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Abstract

In this paper, we present LiDARR (Linking
Document AMRs with Referents Resolvers)1,
a web tool for semantic annotation at the
document level using the formalism of Ab-
stract Meaning Representation (AMR). Li-
DARR streamlines the creation of comprehen-
sive knowledge graphs from natural language
documents through semantic annotation. The
tool features a visualization and interactive user
interface, transforming document-level AMR
annotation into an models-facilitated verifica-
tion process. This is achieved through the
integration of an AMR-to-surface alignment
model and a coreference resolution model. Ad-
ditionally, we incorporate PropBank rolesets
into LiDARR to extend implicit roles in anno-
tated AMR, allowing implicit roles to be linked
through the coreference chains via AMRs.

1 Introduction

Abstract Meaning Representation (AMR) has be-
come one of the most extensively used semantic
representation formalisms in the field of Natural
Language Processing (NLP). It effectively captures
the lexical semantics of natural language text by re-
solving predicative relationships, grounded in Neo-
Davidsonian semantics (Banarescu et al., 2013).
This process, known as AMR parsing, allows us
to answer fundamental questions such as "who did
what to whom, when, where, and how," while also
addressing complex ontological relationships be-
tween various concepts. AMR’s transparent sym-
bolic representation of natural language makes it
particularly valuable for AI applications that re-
quire semantic inference and interpretability.

An example of Multi-sentence AMR (MS-AMR)
is illustrated in Figure 1, which shows an AMR
graph for the sentences: "The boy wants the girl
to believe him. Yet, she doesn’t believe him." In

1demo video: https://youtu.be/Ab32NEEA90U; tool
available at: https://camera.colorado.edu/docview2

the graph of the first sentence, “want” acts as the
primary predicate, and the desire agent to be “boy”
and the desired entity to be the “believe” state pred-
icate. Such a structure can be queried using graph
query languages like SPARQL (Prud’hommeaux
and Seaborne, 2008) and Cypher (Francis et al.,
2018) with minimal adaptation.
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Figure 1: AMR for sentences “the boy wants the girl
to believe him. Yet, she doesn’t believe him” in conven-
tional graph representation format; green dotted edges
denote cross sentence coreference links and implicit ar-
gument links, which are MS-AMR specific

The more compact but equivalent PENMAN en-
coding (Goodman, 2019, 2020) of the two single
sentence AMRs are:

(w / want-01 |(c / contrast-01
:ARG0 (b / boy) | :ARG1 (b2 / believe-01
:ARG1 (b1 / believe-01| :ARG0 (s / she)
:ARG0 (g / girl) | :ARG1 (h / him)))
:ARG1 b)) |

In the context of data-driven machine learning,
researchers have annotated tens of thousands of
natural-language-AMR pairs. These annotations
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enable the training of advanced deep learning-
based parsers and facilitate extensive quantitative
evaluations of semantic understanding. While
AMR is capable of resolving semantics regardless
of text length in theory, practical annotations are
typically limited to single sentences or small sen-
tence clusters due to the increasing complexity of
larger AMR graphs. This limitation results in rich
semantic graphs being isolated rather than forming
a unified network at the document level. To max-
imize the potential of AMR, it is essential to inte-
grate these sentence-level graphs into a coherent
semantic network through coreference resolution.

Coreference resolution involves identifying and
grouping different expressions that refer to the
same entity. For instance, in the example sentences
in Figure 1, both “girl” and “she” refer to the same
entity and are considered coreferences. Effective
coreference resolution is crucial for intelligent sys-
tems, as it requires a profound understanding of
semantics and world knowledge. It is particularly
important for tasks such as navigating large text
corpora and ensuring the consistency and reliability
of high-stakes documents like legal and medical
records. Ultimately, integrating coreference res-
olution with AMR allows the creation of a cohe-
sive document-level representation from isolated
sentence-level semantic graphs.

The challenges of integrating coreference infor-
mation into sentence-level AMRs lie in two main
areas. First, AMR graphs are often coded with-
out explicit alignment between the surface text
and the corresponding nodes and edges, making
the alignment mapping complex to produce. Sec-
ond, document-level AMRs require implicit roles
to be part of the coreference chain, which is not
feasible using only the surface text, necessitating
an annotation interface that works directly on the
AMRs. Current annotation tools, such as Anafora
and UMR Writer, rely heavily on direct annotation
of the AMR structures. However, AMRs are less
intuitive to comprehend than surface text, and the
lack of facilitation for coreference in AMR makes
the task even more challenging.

