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Abstract

Application systems using natural language in-
terfaces to databases (NLIDBs) have democra-
tized data analysis. This positive development
has also brought forth an urgent challenge to
help users who might use these systems without
a background in statistical analysis to formulate
bias-free analytical questions. Although signif-
icant research has focused on text-to-SQL gen-
eration accuracy, addressing cognitive biases
in analytical questions remains underexplored.
We present VeriMinder,1, an interactive system
for detecting and mitigating such analytical vul-
nerabilities. Our approach introduces three key
innovations: (1) a contextual semantic map-
ping framework for biases relevant to specific
analysis contexts (2) an analytical framework
that operationalizes the Hard-to-Vary principle
and guides users in systematic data analysis (3)
an optimized LLM-powered system that gener-
ates high-quality, task-specific prompts using
a structured process involving multiple candi-
dates, critic feedback, and self-reflection.

User testing confirms the merits of our ap-
proach. In direct user experience evaluation,
82.5% participants reported positively impact-
ing the quality of the analysis. In compara-
tive evaluation, VeriMinder scored significantly
higher than alternative approaches, at least 20%
better when considered for metrics of the analy-
sis’s concreteness, comprehensiveness, and ac-
curacy. Our system, implemented as a web ap-
plication, is set to help users avoid "wrong ques-
tion" vulnerability during data analysis. VeriM-
inder code base with prompts 2 is available as
an MIT-licensed open-source software to facil-
itate further research and adoption within the
community.

1 Introduction

Natural Language to SQL (NL2SQL) systems have
emerged as a critical technology for democratizing

1https://veriminder.ai
2https://reproducibility.link/veriminder

Figure 1: Example from experimental dataset showing
VeriMinder mitigating biases via refinement suggestions

data access, enabling non-technical users to query
complex databases without specialized SQL knowl-
edge. However, this positive development is not
without significant risks. A technically perfect SQL
query derived from a fundamentally flawed analyti-
cal question will yield misleading results. Systems
like SQLPalm (Sun et al., 2023), SPLASH (Elgo-
hary et al., 2020), and DAIL-SQL (Gao et al., 2023)
focus on NL2SQL accuracy but do not consider the
analytical quality of the user’s original question.

Consider this example shown in Figure 1: A fi-
nancial analyst tasked to identify “loan accounts
that are at risk” but asks for “clients with the largest
loans.” This query exhibits multiple cognitive bi-
ases: (1) Similarity bias - incorrectly assuming that
“largest loans” and “at-risk loans” are similar cat-
egories, (2) Framing bias - framing the question
around loan size rather than risk factors, completely
changing what information will be retrieved, and
(3) Selection bias - focusing only on large loans
selects a non-representative subset of potentially
risky accounts, as small loans may have higher
default rates. While a state-of-the-art NL2SQL
system can generate syntactically correct SQL for
the original question, it cannot address these ana-
lytical blindspots, leaving a critical vulnerability
unaddressed.

Research shows cognitive biases significantly
impact professional decision-making across fields
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like medicine and laws (Berthet, 2022). The con-
sistent association of these biases, such as anchor-
ing and availability, with detrimental outcomes like
health diagnostic inaccuracies underscores the crit-
ical need for mitigation systems like VeriMinder.
As Peter Drucker said, “The most serious mistakes
are not being made due to wrong answers. The
truly dangerous thing is asking the wrong ques-
tion.” (Drucker, 1971).

Traditional approaches to mitigating such is-
sues rely on static checklists (Lenders and Calders,
2025) or educational interventions (Thompson
et al., 2023), which are challenging to implement
consistently. While FISQL (Menon et al., 2025)
and SPLASH (Elgohary et al., 2020) offer limited
feedback mechanisms, they focus primarily on SQL
refinement rather than addressing analytical quality
issues (Qu et al., 2024).

