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Abstract

We introduce NameTag 3, an open-source
tool and cloud-based web service for multi-
lingual, multidataset, and multitagset named
entity recognition (NER), supporting both flat
and nested entities. NameTag 3 achieves state-
of-the-art results on 21 test datasets in 15 lan-
guages and remains competitive on the rest,
even against larger models. It is available as
a command-line tool and as a cloud-based ser-
vice, enabling use without local installation.
NameTag 3 web service currently provides flat
NER for 17 languages, trained on 21 corpora
and three NE tagsets, all powered by a single
355M-parameter fine-tuned model; and nested
NER for Czech, powered by a 126M fine-tuned
model. The source code is licensed under open-
source MPL 2.0, while the models are dis-
tributed under non-commercial CC BY-NC-SA
4.0. Documentation is available at https://
ufal.mff.cuni.cz/nametag, source code at
https://github.com/ufal/nametag3, and
trained models via https://lindat.cz. The
REST service and the web application can
be found at https://lindat.mff.cuni.cz/
services/nametag/. A demonstration video
is available at https://www.youtube.com/
watch?v=-gaGnP0IV8A.

1 Introduction

Named entity recognition (NER), the task of iden-
tifying proper names such as persons, locations,
and organizations in natural text, is a fundamental
preprocessing step in many natural language pro-
cessing (NLP) and knowledge extraction systems.
While both flat and nested (embedded) NER have
been extensively researched, particularly for En-
glish, many other languages still lack off-the-shelf,
open-source NER tools that can be easily integrated
into academic and research workflows.

We introduce NameTag 3, an open-source tool,
web application, and web service for both flat
and nested named entity recognition. NameTag 3

achieves state-of-the-art performance on 21 test
datasets across 15 languages: Cebuano, Chinese,
Croatian, Czech, Danish, English, Norwegian Bok-
mål, Norwegian Nynorsk, Portuguese, Russian,
Serbian, Slovak, Swedish, Tagalog, and Ukrainian.
Additionally, it delivers competitive results on Ara-
bic, Dutch, German, Maghrebi, and Spanish.

The key characteristics of NameTag 3 are:

• open-source NER tool,

• support for both flat and nested NER,

• availability as command-line tool, web appli-
cation, or cloud-based REST API webservice,
allowing use without installation,

• an open-source MPL 2.0 license for code,

• a non-commercial CC BY-NC-SA 4.0 license
for models,

• trained models,

• support for training custom models,

• modestly-sized models (126M or 355M),

• SOTA on 21 datasets in 15 languages.

Lastly, given the recent accomplishments of
large language models, we also perform zero-
shot and few-shot evaluations of DeepSeek-R1,
demonstrating that when training data are available,
NameTag 3 undoubtedly delivers substantially bet-
ter performance while requiring several orders of
magnitude fewer resources.

2 Related Work

One of the most well-known NLP pipelines for
NER is Stanza (Qi et al., 2020), a neural-based
framework developed by the Stanford NLP Group.
Stanza provides pre-trained models for multiple
languages.1 This pipeline is based on pre-BERT,
frozen contextual character-level word embeddings
(Akbik et al., 2018) with Bi-LSTM and CRF

1https://stanfordnlp.github.io/stanza/ner_
models.html
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NameTag 3 Stanza SpaCy

Languages 17 29 24

Architecture fine-tuned PLM
frozen Flair embeddings,

Bi-LSTM + CRF
fine-tuned PLM

or CNN
Flat NER ✓ ✓ ✓

Nested NER ✓ ✗ ✗

Single multilingual model ✓ ✗ ✓

Cross-lingual transfer ✓ ✗ ✓

Cloud-based service running ✓ ✗ ✗

Table 1: High-level technical and architectural overview of NameTag 3, Stanza, and SpaCy.