Our design addresses these challenges, and we
summarize our contributions as follows:

• Integration of Alignment Models: We incor-
porated state-of-the-art alignment models to pro-
vide initial suggestions for aligning surface text
with AMR nodes. This results in a quality control
process during alignment annotation.

• Coreference Resolution Models: We integrated
coreference resolution models to provide initial
suggestions for coreference clustering. By calcu-
lating the overlap of mentions with the alignment
spans from the first step, we formed coreference
clusters among AMRs within a document.

• Customized Interface: We designed a novel,
customized, and dynamic interface to facilitate
simultaneous navigation of the text and AMRs,
making document-level AMR annotation a clus-
tering correction task.

The modular design of our system ensures that it is
easily extensible and adaptable to more advanced
models, such as Large Language Models (LLMs),
enhancing its capability and usability.

2 Related Work

Anafora (Chen and Styler, 2013) and UMR
Writer (Zhao et al., 2021) are the two primary tools
currently supporting document-level AMR annota-
tion. Anafora’s extension for document-level AMR
annotation was introduced by O’Gorman et al. by
replacing the regular text in the Anafora interface
with AMRs represented in PENMAN encoding. In
this setup, annotating coreference among AMRs
involves specifying mention spans directly in the
AMR code. Figure 2 illustrates this interface.

Name Value

# :id lpp_1943.26 :snt  I have lived a great  

deal among grow n - ups .

(l /  live-01

:ARG0 (i /  i)

:mod (d / deal :mod (g2 /  great ))

:locat ion (a /  among :op1 (g / grow n-up))

:ARG1 (i2 /  implicit -life))

# :id lpp_1943.27 :snt  I have seen them 

int imately , close at  hand .

(s /  see-01

:ARG0 (i /  i)

:ARG1 (t  /  they)

:ARG1-of (c /  close-10

:ARG2 (a /  at -hand))

:ARG2-of (i2 /  int imate-02: ARG1 i)

:ARG2 (i3 /  implicit -att r ibute))

IdentityChain

ID

3@r@lpp30.txt..

PROPERTY

menti
-ons

- Entities
- Identity
- Bridging

g / grown-
up

t / they

Figure 2: Demonstration of the Document AMR anno-
tation interface within Anafora

While this approach allows for the annotation
of document-level AMRs using other coreference
tools, it also highlights a key challenge: the need
for flexible span selection. Annotating arbitrary
text spans in natural language text requires that
users can select any span in the interface. However,
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because AMR graphs are encoded in PENMAN
encoding with a well-defined syntax, this flexibility
can become a hindrance rather than a help. Anno-
tators must carefully manage span selection, which
can be cumbersome.

UMR Writer is another tool capable of annotat-
ing document-level AMRs. The annotation pro-
cess in UMR Writer mirrors that of regular AMR
annotation. Usefully users can create standalone
document level graphs that group all coreferent con-
cepts as :coref roles in the document level graph.
However, due to the pairwise selection process this
method is tedious, not an ideal solution for creating
comprehensive document-level AMRs.

Moreover, both Anafora and UMR Writer local-
ize sentence-AMR pairs, limiting the flexibility of
navigating each representation independently. This
constraint can impose a cognitive burden on anno-
tators compared to reading natural language text
alone. Even for highly experienced AMR experts,
natural language text remains more familiar and
frequently encountered than AMRs, making the
latter a less preferred medium for annotation tasks.

A more recent tool, CAMRA (Cai et al., 2023),
designed for annotating sentence-level AMRs, also
holds potential for coreference annotation simi-
larly to UMR Writer. CAMRA features a quick,
click-based alignment interface that allows annota-
tors to specify the alignment between surface text
and AMR nodes, making it possible to work more
on the surface text like other coreference annota-
tion tools. However, CAMRA’s single sentence UI
makes it challenging to fit long MS-AMR content
and navigate among mention clusters.