To address these challenges, we present Ver-
iMinder, which identifies and mitigates analyti-
cal vulnerabilities in NL2SQL workflows. Our
interactive web application addresses these vul-
nerabilities with three innovations: (1) a semantic
framework that systematically detects biases and
blindspots in analytical questions; (2) a structured
analytical process based on the "Hard-to-Vary"
principle (Deutsch, 2011); and (3) an optimized
LLM-driven refinement interface, integrated with
NL2SQL workflows. VeriMinder integrates seam-
lessly with existing NL2SQL systems through sim-
ple configuration, supporting users of such sys-
tems with robust analytical question formulation
alongside accurate SQL generation. Our evalu-
ation demonstrates that VeriMinder significantly
enhances analytical outcomes, outperforming base-
line approaches across key analytical metrics.

2 System Architecture

VeriMinder operationalizes Deutsch’s Hard-to-
Vary principle (Deutsch, 2011) through a system-
atic architecture to identify and mitigate analytical
vulnerabilities in user questions (Q), transform-
ing potentially biased queries into robust analytical
explanations (E) within a given domain (D) and
decision context (C). This principle posits that
good explanations are constrained, such that alter-
ing their components weakens the explanations or
creates inconsistency. Applied to data analytics,
a robust explanation E, often operationalized via
SQL queries (S), is hard-to-vary if its components
necessarily and cohesively address Q in context C,

lacking arbitrary elements whose removal wouldn’t
degrade quality. Easily varied explanations, con-
versely, allow interchangeable components without
specific roles, potentially leading to misleading re-
sults from flawed questions (e.g., analyzing broad
expense categories instead of particular cost drivers
while deciding on governmental cost-cutting mea-
sures). VeriMinder enforces this by ensuring the
analysis pinpoints specific factors, yielding data-
supported, falsifiable explanations that resist varia-
tion.

2.1 Core Modules and Architecture

Figure 2: Three-stage framework operationalizing the
Hard-to-Vary principle.

The VeriMinder system implements a systematic
approach that helps analysts refine vulnerable ques-
tions into robust data analysis to operationalize the
hard-to-vary principle. As shown in Figure 2, our
architecture processes natural language questions
through three sequential stages: Data Preparation,
Analytical Validation, and Refinement Synthesis.

The system analyzes the question and decision
context in the data preparation stage to identify
potential analytical vulnerabilities and relevant
schema elements. During Analytical Validation,
vulnerabilities are detected, and structural analy-
sis is performed using argument components and
counter-argument testing to verify their signifi-
cance. In Refinement Synthesis, the system gener-
ates targeted refinement suggestions that help with
analysis aligned with a hard-to-vary approach for
data-backed explanations for the particular decision
context.

VeriMinder implements this framework using a
modular service-based architecture (Figure 3) for
flexibility, featuring five core services communi-
cating via standardized interfaces: Auth (user pro-
visioning/access, future enterprise plugins), Sug-
gestion (implements core framework analytics),
NL2SQL (extends the approach from (Qu et al.,
2024) with metadata and dataset-specific distri-
bution information and uses Gemini Flash 2.0
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Figure 3: Modular architecture supporting scalability
and flexible deployment modes

(Google DeepMind, 2025)), Analysis (compares
initial vs. refined results for user reflection), and
User Feedback (collects improvement data). The
underlying analytical framework components (de-
tailed in Appendix A.1) comprise 53 categorized
cognitive biases (e.g., Memory, Statistical, Fram-
ing), data schema patterns (temporal, categorical,
numerical detailed in Appendix A.2), the Toulmin
model for argument structure evaluation (Toul-
min, 1958) (Appendix A.3), and counter-argument
frameworks (Greitemeyer, 2023) for questions that
help address challenges and refine explanations
(Appendix A.4).

For our system implementation, we developed
an experimental NL2SQL component based on
best practices for LLM-based text-to-SQL genera-
tion (Qu et al., 2024; Sun et al., 2023; Gao et al.,
2023). VeriMinder is designed to complement ex-
isting NL2SQL systems rather than replace them,
focusing on the orthogonal problem of analytical
question formulation.

2.2 Prompt Formulation Method
VeriMinder offers users for their free-form analyti-
cal questions bias-mitigating alternatives through
a three-stage workflow (Figure 4). The pipeline is
driven by a formally defined hard-to-vary objective
but is implemented with practical approximations
that respect LLM limits and inference latency.