(Huang et al., 2015) layers on top.
Another known NLP pipeline is SpaCy (Hon-

nibal and Montani, 2017). SpaCy is a free, open-
source library for advanced Natural Language Pro-
cessing (NLP) in Python. SpaCy uses multitask
learning with pretrained transformers like BERT in
its newer models, and CNNs in its older models.

Since 2014, NameTag has provided NER
for Czech and English in academic settings as
NameTag 1 (Straková et al., 2014). In 2019,
NameTag 2 (Straková et al., 2019) expanded to
six languages — English, German, Dutch, Spanish,
Czech, and Ukrainian — each with a separately
trained model.

This publication introduces NameTag 3, which
surpasses its predecessors by improving F1 scores
and further expands the number of languages avail-
able. Unlike NameTag 2, which used a Bi-LSTM
layer over frozen multilingual BERT embeddings,
NameTag 3 fine-tunes pre-trained models with ei-
ther a softmax head for flat NER or a seq2seq head
for nested NER, and adds multitagset learning.

Compared to Stanza, NameTag 3 so far supports
fewer languages overall but includes some that
Stanza does not cover. While Stanza employs a Bi-
LSTM over frozen contextualized embeddings and
trains separate models for each language, NameTag
3 takes a different approach. It is a fine-tuned
PLM trained as a single joint model across multi-
ple languages, datasets, and tagsets, enabling cross-
lingual transfer even for languages not present in
the training data. Additionally, NameTag 3 sup-
ports nested NER and provides a cloud-based web
service.

A high-level technical and architectural overview
of NameTag 3, Stanza, and SpaCy is available in
Table 1, and the performance evaluation in F1 is
presented in Table 3.

3 Data

3.1 Flat NE Datasets

We utilized the following flat NE datasets, adher-
ing to their official train/dev/test splits for training,
tuning, and evaluation, respectively. All UNER
corpora were released under the UniversalNER v1
(UNER) initiative (Mayhew et al., 2024).2 All
OntoNotes 5.0 corpora follow the CoNLL-2012
train/dev/test split (Pradhan et al., 2012) over the
original OntoNotes 5.0 data.3

• Arabic OntoNotes 5.0,

• Chinese OntoNotes 5.0,

• Chinese UNER GSDSIMP,

• Chinese UNER GSD,

• Croatian UNER SET,

• Czech CNEC 2.0 CoNLL — In order to train
and serve the Czech Named Entity Corpus
2.0 (Ševčíková et al., 2007) jointly within a
large multilingual model, the original annota-
tion of the CNEC 2.0 has been harmonized to
the standard 4-label tagset with PER, ORG, LOC,
and MISC, resulting in an extensive simplifica-
tion of the original annotation and flattening
of the original nested entities.

• Danish UNER DDT,

• Dutch CoNLL-2002 (Tjong Kim Sang,
2002),

• English OntoNotes 5.0,

• English UNER EWT,

• English CoNLL-2003 (Tjong Kim Sang and
De Meulder, 2003),

• German CoNLL-2003 (Tjong Kim Sang and
De Meulder, 2003),

2https://www.universalner.org/
3https://catalog.ldc.upenn.edu/LDC2013T19
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Flat Nested Nested Nested
Mono & Multi ACE 2004 ACE 2005 CNEC 2.0

Encoder XLM-R Large RoBERTa Large RoBERTa Large RobeCzech Base
Frozen epochs 0 20 20 20
Frozen learning rate – 1e-3 1e-3 1e-3
Epochs 30 60 50 20
Batch size 8 8 16 4
Peak learning rate 2e-5 2e-5 2e-5 2e-5
Warmup epochs 1 1 1 1
Learning rate decay cosine cosine cosine cosine

Table 2: Training hyperparameters.