A closely related tool, X-AMR (Ahmed et al.,
2024), focuses on cross-document event coref-
erence annotation, addressing the specific chal-
lenge of linking events across documents. INCEp-
TION (Klie et al., 2018) and WebAnno (Eckart de
Castilho et al., 2016) offer broader functionality,
including entity linking at the surface, which may
support Semantic Role Labeling (SRL) enrichment
but is less suited for configuring deeper semantic
representations such as AMR.

Inspired by the strengths and limitations of these
tools, our work aims to combine their features or-
ganically to provide a more modern and stream-
lined user experience for document-level AMR an-
notation. Our approach integrates state-of-the-art
alignment models to suggest alignments between
surface text and AMR nodes, coreference resolu-

tion models to form coreference clusters, and a ded-
icated interface to navigate text and AMRs flexibly.
This results in a cohesive system that simplifies
document-level AMR annotation, making it more
efficient and user-friendly.

3 System Design and Features

Constructing document-level AMRs presents
unique challenges due to the necessity of linking
long-distance references within the text and the sig-
nificant cognitive load on annotators. This task is
akin to sorting a deck of cards by suit; the more
shuffled the deck, the more challenging the sorting
process becomes. The complexity of annotating
coreferences makes it particularly helpful to inte-
grate existing models to create even partially sorted
clusters, thereby easing the annotators’ workload.
Incorporating AMR adds another layer of com-
plexity, requiring a cohesive alignment that merges
coreference cluster information with AMR nodes.
We designed the Annotation User Interface (AUI)
with the following core requirements:

• Rendering Surface Text and AMR: The AUI
must display both the surface text and AMR, with
coreference annotations performed primarily on
the surface text to leverage trained coreference
resolution models.

• Linking Mentions to AMR Nodes: Mentions in
the surface text should be linked to AMR nodes
by calculating overlaps between spans produced
by the AMR-surface alignment model and the
coreference resolution model. This ensures that
grouping surface mentions induces the grouping
of AMR concept nodes.

• Handling Implicit Mentions: Annotators
should be able to include AMR nodes that do
not have a surface correspondence to account for
implicit mentions.

• Intuitive Visualization: The AUI should clearly
indicate clusters in the text and AMRs through
visualizations.

• Model Assistance: The invocation of AI assis-
tance should be automatic yet controllable by the
user, ensuring convenience and privacy aware-
ness.

3.1 Features in User Interface
We show an overview of the Annotation User In-
terface of LiDARR in Figure 3. Inspired by the
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Figure 3: an overview of the main Annotation User Interface of LiDARR. Cluster for the "executives" mention has
been clicked and activated. Text spans highlighted with blue background color indicates they are coreferences of the
referent “executives” entity. The corresponding AMR nodes are marked with dark gray background color.

design of CAMRA, with three horizontally parallel
panels: the Text Panel, AMR Panel, and Cluster
Panel.

Text Panel: The text panel renders the entire
document in a two-column table, with the first col-
umn showing the sentence index for easy reference
and the second column displaying the sentence.
Each sentence has pre-specified mention spans that
are clickable for inclusion in a cluster. The sen-
tence index cell serves as a quick navigation point
to bring the corresponding AMRs to the center of
the AMR panel. This design emphasizes the com-
pactness of text rendering, mimicking the familiar
typeface of natural text while providing easy access
to AMR navigation.

AMR Panel: The middle panel renders individ-
ual sentence-level AMRs using PENMAN encod-
ing, an encoding language widely adopted among
annotators. Each variable in the graph is click-
able, similar to the mention spans in the text panel.
Clicking on an AMR variable allows annotators
to include or exclude nodes in a cluster. The
AMRs undergo preprocessing to fill implicit roles
for each predicate according to the PropBank role-
set (Palmer et al., 2005; Pradhan et al., 2022), pro-
viding anchors for implicit concepts. This capabil-
ity to link implicit roles distinguishes document-
level AMR parsing from standard coreference tasks.
For example, in the sentences “Taylor ended up fly-

ing with Alaska Airlines. She was compensated
with a coupon after she arrived in New York,” the
predicate “fly-01” in the first sentence has an agent
role (the pilot), a patient role(the passenger, Tay-
lor), and destination role(New York). Although
the destination is implicit in the first sentence, it
becomes explicit in the second, allowing for link-
ing through AMR, which is difficult on the surface
form.