Figure 4: Multi-candidate prompt engineering pipeline
with critic feedback and self-reflection.

2.2.1 Information-Theoretic Grounding
The architecture of VeriMinder is guided by a core
principle: a robust analytical question should maxi-
mize predictive insight about a decision while min-
imizing its own descriptive complexity, subject to
an interactive-latency budget. This section outlines
the ideal theoretical framework that motivates our
system’s design (§2.2.2) and details its translation
into a practical, multi-stage LLM pipeline (§2.2.3-
2.2.6), concluding with a discussion of its scope
and limitations (§2.2.7).

2.2.2 Idealized Theoretical Motivation
We formalize the principle of robust inquiry us-
ing the Hard-to-Vary (HV) score, a metric in-
spired by Deutsch’s concept of good explana-
tions (Deutsch, 2011) and the Minimum Descrip-
tion Length (MDL) principle (Rissanen, 1978;
Grünwald, 2007). For a set of selected analyti-
cal variables, S, and a decision target, T , the HV
score is:

HV (S) =
I(T ;S)

DL(S)
(1)

Here, I(T ;S) is mutual information (Cover and
Thomas, 2006), and DL(S) is the model’s descrip-
tion length. This formulation, which extends nor-
malized information metrics like the Information
Gain Ratio (Quinlan, 1993), rewards explanatory
density (high information per unit of complexity)
and echoes the objective of Information Bottleneck
theory (Tishby et al., 2000).

To verify this metric’s behavior, we developed a
numeric validation suite. As detailed in our code
repository, experiments on synthetic Bayesian net-
works demonstrate the HV score’s key properties
under idealized conditions. All simulations use
an exact mutual information computation and de-
fine complexity as the variable set cardinality, i.e.,
DL(S) = |S|. This provides empirical support
that the HV score is a sound theoretical target.

2.2.3 Practical Heuristic Proxies
Directly optimizing Eq. 1 is computationally in-
tractable even in structured feature spaces (Nguyen
et al., 2014), and becomes exponentially more com-
plex in the open-ended natural language domain
where the search space includes all possible ques-
tion formulations. VeriMinder therefore employs
LLM-based heuristic proxies guided by the HV
formula’s intuition. We recognize this is not a for-
mal equivalence; the desirable properties of the HV
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score hold exactly only under the formal defini-
tion, while our proxies aim to approximate them
empirically.

• LLM Critic Scores for I(T ;S): We use
scores from specialized LLM critics as a
proxy for information value. The rationale
is that high-quality questions (judged on in-
sight, logic, and bias mitigation) are more
likely to reduce uncertainty about the decision
target. This aligns with Information Foraging
Theory (Pirolli and Card, 1995) and the use
of LLMs as evaluators (Zheng et al., 2023;
Dubois et al., 2024).

• Motivated by evidence that excessive prompt
length can degrade LLM reasoning (Jiang
et al., 2024), our prompt templates are built
around a concise, analytical flow that goes
from context analysis to final question selec-
tion, designed to produce a minimal set of
high-impact questions. We therefore model
task complexity through this structured ana-
lytical process rather than raw token count.

2.2.4 Stage 1: Ensemble-based Candidate
Generation

To explore the analytical space, the system using
generates a diverse set of candidates using twelve
prompt templates. These templates are themselves
the output of an automated meta-level prompt engi-
neering process based on Claude 3.7 Sonnet model
(Anthropic, 2025) selected for its intelligence cat-
egory rank (Artificial Analysis, 2025)), ensuring
each targets a distinct analytical angle (e.g., vulner-
ability detection, schema validation). This ensem-
ble method ensures broad coverage, a technique
well-grounded in machine learning for both bag-
ging (Breiman, 1996) and modern LLM prompt-
ing (Zhou et al., 2023).

2.2.5 Stage 2: Distributed Critic Evaluation
Generated candidates are evaluated by a panel of
three specialized LLM critics (based on the Claude
3.7 Sonnet model). For efficiency, a random subset
of two critics evaluates each candidate. This imple-
ments distributed evaluation analogous to boosting,
where a committee of weak learners forms a robust
judgment (Schapire, 1990). This aligns with mod-
ern methods using self-consistency and multi-agent
consensus to improve LLM evaluation (Wang et al.,
2023; Li et al., 2024b).