• Maghrebi Arabic French UNER Arabizi,
• Norwegian Bokmål UNER NDT,

• Norwegian Nynorsk UNER NDT,

• Portuguese UNER Bosque,

• Serbian UNER SET,

• Slovak UNER SNK,

• Spanish CoNLL-2002 (Tjong Kim Sang,
2002),

• Swedish UNER Talbanken,

• Ukrainian Lang-uk — Ukrainian Lang-uk
NER corpus4 based on the Lang-uk initiative.5

The corpus uses four classes PER, ORG, LOC,
and MISC. (Please note that we harmonized
the original PERS to a more common PER.)

For cross-lingual/out-of-domain evaluation on
unseen languages/datasets, respectively, we used
the following UNER (Mayhew et al., 2024) test
datasets: Cebuano UNER GJA, Chinese UNER
PUD, Portuguese UNER PUD, Russian UNER
PUD, Swedish UNER, Tagalog UNER TRG, and
Tagalog UNER Ugnayan.

3.2 Nested NE Datasets
We evaluate NameTag 3 on the following nested
NE corpora:

• English ACE-2004, (Doddington et al.,
2004).6 We reuse the train/dev/test split used
by most previous authors (Lu and Roth, 2015;
Muis and Lu, 2017; Wang and Lu, 2018).

• English ACE-2005.7 Again, we use the
train/dev/test split by Lu and Roth (2015);
Muis and Lu (2017); Wang and Lu (2018).

4https://github.com/lang-uk/ner-uk
5https://lang.org.ua/en/
6https://catalog.ldc.upenn.edu/LDC2005T09
7https://catalog.ldc.upenn.edu/LDC2006T06

• Czech CNEC 2.0 — Czech Named Entity
Corpus 2.0 (Ševčíková et al., 2007). We use
the official evaluation script distributed with
the dataset, which evaluates 46 fine-grained
entity types and 4 entity containers.

4 Methodology

All NameTag 3 models are fine-tuned pre-trained
language models of either Large (355M) or Base
(126M) size. For flat NER, we apply a classifica-
tion softmax head on top of the language model,
while for nested NER, we use a seq2seq decoding
head instead (Straková et al., 2019). Both flat and
nested NameTag 3 models support training on a
collection of datasets, potentially in different lan-
guages. However, only NameTag 3 allows training
on multiple tagsets with differing label sets.

4.1 Flat NER
For flat NER, NameTag 3 enables multitagset learn-
ing by assigning a separate classification head to
each tagset and jointly training the encoder and all
classification heads. During inference, the classifi-
cation head corresponding to the requested tagset
is used, ensuring that only valid tags are predicted,
see visualization in Fig. 2.

The currently supported tagsets are:
• conll: The CoNLL-2002 and CoNLL-2003

(Tjong Kim Sang, 2002; Tjong Kim Sang and
De Meulder, 2003) tagset,

• uner: The Universal NER v1 (Mayhew et al.,
2024) tagset,

• onto: The OntoNotes 5.0 tagset.
The NameTag 3 multilingual flat NER model

was trained on the training portions of the flat NER
datasets described in Sec. 3.1. Training batches
were constructed using square root temperature
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Figure 1: Visualization of the nested NER seq2seq decoder with hard attention on the current token. The example
sentence is taken from ACE-2004 (Doddington et al., 2004).
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Figure 2: Visualization of the flat NER classification
heads for multiple tagsets.

sampling, in which the examples from the corpora
are sampled into training batches proportionally to
the square root of the number of their sentences,
similarly to van der Goot et al. (2021). This ap-
proach effectively downsamples the largest corpora
while upsampling the smallest ones. To achieve
balanced performance across all datasets, we use a
macro span-based F1 score with uniform weighting
as our evaluation objective. The training hyperpa-
rameters are described in Table 2.

4.2 Nested NER

For nested named entity recognition, we replace the
flat softmax classification head with a sequence-to-
sequence (seq2seq) decoder head (Straková et al.,
2019), see visualization in Figure 1. This de-
coder generates a sequence of linearized (flattened)
nested output labels for each input token embed-
ded by the pre-trained LM encoder. The Trans-
former encoder and seq2seq decoder weights are

fine-tuned jointly. Before fine-tuning, we perform
a few pre-training epochs with frozen Transformer
encoder weights to allow the seq2seq decoder to
adjust to them. This helps ensure a smoother transi-
tion into fine-tuning. The training hyperparameters
are described in Table 2.