Clusters Panel: The rightmost panel presents
cluster information, organizing coreferent mentions
into card components labeled with the first selected
surface span serving as the referent. Clicking on
a cluster card activates editing mode, highlighting
corresponding mentions in both the surface text and
AMR panels. Annotators can add or remove spans
from clusters by selecting unassigned spans or de-
selecting already included ones. Additionally, the
label of each cluster card is editable through a right-
click on the name text, which opens a pop-up text
field for entering a user-defined name. Finally, we
dedicated a separate but similar view for bridging
clusters constructions.

Interactive Mode: We designed two UI modes
to accommodate different user preferences for the
copilot’s behavior: static and interactive. In static
mode, the system processes the document and
AMRs, then generates a clustering for users to cor-
rect. In interactive mode, it produces the same
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clustering but highlights the next possible token in
the text panel, allowing users to lead cluster con-
struction. This local suggestion always matches
the most overlapping cluster and provides relevant
recommendations accordingly.

3.2 Copilot Support

The goal of LiDARR is to make coreference data
collection intuitive and efficient, which requires
substantial AI support. There is limited support
for Doc-AMR parsers due to limited document
level AMR annotation and training. We instead
merge the power of coreference resolution models
on the surface text and transfer the clustering to
the corresponding AMR concepts through AMR-
surface alignment prediction. We show the pipeline
in Figure 4. The diagram illustrates the collabo-
rative workflow of LiDARR’s copilot models for
document-level AMR annotation. On the left, a
document with sentences annotated in AMR is dis-
played. LiDARR first aligns surface tokens with
corresponding AMR nodes using the alignment
copilot. In the diagram, highlighted tokens and
AMR nodes on the same row indicate successful
alignment (only AMR nodes within the same clus-
ter are highlighted for demonstration).

Next, a coreference resolution model is applied
to the surface text, forming mention clusters (only
one cluster is shown for clarity). Finally, LiDARR
calculates span overlaps and transfers the mention
clusters to the corresponding AMR concepts. As a
result, previously distinct AMR concept nodes are
unified, appearing in the same color to reflect their
identity relation.

Specifically, the backend of LiDARR is
equipped with a state-of-the-art AMR-surface-text
alignment model, LEAMR aligner (Blodgett and
Schneider, 2021). This model minimizes the effort
needed to create alignments from scratch and need
only verify and correct alignments, assuming the
alignment map is nearly perfect, which can be done
with the CAMRA tool.

Additionally, LiDARR includes a fast corefer-
ence model that processes the document text and
outputs mention clusters. By performing an overlap
check between spans produced by the coreference
and alignment models, we attach AMR concept
nodes to mentions in clusters. Given the density of
alignment spans compared to mention spans, it is
rare to find surface spans without attached AMR
concepts for non-functional tokens.

Initial user feedback highlights the value of
gradually building clusters and resolving bridg-
ing relations to help annotators internalize com-
plex entity relationships. Copilot-generated coref-
erence links, lacking clear explanations, can be
confusing—especially when AMR concepts are
mis-clustered. To address this, we integrate an
LLM-based interpreter copilot and provide a con-
figurable interface for users to set their preferred
LLM API endpoint, enhancing human-AI collab-
oration. Details of this feature are available in
Appendix A.

The backend uses a modular architecture, with
the alignment and coreference copilots deployed
as standalone REST API servers. An intermediary
manager server handles data flow and communica-
tion, forming a star-shaped topology that delegates
intensive tasks to dedicated servers and supports
model replacement as needed.

4 Evaluation

Given that LiDARR provides AI assistance through
preprocessing, the primary factor influencing user
experience is accuracy. The accuracy of corefer-
ence resolution is primarily affected by the nature
of the document; complex documents with frequent
long-distance coreferences are naturally more chal-
lenging to resolve accurately.