2.2.6 Stage 3: Critic Feedback and Self
Reflection

Finally, the system performs a single self-reflection
pass that improves prompts using critic feedback.
This mirrors self-refinement techniques that im-
prove LLM performance (Madaan et al., 2023;
Shinn et al., 2023). At present we execute only
one iteration but multiple self-reflection rounds
would be a possible natural extension to the current
pipeline.

2.2.7 Scope and Limitations
Our approach has three main limitations. First,
our production system relies on heuristic search,
unlike the exhaustive search in our validation suite.
Second, critic scores and our analytical flow stages
are pragmatic surrogates, not formal equivalents,
for I(T ;S) and DL(S). Finally, our current cost
model is limited to response structure and does not
yet incorporate computational latency.

2.3 Interactive User Interface

VeriMinder’s user interface (Figure 5) employs a
progressive disclosure pattern for a guided work-
flow: users provide their questions and context, the
system executes the query while analyzing vulner-
abilities, suggests refinements for user selection,
presents a side-by-side comparison of results, and
explains detected issues and fixes. To enhance user
experience during intensive computations, server-
sent events (SSE) provide streaming updates and
educational insights. The system features a plug-
gable interface and unified abstraction layer to sup-
port multiple database types, utilizing SQLite (with
the BIRD-DEV benchmark (Li et al., 2023)) for ex-
ecution and MySQL for tracking application state.

3 Experiments

3.1 Experimental Setup

To comprehensively evaluate VeriMinder, we de-
signed a multi-step assessment framework address-
ing key research questions: (1) How effective is
the VeriMinder solution in improving the analy-
sis using the NL2SQL interface? (2) How does
our approach compare with alternative methods for
enhancing analytical quality on key accuracy, con-
creteness, and comprehensiveness metrics (Zhu
et al., 2024b)?

The evaluation dataset was derived from the
BIRD-DEV benchmark questions. To create re-
alistic decision contexts, we manually crafted the
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Figure 5: VeriMinder’s user interface workflow: (A)
Initial Question, (B) Query Results, (C) Refinement
Suggestions, (D) Comparative Analysis

164 decision scenarios following the Case Study
Method (Ellet, 2007), ensuring balanced coverage
of choice, evaluation, and diagnosis types. Data
analytics experts designed these scenarios to repre-
sent contexts where analytical vulnerabilities could
significantly impact outcomes. We employed TF-
IDF vectorization to match each decision with the
most semantically relevant question from BIRD-
DEV, creating a bipartite relationship. The final
decision text was lightly edited for grammar and
sentence structure to ensure consistency during the
user study without altering the analytical focus of
the decision contexts. This methodical approach
yielded 164 question-decision pairs, divided into
three subsets: 64 pairs (DS1) for human evaluations
and 100 pairs (DS2) for automated assessment. An
additional smaller subset DS1-T1 of 36 pairs was
created from the DS1. All splits were done ran-
domly.

To our knowledge, no direct comparable system
focuses on refining user-posed questions and ad-
dressing biases and blind spots. So in addition to
the Direct NL2SQL (standard text-to-SQL gener-
ation without analytical enhancements), we evalu-
ated VeriMinder by operationalizing three alterna-
tive approaches that the research community has
considered for either bias mitigation or holistic
analysis: Decision-Focused Query Generation
(generating questions directly from decision con-
text (Zhang et al., 2025)), Question Perturbation
(PerQS) (creating variations of the original ques-
tion (Zhu et al., 2024a)), and Critic-Agent Feed-
back (CAF) (implementing a critic agent providing
feedback (Li et al., 2024a)). We use the same LLM
(Gemini Flash 2.0) for all baselines as VeriMinder
and plan to release them as part of our code release.

A critical aspect of our evaluation methodology
was ensuring consistent SQL generation across all
compared systems. To isolate the effect of analyti-
cal question formulation (our focus) on NL2SQL
accuracy, we implemented the same experimental
NL2SQL component for all baseline systems and
VeriMinder. For our evaluations, we validated that
all generated SQL queries executed correctly be-
fore assessment, allowing us to focus purely on
analytical quality rather than technical SQL cor-
rectness.

