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Abstract

Voice conversion has emerged as a pivotal
technology in numerous applications ranging
from assistive communication to entertainment.
In this paper, we present RT-VC, a zero-shot
real-time voice conversion system that delivers
ultra-low latency and high-quality performance.
Our approach leverages an articulatory fea-
ture space to naturally disentangle content and
speaker characteristics, facilitating more robust
and interpretable voice transformations. Addi-
tionally, the integration of differentiable digi-
tal signal processing (DDSP) enables efficient
vocoding directly from articulatory features,
significantly reducing conversion latency. Ex-
perimental evaluations demonstrate that, while
maintaining synthesis quality comparable to the
current state-of-the-art (SOTA) method, RT-VC
achieves a CPU latency of 61.4 ms, represent-
ing a 13.3% reduction in latency.

1 Introduction

Voice conversion (VC) modifies speech to match
the timbre of a target speaker while preserving con-
tent information. A central challenge in VC is the
effective disentanglement of speaker identity from
the underlying content. This separation is critical to
enable the transformation of voice characteristics
while maintaining the linguistic and paralinguistic
information, including emotion and accent.

There are three principal strategies to achieve dis-
entanglement between speaker and content repre-
sentations in voice conversion. First, autoencoder-
based approaches employ encoder–decoder archi-
tectures (often variational) and incorporate care-
fully designed bottlenecks or specialized mod-
ules to isolate speaker identity from linguistic
content (Qian et al., 2019, 2020; Ju et al., 2024;
Lian et al., 2022; Chou et al., 2019). Second,
GAN-based methods leverage generative adver-
sarial networks and domain-mapping losses (e.g.,
cycle-consistency) to ensure that the converted

speech retains the source content while convinc-
ingly mimicking the target speaker’s characteris-
tics (Kaneko and Kameoka, 2018; Kaneko et al.,
2019a; Kameoka et al., 2018; Kaneko et al., 2019b;
Wu et al., 2021). Third, methods leveraging pre-
trained models for representation learning extract
speaker-independent content representations from
external systems, such as automatic speech recogni-
tion (ASR) (Sun et al., 2016; Kashkin et al., 2022;
Du et al., 2024a,b), text-to-speech (TTS) (Park
et al., 2020), or self-supervised learning frame-
works (Van Niekerk et al., 2022; Yang et al., 2024;
Choi et al., 2021; Qian et al., 2022; Li et al., 2023).

While these methods achieve impressive per-
formance, they often require meticulous architec-
tural design and careful tuning of loss functions.
Moreover, they typically operate as black-box mod-
els, relying on abstract latent spaces that lack in-
terpretability and universality. To address these
limitations and achieve a more natural, straight-
forward, and grounded disentanglement between
speaker and content representations, we adopt the
Speech Articulatory Coding (SPARC) framework
(Cho et al., 2024b). In SPARC, content information
is represented as vocal tract kinematics within a
normalized, speaker-agnostic space, while speaker-
specific characteristics are captured separately via
a dedicated speaker encoder. This approach yields
a naturally disentangled and interpretable represen-
tation that supports accent-preserving, zero-shot
voice conversion. However, the transformation be-
tween speech and the articulatory feature space
is computationally intensive, making SPARC less
suitable for real-time applications.

In this paper, we present RT-VC, a zero-shot
real-time voice conversion system that combines
SPARC with efficient streaming architecture. In
order to accelerate the SPARC encoding pro-
cess (speech to articulatory features), we train a
causal source extractor and a causal acoustic-to-
articulatory inversion model using the labels from
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SPARC encoding. For SPARC decoding (articu-
latory features to speech), we utilize the differen-
tiable digital signal processing (DDSP) vocoder
from (Liu et al., 2024), which is known for fast
inference and high quality. Our experimental
results show that RT-VC achieves intelligibility
and speaker similarity comparable to the current
SOTA real-time zero-shot voice conversion system,
StreamVC (Yang et al., 2024). In addition, RT-
VC achieves an end-to-end CPU latency of 61.4ms,
which is 13.3% faster than StreamVC.

2 Related Work

2.1 Zero-Shot Voice Conversion

Zero-shot voice conversion refers to converting
speech from a source speaker to the voice of a new,
previously unseen target speaker without requir-
ing any parallel or fine-tuning data for that speaker
during training. Achieving this requires a precise
disentanglement of speaker characteristics from the
linguistic content.

One of the earliest approaches in this domain is
AUTOVC (Qian et al., 2019), which employs an
autoencoder architecture with a carefully designed
bottleneck to preserve content information while
stripping away speaker-specific features. This bot-
tleneck concept is also demonstrated in Natural-
Speech 3 (Ju et al., 2024), where separate bottle-
necks for prosody, content, and acoustic details
are constructed to remove unnecessary information
and facilitate disentanglement.