5 Results

5.1 Flat NER
Table 3 presents NameTag 3 span-based micro F1
with the monolingual (Mono) models and the mul-
tilingual (Multi) model of 355M params.

Alongside our results, we report the highest
F1 scores from the respective leaderboards on
https://paperswithcode.com/ where available,
and/or the current state-of-the-art academic base-
lines; many of these models originate from aca-
demic research and do not provide ready-to-use
tools, and/or often rely on significantly larger
model capacities in terms of parameter count.

Apart from the state-of-the-art models, we also
compare NameTag 3 to popular NLP toolkits sup-
porting named entity recognition: Stanza (Qi et al.,
2020) and SpaCy (Honnibal and Montani, 2017).
Our system surpasses both these toolkits on all the
datasets where pretrained models are available.8

Table 7 presents out-of-domain evaluation on
unseen languages/datasets by cross-lingual transfer.
The accompanying previous SOTA results are from
Mayhew et al. (2024).

8Both Stanza and SpaCy provide models for more lan-
guages, but trained on different datasets with possibly different
tag sets, preventing direct comparison on more languages.
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Mono Multi Stanza SpaCy SOTA SOTA SOTA
Corpus F1 F1 F1 F1 F1 Ref. Params

Arabic OntoNotes v5 75.50 74.20 — — 76.40 Aloraini et al. (2020) 136M
Chinese OntoNotes v5 81.76 81.63 79.2♡ — 80.20 Li et al. (2023) 147M
Chinese UNER GSDSIMP 88.99 90.99 — — 89.40 Mayhew et al. (2024)‡ 355M
Chinese UNER GSD 90.14 91.53 — — 89.50 Mayhew et al. (2024)‡ 355M
Croatian UNER SET 94.08 95.55 — — 95.00 Mayhew et al. (2024)‡ 355M
Czech CNEC 2.0 CoNLL 85.31 86.24 — — — — —
Danish UNER DDT 87.21 89.75 — — 88.10 Mayhew et al. (2024)‡ 355M
Dutch CoNLL-2002 95.16 94.93 89.2♡ — 95.70 Wang et al. (2021) 1117M†

English OntoNotes v5 90.22 90.19 88.8♡ 89.8♢ 92.07 Li et al. (2020) 336M
English UNER EWT 86.27 87.03 — — 85.80 Mayhew et al. (2024)‡ 355M
English CoNLL-2003 93.80 94.09 92.1♡ 91.6♢ 94.60 Wang et al. (2021) 1853M†

German CoNLL-2003 87.77 87.48 81.9♡ — 88.38 Wang et al. (2021) 1108M†

Maghrebi UNER Arabizi 72.77 84.49 — — 86.20 Mayhew et al. (2024)‡ 355M
Norw. Bokmål UNER NDT 93.97 95.83 — — — — —
Norw. Nynorsk UNER NDT 93.71 94.51 — — — — —
Portuguese UNER Bosque 91.18 90.89 — — 90.40 Mayhew et al. (2024)‡ 355M
Serbian UNER SET 94.85 97.10 — — 96.60 Mayhew et al. (2024)‡ 355M
Slovak UNER SNK 86.79 88.46 — — 85.50 Mayhew et al. (2024)‡ 355M
Spanish CoNLL-2002 88.95 90.29 88.1♡ — 90.40 Wang et al. (2021) 1105M†

Swedish UNER Talbanken 90.73 91.79 — — 88.30 Mayhew et al. (2024)‡ 355M
Ukrainian Lang-uk 90.45 92.88 86.1♡ — 88.73 NameTag 2 110M

Table 3: NameTag 3 flat NER span-based micro F1 with the monolingual (Mono) models and the multilingual
(Multi) model of 355M params. We report the highest F1 scores from the respective leaderboards on https:
//paperswithcode.com/ where available. †Wang et al. (2021) use a concatenation of multiple embeddings, incl.
several Base and Large. ‡For Mayhew et al. (2024), we report the better result from the “in-language” (Table 4)
and “all” (Table 5). ♡ https://stanfordnlp.github.io/stanza/ner_models.html. ♢ https://spacy.io/
usage/facts-figures.