3.2 User Experience Evaluation

We conducted an interactive user study with the
DS1-T1 dataset, recruiting 63 participants from
Prolific (Prolific, 2025) with diverse backgrounds.
For 30 scenarios, we received submissions from
two users each, and for three scenarios, from one
user (a total of 63 unique participants). Appendix
B1 shows the feedback form presented to partic-
ipants. The overall effectiveness of our solution
in improving analysis quality received 82.5% pos-
itive ratings (score of 4 or 5), with Gwet’s AC1
of 0.766. Suggestion effectiveness received 74.6%
positive ratings, with Gwet’s AC1 0.670. Ratio-
nale clarity had 66.7% (Gwet’s AC1 0.479) and
Scenario realism 61.9% (Gwet’s AC1 0.457) posi-
tive ratings. The reliability scores, particularly for
clarity and realism, likely reflect the diverse user
base from Prolific. Furthermore, the scenario real-
ism scores may be influenced by the experimental
setup, where decision contexts were constrained by
matching them to the existing BIRD-DEV dataset
questions.
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Figure 6: Percentage improvement of VeriMinder over
baseline systems on key analytical dimensions

3.3 Comparative System Evaluation

From the DS1 dataset, we conducted a compar-
ative evaluation of generated analysis questions
with one data analyst from each of the two US-
based software companies who responded to our
request. Appendix B.2 shows the screenshot of
the interface these data analyst users used to rate
the comparative strength of analysis questions in
a decision context. As with the previous test, we
only included the successful completions in our
analysis (because of an unrelated system outage
issue, we failed to get submissions for five en-
tries). For the 59 scenarios, we received submis-
sions from both users. VeriMinder demonstrated
strong performance across all dimensions: Accu-
racy (mean=7.87/10, 95% CI [7.57, 8.18]), Con-
creteness (mean=7.79/10, 95% CI [7.47, 8.10]),
and Comprehensiveness (mean=8.05/10, 95% CI
[7.74, 8.36]).

Figure 6 illustrates VeriMinder’s percentage im-
provement over each baseline system. The most
substantial improvements were observed against
Direct NL2SQL, with gains of 60.4% in Accuracy,
63.2% in Concreteness, and 86.9% in Comprehen-
siveness. Even against the strongest baseline (Ques-
tion Perturbation), VeriMinder showed improve-
ments of 22.1% in Accuracy, 28.4% in Concrete-
ness, and 21.2% in Comprehensiveness.

Statistical analysis confirmed these improve-
ments were significant (p < 0.001) with paired
t_test across all dimensions and baseline compar-
isons. Win rates further illustrated VeriMinder’s
quality, outperforming Direct NL2SQL in 83.9%
of Accuracy comparisons, 86.4% of Concreteness
comparisons, and 97.5% of Comprehensiveness
comparisons. Inter-rater reliability metrics based
on the model ranks demonstrated robust agreement
in our evaluations, with Gwet’s AC1 coefficients

Figure 7: Ranking distribution across analytical dimen-
sions; VeriMinder consistently achieves highest rank-
ings

of 0.941 for Accuracy, 0.960 for Concreteness, and
0.862 for Comprehensiveness.

3.4 Large-Scale Automated Evaluation

We employed an LLM-based evaluator for dataset
DS2 (100 scenarios) (Gemini Flash 2.0). With
known limitations of LLM for quantitative scoring
(OpenAI et al., 2024; Bubeck et al., 2023) but better
performance in verbal analysis and relative ranking
(Zheng et al., 2023; Gilardi et al., 2023), our test
focused on LLM skills in text comprehension and
comparative qualitative assessments. In Appendix
B.3, we discuss our approach to the prompt design.
For LLM-based evaluation, we first calibrated our
automated evaluator (based on Gemini 2.0 Flash)
against human judgments on comparative ranking
on a subset of 15 examples from DS1, finding a m
(Pearson’s r = 0.74, p < 0.001) that provided us
confidence in the automated results.

