skarlinski et al., 2024), Perplexity’s Sonar Deep
Research and STORM (Shao et al., 2024a). Pa-
perQA2 did not release their retrieval corpus, so
we substitute it with our retrieval pipeline for a fair
comparison. Scholar QA obtains the best scores
both on rubrics and overall, with the variant us-
ing Claude 3.7 Sonnet as the backbone scoring 2.4
points higher than STORM. For these QA systems,
we also evaluate the attribution quality based on
ALCE (Gao et al., 2023), which proposes entail-
ment between claims and evidence to compute ci-
tation precision and recall. Again, we use GPT-4o
as a judge to predict entailment (See Appendix F
for the prompt) and treat each sentence in a re-
sponse as a claim. Even with a report spanning
multiple sections where all the sentences might not
be cited, Scholar QA comes out far ahead of the
other QA systems. Due to a lack of retrieval, this
evaluation was not conducted when the LLMs are
simply prompted to generate a response from mem-
ory. An interesting discovery from our analysis
was that with an updated version of GPT-4o (i.e.
gpt-4o-2024-11-20) as the judge, the scores are
inflated compared to using gpt-4o-2024-08-06,
even though the relative rankings are consistent
(See Appendix J). For parity with Asai et al. (2023),
we report the rubrics and citation scores with the
older and newer model as the judge, respectively.

During our initial experiments, we restricted
ScholarQA to only summarize the insights con-
ditioned on the quotes extracted from retrieved pas-
sages. However, in cases where the retrieved pas-
sages were not relevant enough, the system failed
to answer the question in favor of just discussing
the information in the quotes. Moreover, for over
30% of instances in ScholarQA-CS, the rubrics
require background information, even though the
question might not. So, we updated our system
LLM prompts to – a) Generate section text from
memory if there is a lack of relevant retrieved pas-
sages and cite as LLM Memory and b) generate
the first section as a background or introduction for
the rest of the answer. The results reported here are
obtained post these changes.

To finalize the backbone LLM for the production
web application we conducted an anonymized pair-

4Our results are not identical to Asai et al. (2024) due to
variance across LLM-as-a-judge runs. Their reported total
score for OS-GPT-4o is 57.7. We re-ran the evaluation in
order to obtain rubrics only scores, which they did not report.

Model Score Model Score

Rubrics Total Rubrics Total Cite

LLM Prompting (No Retrieval) QA Systems

Llama 3.1-8B 48.8 47.3 SQA-Claude 3.7 S 58.0 61.9 48.1
Llama 3.1-70B 52.4 48.6 SQA-Claude 3.5 S 52.6 61.3 52.1
Claude 3.5 S 50.4 46.6 OS-GPT-4o 49.3 53.5 25.9
Claude 3.7 S 61.5 55.9 PaperQA2 38.7 51.4 25.3

+Thinking 62.7 55.7 Perplex. Sonar DR 38.7 52.8 25.2
GPT-4.1 63.2 56.2 STORM 54.2 59.5 40.2
o1-mini 62.3 55.5
o3-mini 60.6 50.2

Table 2: Evaluation results on ScholarQA-CS bench-
mark. System responses are either generated by simply
prompting LLMs with the questions or by issuing the
queries to RAG based QA systems. Expert annotated
rubrics only scores are reported in addition to the over-
all total. The overall best results are highlighted and
best results within a category are underlined. SQA: Ai2
Scholar QA, OS: Open Scholar, S: Sonnet, Claude 3.5
S: claude-3-5-sonnet-20241022.

wise comparison among the authors of this work.
We compare Claude 3.7 against 3.5. Out of 18 com-
parisons, Claude 3.7 Sonnet was the overwhelming
favorite with 17 wins, reinforcing our hypothesis
that (with no other changes) our system improves
with newer and better backbone LLMs.