We present a case study evaluating the perfor-
mance of our document-level AMR annotation fa-
cilitation system, focusing on coreference resolu-
tion at the AMR concept level. While coreference
resolution on surface text serves as an intermediary
process, our primary objective is to facilitate coref-
erence resolution for document-level AMR anno-
tation. To this end, we assess system performance
against a gold-standard AMR concept reference us-
ing the test set of the MS-AMR corpus (O’Gorman
et al., 2018) for the ease of AMR concept coref-
erence on this dataset. The MS-AMR test split
contains nine documents annotated with MS-AMR
graphs. This corpus provides annotation for iden-
tical clusters, set-membership and part-whole re-
lations between AMR concepts. The evaluation is
conducted on the identical clusters.

Mention based metric: A well-known formula-
tion for the minimal number of mention reassign-
ments required to convert the system’s clustering S
into the gold clustering G (over the same mention
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Figure 4: LiDARR’s reference copilot pipeline diagram.

set M ) is:

δ(S,G) = |M | −max
ϕ

∑

i

|Si ∩Gϕ(i)|

where ϕ ranges over all one-to-one mappings
from system clusters {S1, . . . , Sm} to gold clus-
ters {G1, . . . , Gn}. maxϕ

∑
i|Si ∩ Gϕ(i)| repre-

sents the largest possible total overlap of mentions
once we align each system cluster Si to a gold
cluster Gϕ(i). The difference from |M | is then the
minimum number of “moves” needed.

The CEAFE (Luo, 2005) metric, for instance,
uses a partial-similarity measure between each pair
of clusters (Si, Gj), instead of counting raw over-
lap. This is defined as:

similarity(Si, Gj) =
2|Si ∩Gj |
|Si|+ |Gj |

Once we obtain the optimal mapping ϕ between
system and gold clusters, the resulting sum is nor-
malized, making it a single percentage-like mea-
sure.

We assessed how well these coreference resolu-
tion models, originally designed for surface text,
transfer to AMR concept clustering and thereby po-
tentially reduce the theoretical annotator workload.
Specifically, we compared the copilot’s automat-
ically generated clusters to human-annotated ref-
erences in terms of mention identification and the
CEAFE metric. Two models, FastCoref (Otmazgin
et al., 2022) and LingMess (Otmazgin et al., 2023)
— were evaluated on the same dataset. Table Ta-
ble 1 reports their mean precision (P), recall (R),
and F1 (with standard deviations) for CEAFE . The
Mean F1 of CEAFE reflects overall accuracy and
thus approximates the theoretical workload reduc-
tion. Meanwhile, mention identification indicates

the mismatch of AMR concepts and and textual
mentions used in classic coreference resolution.

In addition to our theoretical evaluation, we con-
ducted a preliminary user study on user behavior
and interaction. Two expert annotators and two
non-experts were each assigned four documents to
annotate using LiDARR for coreference resolution.
For the first document, users received suggestions
from three sources—FastCoref, LingMess, and a
human annotator—and were instructed to edit exist-
ing clusters by adding or removing AMR mentions.
This setup enabled measurement of alignment be-
tween user-defined clusters and model-generated
ones. Human suggestions served as the perfor-
mance upper bound. Table 2 shows the empirical
edit distances from this study, indicating the impact
of each copilot on user decisions.

Human LingMess FastCoref
User1 1 6 8
User2 3 8 9
User3 2 9 10
User4 4 15 12

Table 2: Comparison of Edit Distance for Human,
LingMess, and FastCoref as Coreference Suggestion
Providers

Each user completed full coreference annotation
tasks on three remaining documents using three dif-
ferent copilot interface designs, with only human-
generated suggestions provided. Users then ranked
the interfaces by preference. Both experts rated
the interactive helper highest, followed by building
from scratch, and the static helper last. Among non-
experts, the interactive and static helpers were tied,
with building from scratch ranked lowest. Prefer-
ence scores (3 points for highest, 2 for middle, 1
for lowest) were: interactive (11), static (7), and no
helper (6). We also evaluated system response time
for alignment and coreference models on a server
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CEAFE mention identification
Prec.(%) Rec.(%) F1(%) Prec.(%) Rec.(%) F1(%)

Model Mean Std. Mean Std. Mean Std. Mean Std. Mean Std. Mean Std.
FastCoref 37.23 12.38 40.37 14.67 37.78 11.21 88.92 15.57 88.42 13.35 86.22 6.99
LingMess 43.66 8.39 46.08 12.42 44.22 8.99 90.13 13.50 95.13 13.23 91.44 10.04