As Figure 7 shows, VeriMinder consistently
achieved the highest first-place rankings: 67.0%
for Data Accuracy, 67.0% for Comprehensiveness,
59.0% for Concreteness, and 66.0% for Overall
Usefulness. In contrast, Direct NL2SQL received
the most last-place rankings across all metrics,
highlighting the importance of analytical enhance-
ment beyond raw SQL generation.

3.5 Analysis of Bias Mitigation Effectiveness

The word cloud visualization in Figure 8 high-
lights VeriMinder’s key analytical capabilities as
identified through qualitative analysis of LLM re-
sponse. This visualization was generated through
automated content analysis of refinement sugges-
tions across the dataset. As shown in Figure 8,
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Figure 8: Key analytical capabilities driving cognitive
bias mitigation in VeriMinder

comparative analysis, pattern recognition, and re-
lationship exploration emerge as key capabilities,
enabling VeriMinder to mitigate cognitive biases.

3.6 Limitations

Several limitations should be noted. First, deploy-
ment in specific domains may require customiza-
tion of the analytical components. Second, the
system’s effectiveness depends on the underlying
NL2SQL engine quality, implemented here as a
simplified service module. We evaluated VeriM-
inder primarily on BIRD-DEV, which LLMs may
have seen during training, raising concerns about
information leakage and overestimated SQL suc-
cess rates on truly unseen databases. The interface
is desktop-optimized without accessibility testing.
Before general release, critical enhancements in-
clude mobile support, accessibility features, multi-
query handling, and validation on previously un-
seen databases to confirm generalization capabili-
ties.

4 Related Work

Our work builds upon research across cognitive
bias mitigation, natural language database inter-
faces, and LLM reasoning techniques in non-
ground truth regimes - analytical contexts where
there is no single ’correct’ answer but varying de-
grees of analytical quality based on comprehen-
siveness, accuracy and alignment with decision
objectives. Prior work in cognitive bias mitiga-
tion has examined biases in data-driven contexts
(Kahneman, 2011; Tversky and Kahneman, 1974;
Sumita et al., 2024; Ke et al., 2024), but primarily
focused on bias awareness rather than active miti-
gation within analytical workflows. Benchmarks
like Spider 2 (Lei et al., 2025) have driven recent
advancements in NL2SQL generation (Deng et al.,
2025; Wang and Liu, 2025), with LLM-based sys-

tems achieving high execution accuracy. However,
these systems primarily address technical SQL is-
sues rather than analytical vulnerabilities.

While VeriMinder primarily focuses on analyti-
cal question formulation, our evaluation employs
a simplified NL2SQL service. This service in-
corporates metadata and dataset-specific distribu-
tion information for SQL generation within our
setup, drawing inspiration from recent work on mit-
igating NL2SQL hallucinations, such as the Task
Alignment strategy proposed by (Qu et al., 2024)
and LLM based tabular learning tasks enhanced
through (Mohole and Galhotra, 2025) columnar
statistics for datasets. LLM prompting techniques,
including response selection (Zhao et al., 2025),
have enhanced reasoning capabilities but might
not be suitable for a non-ground truth regime
that requires an interactive experience. With our
principled approach, inspired by Deutsch’s frame-
work (Deutsch, 2011), and a multi-candidate refine-
ment process, we provide a lightweight yet system-
atic framework for optimizing LLM response for
downstream NL2SQL and analysis tasks.

5 Future Work and Conclusion

While VeriMinder currently targets NL2SQL in-
teractions, its analytical core is modality-agnostic,
enabling future extensions to Python/pandas code
generation for statistical exploration. Building on
Self-RAG (Asai et al., 2023), we plan to evolve
our self-reflection phase into a multi-head, bias-
aware rubric outputting calibrated probabilities for
evidence sufficiency, cognitive-bias flags, and sta-
tistical validity. These probabilities will both steer
an adaptive retriever-generator loop and serve as
bias-aware non-conformity scores for Conformal
LM (Quach et al., 2024), enabling rejection thresh-
olds that preserve coverage while reducing bias.
Our Information-Theoretic Framework extends nat-
urally to this calibration focus—by maximizing
HV(S) over reflection head outputs, Information
theory guided pruning could guarantee minimal
causal sufficiency while keeping calibration lean.