4.4 Real-world Usage and User Feedback

We have publicly deployed Scholar QA for 9
weeks, and received 30.2k questions from 8,219
unique visitors. On average, each response is about
2.4k words and costs $0.50 to produce. We ob-
served 1,075 monthly repeated users who had is-
sued queries on two distinct days over the course of
a 30 day window. We analyze the user query types
and the most prominent themes were deep-dive
into specific research topics (15k) and comparative
analysis of specific prior work (5k) (detailed dis-
tribution in Appendix I). A total of 2,433 thumbs
feedback were submitted (Figure 2 [A]) and 85%
were positive. These suggests real-world users ben-
efited from using Scholar QA.

For insight into the failure modes, we manually
examined the 383 instances of neutral/negative free-
form feedback. Table 3 lists the feedback types we
identified along with their counts as of May 2025
(example feedback in Appendix G). We hypoth-
esize that follow-up questions may help address
insufficient answer detail and cases with a lack of
retrieved documents, while improved retrieval may
help address incomplete or incorrect references and
off-topic responses.

518

Category Count

Incorrect or Missing References 126
Off-topic or Misunderstood Query 113
Request for More Detail or Specificity 289
General Feedback on Quality 149
Language or Format Issues 78

Table 3: Feedback Categories and Counts

5 Related Work

Scientific Question Answering. Answering sci-
entific questions involves navigating scholarly
sources and accurately retrieving and synthesizing
them. Recently, OpenScholar (Asai et al., 2024)
introduced a retrieval-augmented model designed
explicitly for scientific literature synthesis with
citation-supported responses with significant im-
provement in accuracy and reduced citation halluci-
nation. Scholar QA extends its capabilities by lever-
aging the latest state-of-the-art LLMs and an open
source generation pipeline that filters literature into
precise quotes and produces thematically organized
and detailed answers. STORM (Shao et al., 2024b)
synthesizes comprehensive, Wikipedia-like articles,
a distinct task from long-form scientific question
answering. Other works have focused on litera-
ture review synthesis: LitLLM (Agarwal et al.,
2024), which like Scholar QA uses a structured
planning-and-generation pipeline similar, and Sur-
veyForge (Yan et al., 2025), which outlines heuris-
tics before generation. Their code was not available
at the time of our evaluation. Zhou et al. (2025)
present a survey categorizing AI-driven research
support systems across various stages of the scien-
tific process, including literature synthesis.

Commercial Tools for Scientific QA. Commer-
cial RAG tools have emerged to facilitate research
specifically tailored for scientific literature, such
as Consensus (Consensus, 2024), which synthe-
sizes findings from research papers, Scite (Scite,
2024), which evaluates claims by analyzing cita-
tion contexts, and Elicit (Elicit, 2024), which sup-
ports structured scientific literature reviews. Other
general-purpose tools also support scientific in-
quiries: Perplexity (Perplexity, 2024), You.com
(You.com, 2024), OpenAI Deep Research (Ope-
nAI, 2024a) and Gemini Deep Research (Deep-
Mind, 2024). Although these platforms leverage
advanced retrieval and generation capabilities to fa-
cilitate literature reviews and deliver rapid insights,

they can be too expensive for widespread academic
use and typically lack transparency regarding their
pipelines. In contrast, Scholar QA is free with open
sourced code and access to search APIs that enable
the research community to build upon it.

6 Conclusion

We present Ai2 Scholar QA, a freely-available long-
form literature synthesis system that generates re-
ports for complex scientific questions. We release
key components as open source code and public
APIs, and report experiments analyzing design de-
cisions and demonstrate state-of-the-art results.

Limitations

Supplementing the user feedback discussed in sub-
section 4.4, we would like to outline some limita-
tions of our system and evaluation and our plans to
mitigate them as part of fuure work:

(i) Ai2 Scholar QA uses proprietary and closed-
source LLM as the backbone for our produc-
tion pipeline. As shown in Table 2, open
source models lag behind the proprietary mod-
els in our evaluation. However, we are actively
experimenting with open-sourced LLMs to re-
place the closed ones partially or completely
in the pipeline. The open-sourced models will
be specifically trained to do well on long-form
scientific question answering and each of the
sub-tasks in our multi-step generation. Fur-
ther, our code is open-sourced and can easily
be used with potentially any available LLM
api provider supported by litellm.