Model F1

ChatGPT 3.5 zero-shot (Xie et al., 2024) 68.97†

ChatGPT 3.5 ICL with self-annotated demonstrations (Xie et al., 2024) 74.99†

DeepSeek R1 32B zero-shot 64.33
DeepSeek R1 32B 5-shot 74.26

DeepSeek R1 70B zero-shot 67.97
DeepSeek R1 70B 5-shot 74.00

NameTag 3 94.09

Table 4: Comparison of NameTag 3 with NER performed by prompting LLMs on the (entire) English CoNLL-2003
test dataset (3 684 sentences). †Xie et al. (2024) report the mean of two samples of 300 sentences.

LLM Evaluation We include comparison
of NameTag 3 with LLMs in Table 4 to demon-
strate that fine-tuning “smaller” models (355M
vs. 70B parameters) is still worthwhile even in
the era of generative AI. We prompt DeepSeek-
R1 70B (DeepSeek-AI et al., 2025), currently

one of the best available open-source sub-100B
LLMs,9 in zero-shot and 5-shot settings, and we
also reprint similar prompting experiments on Chat-
GPT 3.5 reported in literature (Xie et al., 2024).

9Our goal was to evaluate the best available replicable
model that can run without enormous resources in order to be
a viable NER system alternative.
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Model GPU Batch Sentences per sec. Time

DeepSeek R1 70B zero-shot AMD MI210 1 0.05 23h
DeepSeek R1 70B 5-shot AMD MI210 1 0.04 25h

DeepSeek R1 32B zero-shot AMD MI210 1 0.08 13h
DeepSeek R1 32B 5-shot AMD MI210 1 0.06 16h

NameTag 3 AMD MI210 1 801 4.6s
NameTag 3 AMD MI210 8 784 4.7s

NameTag 3 NVIDIA A30 1 646 5.7s
NameTag 3 NVIDIA A30 8 801 4.6s

Table 5: Sentence throughput in sentences per second of the NameTag 3 REST API and Deep Seek REST API by
predicting the (entire) English CoNLL-2003 test dataset (3 684 sentences).

SOTA SOTA SOTA
Corpus F1 F1 Ref. Params.

ACE-2004 88.39 88.72 Shen et al. (2023) 345M
ACE-2005 87.21 88.83 Yuan et al. (2022) 223M
CNEC 2.0 86.39 83.44 NameTag 2 110M

Table 6: NameTag 3 nested NER span-based micro F1. CNEC 2.0 is the only corpus modeled with a Base-sized
monolingual Czech encoder RobeCzech Base (126M). The ACE models are based on RoBERTa Large (355M).

Corpus F1 SOTA F1

Cebuano UNER GJA 96.97 82.2
Chinese UNER PUD 89.35 86.0
Portuguese UNER PUD 91.77 87.5
Russian UNER PUD 75.51 73.6
Swedish UNER PUD 91.27 88.0
Tagalog UNER TRG 97.78 83.7
Tagalog UNER Ugnayan 75.00 76.1

Table 7: Cross-lingual/out-of-domain evaluation on un-
seen languages/datasets predicted by cross-lingual trans-
fer with the NameTag 3 multilingual flat model of 355M
parameters. The metric is flat NER span-based micro
F1. Previous SOTA F1 are from Mayhew et al. (2024),
whose multilingual model is also of 355M.