With VeriMinder, we’ve presented an end-to-end
system for mitigating analytical vulnerabilities in
NL queries. By operationalizing the "hard-to-vary"
explanations we demonstrated its effectiveness for
the NL2SQL use cases. Coupled with SELF-RAG
principles and bias-aware Conformal prediction,
this research can open avenues for NLIDBs that
provide answers not only probably correct but also
unbiased and grounded in evidence.

454



6 Broader Impact Statement

While VeriMinder addresses analytical vulnerabili-
ties, key limitations, and ethical points remain:

Analytical Guidance vs. Guarantee The sys-
tem offers guidance, not guarantees, enhancing but
not replacing user critical thinking. Vulnerability
detection may not be exhaustive.

Commercial API Dependencies Reliance on
commercial LLMs limits accessibility; future work
should explore open-source alternatives.

Cultural and Domain Biases The bias taxon-
omy is primarily Western-based and may need
domain-specific or cultural adaptation.

Potential for Misuse Analytical enhancement
tools could be misused; governance frameworks
are needed to ensure integrity.

Augmentation vs. Automation VeriMinder aug-
ments human analysis, preserving user agency
rather than fully automating the process.

We believe addressing analytical vulnerabilities
is vital as data access is democratized. VeriMinder
is an initial step aiming to inspire further research
at the intersection of cognitive science, data ana-
lytics, and NLP.
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Appendix A Analytical Framework
Components

Our framework integrates four complementary ana-
lytical perspectives via an optimized LLM prompt
to identify and mitigate vulnerabilities (biases, data
mismatches, logical flaws, framing issues) in natu-
ral language queries before SQL generation.

A.1 Cognitive Biases Framework
Incorporates 53 cognitive biases relevant to data
analysis (Soprano et al., 2024; Dimara et al., 2020;
Hilbert, 2012; Caverni et al., 1990; Ehrlinger et al.,
2016), mapping NL query patterns to potential rea-
soning pitfalls. Categories include:
1. Memory Biases (8): Hindsight, Imaginability,
Recall, Search, Similarity, Testimony, False Mem-
ory, Availability.
2. Statistical Biases (9): Base Rate Neglect,
Chance, Conjunction, Correlation, Disjunction,
Sample Size Neglect, Subset Bias, Gambler’s Fal-
lacy, Probability Neglect.
3. Confidence Biases (8): Completeness Illusion,
Illusion of Control, Confirmation Bias, Desire Bias,
Overconfidence, Redundancy Illusion, Dunning-
Kruger Effect, Bias Blind Spot.
4. Methodological Biases (12): Data Quality
Neglect, Multiple Testing Fallacy, Selection Bias,
Method Fixation, Tool Overconfidence, Selectivity,
Success/Self-Serving Bias, Test Inability, Anchor-
ing, Conservatism, Reference Dependence, Regres-
sion to Mean.
5. Framing & Contextual Biases (16): Fram-
ing Effect, Linear Assumption, Mode Influence,
Order Effect, Scale Distortion, Primacy Effect,
Recency Effect, Granularity Illusion, Attenuation
Bias, Complexity Avoidance, Escalation of Com-
mitment, Habit, Inconsistency, Rule Adherence,
Fundamental Attribution Error, Bandwagon Effect.

A.2 Data Schema Patterns
Examines NL query alignment with data types. Key
NL2SQL considerations: Temporal: Handling
date/time formats (e.g., ‘DATEPART‘), consistent
aggregation.