(ii) We evaluate the answers generated by Scholar
QA and compare against other systems on
ScholarQA-CS dataset in subsection 4.3.
Even though the answer rubrics are collected
via human annotation, the evaluation is only
limited to questions in the Computer Science
domain and further relies completely on an
LLM as the evaluator. In ongoing work, we
are investigating more accurate benchmarks
for evaluating long form scientific answers.
Our approach uses real queries posed by users
to Scholar QA, and human preference labels
over answers from multiple systems in not just
Computer Science, but Biomedicine and other
scientific domains. These labels can serve as
not only for evaluation, but also as training
signals for models.

519

Acknowledgments

We would like to thank the anonymous reviewers
for helpful comments, suggestions and feedback on
the manuscript. We would also like to acknowledge
the Ai2 ScholarQA users for providing construc-
tive feedback that helped us improve the system.
Finally, we thank David Albright for helping with
the demo video, the Ai2 communications team for
their help with user outreach, and Ai2 engineers
and researchers for their help with user testing be-
fore launch.

References
Shubham Agarwal, Gaurav Sahu, Abhay Puri, Is-

sam Hadj Laradji, Krishnamurthy Dj Dvijotham, Ja-
son Stanley, Laurent Charlin, and Christopher Pal.
2024. Litllms, llms for literature review: Are we
there yet?

Anthropic. 2024. The claude 3 model family: Opus,
sonnet, haiku.

Anthropic. 2025. Claude 3.7 sonnet system card.

Akari Asai, Jacqueline He, Rulin Shao, Weijia Shi,
Amanpreet Singh, Joseph Chee Chang, Kyle Lo,
Luca Soldaini, Sergey Feldman, Mike D’Arcy,
David Wadden, Matt Latzke, Minyang Tian, Pan
Ji, Shengyan Liu, Hao Tong, Bohao Wu, Yanyu
Xiong, Luke S. Zettlemoyer, and 6 others. 2024.
Openscholar: Synthesizing scientific literature with
retrieval-augmented lms. ArXiv, abs/2411.14199.

Akari Asai, Zeqiu Wu, Yizhong Wang, Avirup Sil, and
Hannaneh Hajishirzi. 2023. Self-rag: Learning to
retrieve, generate, and critique through self-reflection.
ArXiv, abs/2310.11511.

Jianlv Chen, Shitao Xiao, Peitian Zhang, Kun Luo, Defu
Lian, and Zheng Liu. 2024. Bge m3-embedding:
Multi-lingual, multi-functionality, multi-granularity
text embeddings through self-knowledge distillation.
Preprint, arXiv:2402.03216.

Consensus. 2024. Consensus – ai for research. Ac-
cessed: 2025-03-28.

Google DeepMind. 2024. Gemini – deep research mode.
Accessed: 2025-03-28.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela
Fan, Anirudh Goyal, Anthony S. Hartshorn, Aobo
Yang, Archi Mitra, Archie Sravankumar, Artem Ko-
renev, Arthur Hinsvark, Arun Rao, Aston Zhang, and
510 others. 2024. The llama 3 herd of models. ArXiv,
abs/2407.21783.

Elicit. 2024. Elicit – the ai research assistant. Accessed:
2025-03-28.

Tianyu Gao, Howard Yen, Jiatong Yu, and Danqi Chen.
2023. Enabling large language models to generate
text with citations. In Conference on Empirical Meth-
ods in Natural Language Processing.

OpenAI Aaron Hurst, Adam Lerer, Adam P. Goucher,
Adam Perelman, Aditya Ramesh, Aidan Clark,
AJ Ostrow, Akila Welihinda, Alan Hayes, Alec Rad-
ford, Aleksander Mkadry, Alex Baker-Whitcomb,
Alex Beutel, Alex Borzunov, Alex Carney, Alex
Chow, Alexander Kirillov, Alex Nichol, Alex Paino,
and 397 others. 2024. Gpt-4o system card. ArXiv,
abs/2410.21276.