Table 1: AMR coreference resolution performance with LiDARR’s pipeline suggestions

Figure 5: Response time statistics for the training set of MS-AMR: (a) Box plot of the alignment copilot’s response
time relative to input length (number of tokens); (b) Distribution of sentence lengths; (c) Box plot of the coreference
resolver copilot’s response time relative to document length (number of tokens); (d) Distribution of document
lengths. In each box plot, the red line indicates the median, the box represents the inter-quartile range (IQR), and the
whiskers extend to 1.5 times the IQR. Two outlier documents exceeding 2,000 tokens were excluded from analysis.

with a 24-core Intel Xeon CPU and two NVIDIA
Titan Xp GPUs, one per model. The LingMess
coreference model completed clustering in under
one second, even for longer documents. The align-
ment copilot accounted for most latency, though
its runtime remains acceptable if integrated during
sentence-level AMR annotation. Detailed results
are shown in Figure 5.

5 Conclusion and Future Work

LiDARR leverages model assistance to streamline
deep semantic annotation yet UI design still shows
a significant impact for user experience. Powerful
AI tools need human-centered design to collaborate
effectively.

An immediate downstream application following
the acquisition of gold-standard annotation is the
development of a knowledge graph system. This
system can verify the validity of the information
encoded within the semantic network. Proper vi-
sualization of the annotated semantic network is
another planned area of future work, particularly
since our research aims to provide verifiable knowl-
edge support to students in classroom settings.

We are exploring UI/UX designs to unify the in-
terfaces for bridging relations and identical corefer-
ence clusters, given their structural similarity, while
minimizing potential user confusion. The interface

will be refined based on further user feedback.
In brief, LiDARR is an advancement in seman-

tic annotation tooling, combining AI-driven sup-
port with user-centric design. As development pro-
gresses, we expect LiDARR to become a valuable
tool for computational linguistics and AI research.

Limitations

LiDARR’s annotation logic is based on a set of as-
sumptions widely accepted by the NLP community
regarding the task formulation of coreference reso-
lution. However, the foundational elements of this
task are not without contention. There are ongo-
ing debates in linguistics and language philosophy
about what constitutes valid discourse entities for
coreference tasks.

Natural language supports discourse deixis,
where anaphora refers to entire discourse seg-
ments—often beyond LiDARR’s coreference and
alignment model. Designed solely for English, it
may overlook language-specific nuances. LiDARR
focuses on sub-graph alignment between AMRs
and texts, yet some semantics remain encoded in
AMR edges, limiting granularity. Lastly, LLM-
based interpretation may pose privacy concerns, but
LiDARR can work with private LLMs if needed.
User discretion is advised with respect to this fea-
ture.

432



Ethics Statement

LiDARR aims to enhance human-computer interac-
tion through thoughtful UI design and model assis-
tance. A key ethical consideration is ensuring that
our annotators understand how the suggestion mod-
els operate and their aforementioned limitations.
We commit to providing transparent documenta-
tion and a user manual. Moreover, user privacy
and copyright are of great importance to us. No
documentation data will ever be collected without
explicit consent, respecting both user privacy and
intellectual property rights.

In addition, we are committed to fairness and
reducing bias by regularly evaluating the models
and incorporating diverse datasets to ensure broad
applicability. We also prioritize transparency by
explaining model suggestions and communicating
system limitations.
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A Cluster Interpreter

This interpreter mode can be turned on via Interpreter

switch in the toolbar. Figure 6 illustrates an exam-
ple response from GPT-4o (OpenAI et al., 2024),
interpreting the “executives” cluster and offering
insights into its inferred meaning and contextual
role. The prompt we used to generate the exam-

Figure 6: An interpretation over the cluster “executives”
from GPT-4o; Example document is from AMR 3.0
multisentence AMR corpus

ple response above is: Given the following doc-
ument and its corresponding AMRs, please pro-
vide your best justification for why the mentions
listed below should be considered identical entities.
<Start Document> {Document} <End Document>
<Start AMRs> {AMRs} <End AMRs> <Start coref
Set> {AMR coreference mentions} <End coref set>
Please briefly explain how these mentions can be
interpreted as referring to the same entity. Thank
you!
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