1. Categorical: Resolving ambiguity (e.g., ‘LA‘
vs ‘Los Angeles‘), implicit hierarchies.

2. Numerical: Interpreting average/median cor-
rectly (e.g., ‘AVG‘), handling outliers.

3. Relationship: Inferring ‘JOIN‘ paths, veri-
fying functional dependencies (e.g., city →
zip).

4. Data Quality: Assessing missing data
(‘NULL‘, ‘COALESCE‘), inconsistencies
(e.g., negative counts).

5. Transformation: Needs for normalization
(per capita), discretization (‘CASE WHEN‘),
aggregation (‘GROUP BY‘).

A.3 Toulmin Argument Structure
Evaluates the implicit argument in the NL
query/SQL based on Toulmin’s model (Toulmin,
1958):

1. Claim Clarity/Relevance: Does SQL capture
NL assertion and align with context? (‘SE-
LECT‘, ‘WHERE‘).

2. Evidence Sufficiency/Validity: Enough re-
liable data retrieved? (‘COUNT‘, ‘LEFT
JOIN‘). Trustworthy sources?

3. Warrant Validity/Applicability: Is NL-to-
SQL logic sound? Respects constraints?
(CTEs, domain checks).

4. Backing: Logic supported by standard prac-
tices/definitions?.

5. Qualifier Precision/Scope: Acknowledges
limits (confidence, scope ‘WHERE‘, round-
ing)?.

6. Rebuttal Considerations: Alternative
queries, interpretations (‘JOIN‘ confounders),
exceptions (‘EXCLUDE‘)?.

A.4 Counter-Argument Frameworks
Systematically challenges the NL
query/formulation for analytical rigor:

1. Conclusion Rebutters: Scope limitation
needed? Alternative queries yield different
conclusions?

2. Premise Rebutters: Relies on inac-
curate/incomplete (‘IS NULL‘)/non-
representative data? Metric appropriate?

3. Argument Undercutters: Hidden assump-
tions questionable? Alternative explanations
(confounders via ‘JOIN‘)?

4. Framing Challenges: Right question for
the problem? Neglects perspectives/temporal
frames? Aggregation level suitable?

5. Implementation Challenges: Feasibility is-
sues or unintended consequences suggested
by data?
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Appendix B Experimental Setup Details

B.1 Interactive User Study Questionnaire
We designed an intuitive questionnaire to assess
user experience with VeriMinder across four key
dimensions: scenario realism, suggestion effec-
tiveness, rationale clarity, and impact on analysis.
Users rated each dimension on a 5-point Likert
scale. Figure 9 shows the feedback form used in
our interactive study.

Figure 9: Interactive user study feedback interface

Figure 10: Comparative evaluation interface for assess-
ing analytical quality across methods

B.2 Comparative System Evaluation
The comparative evaluation required participants to
rate all five systems (VeriMinder, Direct NL2SQL,
Decision-Focused Query Generation, Question Per-
turbation, and Critic-Agent Feedback - with names
anonymized during the testing) on three analytical
dimensions: accuracy, concreteness, and compre-
hensiveness. Participants rated each dimension on

a 10-point scale for each system, allowing for di-
rect comparison. Figure 10 shows the evaluation
interface.

B.3 Automated Evaluation Procedure
1. Goal: To assess the analytical quality of query

sets generated by VeriMinder and four base-
line systems against the large-scale dataset
(100 pairs).

2. Methodology: Employed an LLM evaluator
(Gemini Flash 2.0) (Google DeepMind, 2025)
using a structured prompt that included:

(a) The decision context and original NL
question.

(b) Database schema snippets and relevant
evidence context.

(c) The complete set of successfully exe-
cuted SQL query results generated by
each of the five systems (VeriMinder, Di-
rect NL2SQL, Decision-Focused, PerQS,
CAF) for the given decision scenario.
Our choice of LLM was primarily driven
by the response time (Artificial Analysis,
2025) and streaming support dictated by
our user interface requirements.

3. Evaluation Task: The LLM was instructed
to:

(a) Holistically evaluate each system’s entire
set of queries and results in the decision
context.

(b) Assess each system based on Data Accu-
racy - Fidelity of Fetched Results to NL
Question Intent, Comprehensiveness,
Concreteness, and Overall Usefulness
in the context of the decision goal.

(c) Apply the SLOW framework (Sure,
Look, Opposite, Worst) (O’Sullivan and
Schofield, 2019) to identify uncertainties,
missing information, alternative interpre-
tations, and potential problematic con-
clusions for each system’s output and the
combined analysis.

4. Output: The process yielded structured eval-
uations for each system and a comparative
assessment, including relative rankings across
the specified analytical dimensions.
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