Rodney Michael Kinney, Chloe Anastasiades, Rus-
sell Authur, Iz Beltagy, Jonathan Bragg, Alexan-
dra Buraczynski, Isabel Cachola, Stefan Candra, Yo-
ganand Chandrasekhar, Arman Cohan, Miles Craw-
ford, Doug Downey, Jason Dunkelberger, Oren Et-
zioni, Rob Evans, Sergey Feldman, Joseph Gorney,
David W. Graham, F.Q. Hu, and 29 others. 2023.
The semantic scholar open data platform. ArXiv,
abs/2301.10140.

Weize Kong, Jeffrey M. Dudek, Cheng Li, Mingyang
Zhang, and Michael Bendersky. 2023. Sparseembed:
Learning sparse lexical representations with contex-
tual embeddings for retrieval. In Proceedings of the
46th International ACM SIGIR Conference on Re-
search and Development in Information Retrieval,
SIGIR ’23, page 2399–2403. ACM.

Aditya Kusupati, Gantavya Bhatt, Aniket Rege,
Matthew Wallingford, Aditya Sinha, Vivek Ra-
manujan, William Howard-Snyder, Kaifeng Chen,
Sham Kakade, Prateek Jain, and Ali Farhadi. 2024.
Matryoshka representation learning. Preprint,
arXiv:2205.13147.

Sean Lee, Aamir Shakir, Darius Koenig, and Julius
Lipp. 2024. Open source strikes bread - new fluffy
embeddings model.

Patrick Lewis, Ethan Perez, Aleksandara Piktus, Fabio
Petroni, Vladimir Karpukhin, Naman Goyal, Hein-
rich Kuttler, Mike Lewis, Wen tau Yih, Tim Rock-
täschel, Sebastian Riedel, and Douwe Kiela. 2020.
Retrieval-augmented generation for knowledge-
intensive nlp tasks. ArXiv, abs/2005.11401.

Kyle Lo, Lucy Lu Wang, Mark Neumann, Rod-
ney Michael Kinney, and Daniel S. Weld. 2020.
S2orc: The semantic scholar open research corpus.
In Annual Meeting of the Association for Computa-
tional Linguistics.

Niklas Muennighoff, Nouamane Tazi, Loic Magne, and
Nils Reimers. 2022. Mteb: Massive text embedding
benchmark. In Conference of the European Chapter
of the Association for Computational Linguistics.

Benjamin Newman, Yoonjoo Lee, Aakanksha Naik,
Pao Siangliulue, Raymond Fok, Juho Kim, Daniel S.
Weld, Joseph Chee Chang, and Kyle Lo. 2024. Arx-
ivdigestables: Synthesizing scientific literature into
tables using language models. In Conference on Em-
pirical Methods in Natural Language Processing.

520

https://api.semanticscholar.org/CorpusID:274965768
https://api.semanticscholar.org/CorpusID:274965768
https://api.semanticscholar.org/CorpusID:268232499
https://api.semanticscholar.org/CorpusID:268232499
https://api.semanticscholar.org/CorpusID:276612236
https://api.semanticscholar.org/CorpusID:274166189
https://api.semanticscholar.org/CorpusID:274166189
https://api.semanticscholar.org/CorpusID:264288947
https://api.semanticscholar.org/CorpusID:264288947
https://arxiv.org/abs/2402.03216
https://arxiv.org/abs/2402.03216
https://arxiv.org/abs/2402.03216
https://consensus.app
https://gemini.google.com/deepresearch
https://api.semanticscholar.org/CorpusID:271571434
https://elicit.org
https://api.semanticscholar.org/CorpusID:258865710
https://api.semanticscholar.org/CorpusID:258865710
https://api.semanticscholar.org/CorpusID:273662196
https://api.semanticscholar.org/CorpusID:256194545
https://doi.org/10.1145/3539618.3592065
https://doi.org/10.1145/3539618.3592065
https://doi.org/10.1145/3539618.3592065
https://arxiv.org/abs/2205.13147
https://www.mixedbread.ai/blog/mxbai-embed-large-v1
https://www.mixedbread.ai/blog/mxbai-embed-large-v1
https://api.semanticscholar.org/CorpusID:218869575
https://api.semanticscholar.org/CorpusID:218869575
https://api.semanticscholar.org/CorpusID:215416146
https://api.semanticscholar.org/CorpusID:252907685
https://api.semanticscholar.org/CorpusID:252907685
https://api.semanticscholar.org/CorpusID:273695596
https://api.semanticscholar.org/CorpusID:273695596
https://api.semanticscholar.org/CorpusID:273695596