In contrast, the StarGAN-VC family (Kameoka
et al., 2018; Kaneko et al., 2019b) formulates voice
conversion as a domain translation problem be-
tween speaker domains. These methods utilize a
combination of GAN loss and content preservation
loss to guide the model to modify only speaker-
related features.

Recent approaches utilize pretrained models for
obtaining content representations. For instance,
HiFi-VC (Kashkin et al., 2022) uses bottleneck fea-
tures from a pretrained ASR system as the content
representation, while the CosyVoice family (Du
et al., 2024a,b) further quantizes the ASR bottle-
neck features to enhance disentanglement. Cota-
tron (Park et al., 2020) utilizes a pretrained autore-
gressive TTS model to provide text-speech align-
ment and employs the aligned phoneme features
as content representations. Additionally, SoftVC
(Van Niekerk et al., 2022) and StreamVC (Yang
et al., 2024) leverage the self-supervised learning

model HuBERT (Hsu et al., 2021) to derive discrete
labels via k-means clustering; a content encoder
is then trained to predict these labels, with the re-
sulting continuous features serving as the content
representation. NANSY (Choi et al., 2021) em-
ploys information perturbation techniques to isolate
linguistic information from wav2vec 2.0 (Baevski
et al., 2020), and ContentVec (Qian et al., 2022)
applies the same techniques to HuBERT.

2.2 Acoustic-to-Articulatory Inversion

Acoustic-to-articulatory inversion (AAI) aims to
predict vocal tract kinematics from raw speech,
with these kinematics typically measured via elec-
tromagnetic articulography (EMA). EMA captures
distinct patterns of articulator movements that nat-
urally encode linguistic content (Sun et al., 2016;
Cho et al., 2024b). However, the scalability of
EMA is limited by the high costs of data collection
and its inherent entanglement with speaker-specific
anatomical features. Recent AAI models (Wu et al.,
2023; Gao et al., 2024; Attia et al., 2024; Siriwar-
dena and Espy-Wilson, 2023) have been proposed
to alleviate the collection burden, but they do not
fully resolve the issue of speaker entanglement.
To address this, (Cho et al., 2024a,b) argue that
the differences between individual speakers’ artic-
ulatory systems can be approximated by a single
linear affine transformation, and propose the use of
a universal articulatory space derived from a sin-
gle speaker as a common template for all speakers.
These insights provide the foundation for develop-
ing voice conversion systems that leverage articula-
tory features to disentangle linguistic content from
speaker characteristics.

2.3 Articulatory Synthesis

Articulatory synthesis, the inverse task of acoustic-
to-articulatory inversion (AAI), involves generating
speech from articulatory features like EMA. Recent
deep learning approaches in this domain have pre-
dominantly employed GAN-based vocoders like
HiFi-GAN (Kong et al., 2020) to synthesize speech
either from intermediate spectrograms (Chen et al.,
2021; Kim et al., 2023) or directly from articulatory
inputs (Wu et al., 2022; Cho et al., 2024b). A re-
cent study (Liu et al., 2024) utilizes differentiable
digital signal processing (DDSP) to achieve fast
inference, high quality and improved parameter ef-
ficiency. In our work, we adopt the DDSP vocoder
from (Liu et al., 2024) to enable real-time voice
conversion.
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Figure 1: Training and conversion pipeline of RT-VC. s denotes input speech, ŝ denotes reconstructed speech, r(·)
denotes the pitch rescaling operation in (1).

3 Method

In this section, we first present an overview of the
complete system during both training and inference
(Section 3.1). Next, we describe the architecture
and training strategies for each module of the sys-
tem (Sections 3.2 through 3.5). Finally, we outline
the streaming strategy for real-time voice conver-
sion (Section 3.6).

3.1 System Overview

Building on the framework presented in (Cho et al.,
2024b), our proposed system comprises four pri-
mary components: a source extractor, an EMA
inverter, a speaker encoder, and a DDSP vocoder.
With the exception of the offline speaker encoder,
all components are designed to be streamable.

An overview of the complete system architecture
is provided in Figure 1. During training, the input
speech signal is decomposed into an articulatory
feature space comprising pitch, periodicity, loud-
ness, EMA, and speaker embedding. The DDSP
vocoder then reconstructs the speech signal from
these features. Notably, the source extractor and
EMA inverter are initially trained independently of
the whole system. Subsequently, the speaker en-
coder and DDSP vocoder are jointly optimized us-
ing the outputs of the two pretrained modules. Dur-
ing conversion, the speaker embedding is extracted
from the target speaker’s utterance, and the source
pitch is adjusted to match the target speaker’s range
by scaling it with the ratio of the target speaker’s
median pitch (mtgt) to the source speaker’s median
pitch (msrc):

f̃0 = r(f0) = f0 ·
mtgt

msrc
(1)

3.2 Source Extractor

The source extractor is designed to isolate laryngeal
source information from the input speech. Specif-
ically, it extracts source features including pitch
(indicative of the vocal fold vibration frequency),
periodicity (reflecting the presence or absence of
vocal fold oscillation), and loudness (representing
the energy of the airflow through the larynx).