NameTag 3, a fine-tuned 355M model, achieves
20 percent points higher F1 score while being
more than 10,000 times faster, as demonstrated
in performance measurements Tab 5. Therefore,
when training data are available, NameTag 3 con-
stitutes a much more accessible and practical sys-
tem, allowing users to keep processed data pri-
vate using only a single consumer-grade GPU.
The complete script for LLM evaluation includ-
ing the used prompts and few-shot example selec-
tion is available at https://github.com/ufal/

nametag3/tree/acl2025/llm_baseline.

5.2 Nested NER

Table 6 shows the NameTag 3 nested NER results,
evaluated as span-based micro F1. NameTag 3 with
the seq2seq head for nested NER achieves state-of-
the-art results on the canonical Czech nested corpus
with 46 entity types and 4 containers, while reach-
ing near-SOTA results for English nested corpora.

6 Conclusions

We introduced NameTag 3, a multilingual, open-
source named entity recognition tool for both flat
and nested NER. It is available as a command-
line tool (https://github.com/ufal/nametag3)
and as a web application with a cloud-based REST
API (https://lindat.mff.cuni.cz/services/
nametag). NameTag 3 includes pre-trained models
and supports custom training.

NameTag 3 demonstrates state-of-the-art perfor-
mance on 21 test datasets across 15 languages:
Cebuano, Chinese, Croatian, Czech, Danish, En-
glish, Norwegian Bokmål, Norwegian Nynorsk,
Portuguese, Russian, Serbian, Slovak, Swedish,
Tagalog, and Ukrainian, while also performing well
in Arabic, Dutch, German, Maghrebi, and Spanish.

The tool is released under the open-source MPL
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2.0 license, with models distributed under non-
commercial CC BY-NC-SA 4.0.

We hope NameTag 3 will be particularly valu-
able for the academic community and researchers
working with multilingual NLP and non-English
texts.

Limitations

Since NameTag 3 classifies into a predefined set of
named entity classes, it is not susceptible to issues
generally associated with generative AI, such as
hallucinations or the production of misleading or
harmful information.

By jointly training on 21 datasets across 17 lan-
guages, NameTag 3 is less prone to biases that
typically affect monolingual or culturally homoge-
neous models. We hope that this multilingual ap-
proach helps mitigate issues like overrepresentation
of Western-centric names and gender imbalances
in named entity distributions.

However, most of our training datasets are writ-
ten in Latin scripts, with the exception of Chi-
nese (three datasets), Arabic (two datasets), and
Ukrainian (one dataset). We recognize the need
to further improve coverage by incorporating addi-
tional languages.

This brings us to an important limitation: As a
supervised, fine-tuned model, NameTag 3 relies
on gold-standard, manually annotated training data.
Expanding the diversity and volume of such data is
crucial for further improving performance across
languages and domains.

In future work, we plan to expand our set of
manually annotated training data while also explor-
ing silver-standard, semi-automated data to further
increase the volume of training material.
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source tools for morphology, lemmatization, POS
tagging and named entity recognition. In Proceed-
ings of 52nd Annual Meeting of the Association for
Computational Linguistics: System Demonstrations,
pages 13–18, Baltimore, Maryland. Association for
Computational Linguistics.

Jana Straková, Milan Straka, and Jan Hajic. 2019. Neu-
ral architectures for nested NER through lineariza-
tion. In Proceedings of the 57th Annual Meeting of
the Association for Computational Linguistics, pages
5326–5331, Florence, Italy. Association for Compu-
tational Linguistics.

Erik F. Tjong Kim Sang. 2002. Introduction to the
CoNLL-2002 Shared Task: Language-independent
Named Entity Recognition. In Proceedings of the 6th
Conference on Natural Language Learning - Volume
20, COLING-02, pages 1–4, Stroudsburg, PA, USA.
Association for Computational Linguistics.