Jakob Nielsen. 1994. Enhancing the explanatory power
of usability heuristics. In Proceedings of the SIGCHI
conference on Human Factors in Computing Systems,
pages 152–158.

OpenAI. 2024a. Chatgpt – deep research mode. Ac-
cessed: 2025-03-28.

OpenAI. 2024b. Openai o1 system card.

Perplexity. 2024. Perplexity ai – ask anything. Ac-
cessed: 2025-03-28.

Nils Reimers and Iryna Gurevych. 2019. Sentence-bert:
Sentence embeddings using siamese bert-networks.
In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing. Associa-
tion for Computational Linguistics.

Scite. 2024. Scite – smart citations for research. Ac-
cessed: 2025-03-28.

Aamir Shakir, Darius Koenig, Julius Lipp, and Sean Lee.
2024. Boost your search with the crispy mixedbread
rerank models.

Yijia Shao, Yucheng Jiang, Theodore Kanell, Peter Xu,
Omar Khattab, and Monica Lam. 2024a. Assisting
in writing Wikipedia-like articles from scratch with
large language models. In Proceedings of the 2024
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies (Volume 1: Long Papers),
pages 6252–6278, Mexico City, Mexico. Association
for Computational Linguistics.

Yijia Shao, Yucheng Jiang, Theodore A. Kanell, Pe-
ter Xu, Omar Khattab, and Monica S. Lam. 2024b.
Assisting in writing wikipedia-like articles from
scratch with large language models. Preprint,
arXiv:2402.14207.

Michael D. Skarlinski, Sam Cox, Jon M. Laurent,
James D. Braza, Michaela M. Hinks, Michael J
Hammerling, Manvitha Ponnapati, Samuel G. Ro-
driques, and Andrew D. White. 2024. Language
agents achieve superhuman synthesis of scientific
knowledge. ArXiv, abs/2409.13740.

Aviv Slobodkin, Eran Hirsch, Arie Cattan, Tal Schuster,
and Ido Dagan. 2024. Attribute first, then generate:
Locally-attributable grounded text generation. In
Annual Meeting of the Association for Computational
Linguistics.

Aivin V. Solatorio. 2024. Gistembed: Guided in-sample
selection of training negatives for text embedding
fine-tuning. ArXiv, abs/2402.16829.

Saba Sturua, Isabelle Mohr, Mohammad Kalim Akram,
Michael Günther, Bo Wang, Markus Krimmel, Feng
Wang, Georgios Mastrapas, Andreas Koukounas, An-
dreas Koukounas, Nan Wang, and Han Xiao. 2024.
jina-embeddings-v3: Multilingual embeddings with
task lora. Preprint, arXiv:2409.10173.

Liang Wang, Nan Yang, Xiaolong Huang, Binxing
Jiao, Linjun Yang, Daxin Jiang, Rangan Majumder,
and Furu Wei. 2022. Text embeddings by weakly-
supervised contrastive pre-training. arXiv preprint
arXiv:2212.03533.

Xiangchao Yan, Shiyang Feng, Jiakang Yuan, Renqiu
Xia, Bin Wang, Bo Zhang, and Lei Bai. 2025. Sur-
veyforge: On the outline heuristics, memory-driven
generation, and multi-dimensional evaluation for au-
tomated survey writing.

You.com. 2024. You.com – personalized ai search. Ac-
cessed: 2025-03-28.