Erik F. Tjong Kim Sang and Fien De Meulder. 2003.
Introduction to the CoNLL-2003 Shared Task:
Language-Independent Named Entity Recognition.
In Proceedings of CoNLL-2003, pages 142–147. Ed-
monton, Canada.

Rob van der Goot, Ahmet Üstün, Alan Ramponi,
Ibrahim Sharaf, and Barbara Plank. 2021. Massive
choice, ample tasks (MaChAmp): A toolkit for multi-
task learning in NLP. In Proceedings of the 16th
Conference of the European Chapter of the Associa-
tion for Computational Linguistics: System Demon-
strations, pages 176–197, Online. Association for
Computational Linguistics.

Bailin Wang and Wei Lu. 2018. Neural segmental hy-
pergraphs for overlapping mention recognition. In
Proceedings of the 2018 Conference on Empirical

38

https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/1508.01991
https://arxiv.org/abs/1508.01991
https://doi.org/10.18653/v1/2020.acl-main.45
https://doi.org/10.18653/v1/2020.acl-main.45
https://doi.org/10.18653/v1/2024.naacl-long.243
https://doi.org/10.18653/v1/2024.naacl-long.243
https://aclanthology.org/W12-4501/
https://aclanthology.org/W12-4501/
https://aclanthology.org/W12-4501/
https://doi.org/10.18653/v1/2020.acl-demos.14
https://doi.org/10.18653/v1/2020.acl-demos.14
https://doi.org/10.18653/v1/2020.acl-demos.14
https://doi.org/10.18653/v1/2023.acl-long.698
https://doi.org/10.18653/v1/2023.acl-long.698
https://doi.org/10.3115/v1/P14-5003
https://doi.org/10.3115/v1/P14-5003
https://doi.org/10.3115/v1/P14-5003
https://doi.org/10.18653/v1/P19-1527
https://doi.org/10.18653/v1/P19-1527
https://doi.org/10.18653/v1/P19-1527
https://doi.org/10.3115/1118853.1118877
https://doi.org/10.3115/1118853.1118877
https://doi.org/10.3115/1118853.1118877
https://doi.org/10.18653/v1/2021.eacl-demos.22
https://doi.org/10.18653/v1/2021.eacl-demos.22
https://doi.org/10.18653/v1/2021.eacl-demos.22


Methods in Natural Language Processing, pages 204–
214. Association for Computational Linguistics.

Xinyu Wang, Yong Jiang, Nguyen Bach, Tao Wang,
Zhongqiang Huang, Fei Huang, and Kewei Tu. 2021.
Automated concatenation of embeddings for struc-
tured prediction. In Proceedings of the 59th Annual
Meeting of the Association for Computational Lin-
guistics and the 11th International Joint Conference
on Natural Language Processing (Volume 1: Long
Papers), pages 2643–2660, Online. Association for
Computational Linguistics.

Tingyu Xie, Qi Li, Yan Zhang, Zuozhu Liu, and Hong-
wei Wang. 2024. Self-improving for zero-shot named
entity recognition with large language models. In
Proceedings of the 2024 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies
(Volume 2: Short Papers), pages 583–593, Mexico
City, Mexico. Association for Computational Lin-
guistics.

Zheng Yuan, Chuanqi Tan, Songfang Huang, and Fei
Huang. 2022. Fusing heterogeneous factors with
triaffine mechanism for nested named entity recog-
nition. In Findings of the Association for Compu-
tational Linguistics: ACL 2022, pages 3174–3186,
Dublin, Ireland. Association for Computational Lin-
guistics.

39

https://doi.org/10.18653/v1/2021.acl-long.206
https://doi.org/10.18653/v1/2021.acl-long.206
https://doi.org/10.18653/v1/2024.naacl-short.49
https://doi.org/10.18653/v1/2024.naacl-short.49
https://doi.org/10.18653/v1/2022.findings-acl.250
https://doi.org/10.18653/v1/2022.findings-acl.250
https://doi.org/10.18653/v1/2022.findings-acl.250