Brian Zhang, Eric Mitchell, Hongyu Ren, Kevin Lu,
Max Schwarzer, Michelle Pokrass, Shengjia Zhao,
Ted Sanders, Adam Kalai, Alexandre Passos, Ben-
jamin Sokolowsky, Elaine Ya Le, Erik Ritter, Hao
Sheng, Hanson Wang, Ilya Kostrikov, James Lee, Jo-
hannes Ferstad, Michael Lampe, and 93 others. 2025.
Openai o3-mini system card.

Zekun Zhou, Xiaocheng Feng, Lei Huang, Xiachong
Feng, Ziyun Song, Ruihan Chen, Liang Zhao, Weitao
Ma, Yuxuan Gu, Baoxin Wang, Dayong Wu, Guop-
ing Hu, Ting Liu, and Bing Qin. 2025. From hy-
pothesis to publication: A comprehensive survey of
ai-driven research support systems.

521

https://chatgpt.com
https://api.semanticscholar.org/CorpusID:272648256
https://www.perplexity.ai
https://arxiv.org/abs/1908.10084
https://arxiv.org/abs/1908.10084
https://scite.ai
https://www.mixedbread.ai/blog/mxbai-rerank-v1
https://www.mixedbread.ai/blog/mxbai-rerank-v1
https://doi.org/10.18653/v1/2024.naacl-long.347
https://doi.org/10.18653/v1/2024.naacl-long.347
https://doi.org/10.18653/v1/2024.naacl-long.347
https://arxiv.org/abs/2402.14207
https://arxiv.org/abs/2402.14207
https://api.semanticscholar.org/CorpusID:272827223
https://api.semanticscholar.org/CorpusID:272827223
https://api.semanticscholar.org/CorpusID:272827223
https://api.semanticscholar.org/CorpusID:268692231
https://api.semanticscholar.org/CorpusID:268692231
https://api.semanticscholar.org/CorpusID:268032661
https://api.semanticscholar.org/CorpusID:268032661
https://api.semanticscholar.org/CorpusID:268032661
https://arxiv.org/abs/2409.10173
https://arxiv.org/abs/2409.10173
https://api.semanticscholar.org/CorpusID:276813240
https://api.semanticscholar.org/CorpusID:276813240
https://api.semanticscholar.org/CorpusID:276813240
https://api.semanticscholar.org/CorpusID:276813240
https://you.com
https://api.semanticscholar.org/CorpusID:276119184
https://api.semanticscholar.org/CorpusID:276775839
https://api.semanticscholar.org/CorpusID:276775839
https://api.semanticscholar.org/CorpusID:276775839

A Python Package Usage

Figure 5 shows a minimal example of running
the system pipeline with the ai2-scholar-qa python
package and how every component can be extended
or modified as the users see fit.

Figure 5: ai2-scholar-qa usage example

B Document Relevance Prompt

We used the following prompt to obtain binary rele-
vance labels, which agreed with human annotators
80% of the time:

If any part of the following text
is relevant to the following question,
then return 1, otherwise return 0.
Non-english results are not relevant,
results which are primarily tables are
not relevant.

C Retrieval Tuning Query Generation

Queries for the dev set were obtained from three
internal sources of human research questions, and a
set of LLM generations. We experimented with sev-
eral methods for constructing the synthetic LLM
questions. Our approach was to generate questions
similar to those asked by real users by prompting
the LLM to output: (1) a question based on para-
graphs retrieved from the corpus, and (2) a "more
general" version of the first question. We only use
the "more general" set since they were more similar
to real user queries.

D Embedding Models for Retrieval

We experimented with multiple top embedding
models from the MTEB leader board to optimize
retrieval for our system. These are outlined in Ta-
ble 4.

HuggingFace embedding model name
Snowflake/snowflake-arctic-embed-m5

sentence-transformers/all-mpnet-base-v2
(Reimers and Gurevych, 2019)
avsolatorio/GIST-Embedding-v0 (Solatorio, 2024)
Snowflake/snowflake-arctic-embed-m-long 6

intfloat/e5-base-v2 (Wang et al., 2022)
mixedbread-ai/mxbai-embed-large-v1
(Lee et al., 2024)
jinaai/jina-embeddings-v3 (Sturua et al., 2024)

Table 4: Embedding Models to optimize retrieval

E Retrieval Ensemble Experiments

Figure 6 shows results of our ensembling experi-
ments for the full-text retrieval index. SparseEm-
bed introduces an overhead with minimal perfor-
mance gains, so we picked an ensemble of em-
bedding similarity and BM25 as our final ranking
metric.

Figure 6: Ranking performance for various ensembles
with relative size of the index required. Excluding
SparseEmbed reduces the index size by 20% without a
significant drop in ranking performance.

F Prompt for Evaluating Attribution
As an Attribution Validator, your task
is to verify whether a given reference
can support the given claim. A claim can
be either a plain sentence or a question
followed by its answer. Specifically,
your response should clearly indicate
the relationship: Attributable,
Contradictory or Extrapolatory. A
contradictory error occurs when you
can infer that the answer contradicts
the fact presented in the context,
while an extrapolatory error means that
you cannot infer the correctness of
the answer based on the information
provided in the context. Output your
response as a json with only a single
key "output" and a value of one among
- ("Attributable", "Contradictory",

522

"Extrapolatory").
Claim: claim
Reference: ref_excerpt

G User Feedback Examples

Table 5 lists some examples of the user complaints
for Scholar QA reports.

Feedback
The structure is good, but the articles you choose are not
from top journals.
The first citation says that rabbits can obtain cholesterol
from diet, not rats.
These provide a lot of general information about the topic,
but nothing here actually addresses the central question I
asked.
The answer did not address the ‘MOBILIZATION’ tech-
niques at all! The answer is wrong because it addressed
Exercise therapy!
They address the general setting, but not the specific question
I asked.
It’s only analysing on SASAF model, but there are more.

Table 5: Example Feedback on Research Issues

H Progress Updates and Report Sections

Figure 7 demonstrates how we display in real-time
the progress of the system during generation. This
included number of papers and passages the were
processed in each step, as well as the outline as it
is being generated. Each section appears as soon
as it is generated, so users can begin browsing the
first sections.

Figure 7: Progress indication and section streaming.

I Query Type Analysis

To analyze the types of questions users are asking,
we use an LLM to categorize the queries. The most

Figure 8: Distribution of different question types sub-
mitted to Scholar QA deployed Web application.

prominent types were comprehensive deep-dive
into a specific research topic (15k) and comparative
analysis of prior work (5k). Other themes such as
factoid QA or specific methods, datasets accounted
for fewer queries.

J Generation Results with updated
GPT-4o

Table 6 shows results on ScholarQA-CS with
gpt-4o-2024-11-20 as the LLM judge. These
results can be contrasted with the first two
columns in Table 2 which are obtained with
gpt-4o-2024-08-06 as the judge. Even though
the absolute scores are inflated compared to Ta-
ble 2, the relative rankings are about the same with
Scholar QA getting the best overall score.

Model Score Model Score

Rubrics Total Rubrics Total

LLM Prompting (No Retrieval) QA Systems

Llama 3.1-8B 51.8 48.2 SQA-Claude 3.7 S 67.3 67.2
Llama 3.1-70B 57.0 51.2 SQA-Claude 3.5 S 61.3 67.1
Claude 3.5 S 57.8 51.3 OS-GPT-4o 54.9 59.9
Claude 3.7 S 68.4 60.8 PaperQA2 43.8 54.1

+Thinking 68.3 58.7 Perplex. Sonar DR 43.9 56.0
GPT-4.1 69.3 61.8 STORM 59.2 64.7
o1-mini 69.1 61.3
o3-mini 68.5 55.9

Table 6: Evaluation results on ScholarQA-CS bench-
mark with gpt-4o-2024-11-20 as the judge. System
responses are either generated by simply prompting
LLMs with the questions or by issuing the queries to
RAG based QA systems. Expert annotated rubrics
only scores are reported in addition to the overall to-
tal. The overall best results are highlighted and best
results within a category are underlined. SQA: Ai2
Scholar QA, OS: Open Scholar, S: Sonnet, Claude 3.5
S: claude-3-5-sonnet-20241022.

523