We reformulate the pitch tracking problem as
a frequency bin classification task, following the
approach outlined in (Kim et al., 2018; Wei et al.,
2023). In our method, the source extractor accepts
a mel spectrogram as input and generates an en-
coding using a series of causal convolution blocks
following the SoundStream encoder architecture
(Zeghidour et al., 2021). This encoding is then pro-
cessed by three distinct linear output layers: a pitch
head that transforms the encoding into a probabil-
ity distribution over all potential frequency bins for
each time frame, a periodicity head that determines
whether each input frame is voiced or unvoiced,
and a loudness head that predicts the frame-level
energy. To get the final pitch prediction, we use
the local weighted average of frequencies closest
to the frequency bin with the highest probability, as
described in (Wei et al., 2023). Although a simple
digital signal processing method such as a mov-
ing average could be used to estimate loudness, we
have found that such an approach is highly sensitive
to noise. Therefore, we utilize a dedicated loudness
head to produce a clean loudness estimate even un-
der noisy conditions, thereby enhancing the overall
noise robustness of the system. To obtain ground
truth labels for pitch and periodicity, we employ
CREPE (Kim et al., 2018) to generate the pitch
values and RMVPE (Wei et al., 2023) to derive bi-
nary voiced flags. Loudness labels are computed by
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averaging the clean input spectrogram along the fre-
quency axis. Pitch, voiced flags and loudness are all
sampled at 200Hz. We follow the cross entropy loss
introduced in (Wei et al., 2023) to train our pitch
and periodicity heads. For loudness head, a sim-
ple L1 loss between the prediction and the ground
truth is applied. To enhance the noise robustness
of our source extractor, we add noise augmentation
using the audiomentation package1. Specifically,
we utilize the AddColorNoise module to introduce
noise with varied spectral characteristics and the
RoomSimulator module to apply different room
impulse responses.

3.3 EMA Inverter

We train a real-time EMA inverter based on
the SoundStream encoder architecture (Zeghidour
et al., 2021). It takes MFCC as input, and pro-
cesses the input features through 11 dilated causal
convolution layers followed by an MLP to get the
predicted EMA output.

We also add augmentation during EMA inverter
training. Prior to applying noise augmentation, we
adopt the information perturbation technique pro-
posed in (Choi et al., 2021), which sequentially
applies a random parametric equalizer, pitch ran-
domization, and formant shifting. Since these op-
erations preserve content-level information, they
encourage the EMA inverter to focus primarily on
content features, thereby promoting improved dis-
entanglement from speaker-specific characteristics.

To get the EMA ground truth, we gener-
ate pseudo EMA labels using the acoustic-to-
articulatory inversion model from (Cho et al.,
2024b,a, 2023). We linearly interpolate these
pseudo EMA from 50Hz to 200Hz. The EMA
inverter is trained to minimize the L1 loss between
the predicted EMA and the pseudo EMA labels.

3.4 Speaker Encoder

Similar to (Cho et al., 2024b), our speaker encoder
contains a frozen CNN feature extractor of WavLM
(Chen et al., 2022) and a trainable dilated convolu-
tion network. The output encoding will be aggre-
gated into a 128-dimensional speaker embedding
using the periodicity output from the pretrained
source extractor as the weight. The speaker en-
coder is trained together with the vocoder.
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Figure 2: DDSP vocoder architecture.

3.5 DDSP Vocoder

We adopt the DDSP harmonic-plus-noise vocoder
from (Liu et al., 2024) to enable fast inference.
The model architecture is shown in Figure 2. The
encoder accepts the previously described articula-
tory features as input and separately predicts con-
trol signals for harmonic generator and filtered
noise generator to generate periodic (harmonic)
and aperiodic (noise) components. These compo-
nents are summed and then filtered through a post
convolution layer to produce the final speech out-
put. To condition the vocoder on speaker-specific
characteristics, we integrate a FiLM layer (Perez
et al., 2018) that processes the speaker embedding
and produces scaling and shifting parameters to
modulate the intermediate encoding. To make the
vocoder streamable, we use the SoundStream en-
coder architecture (Zeghidour et al., 2021) with 11
dilated causal convolution layers. The post con-
volution layer is also made causal. We train the
model using the loss functions described in (Liu
et al., 2024), namely, the multi-scale spectral loss
and the multi-resolution adversarial loss.

3.6 Real-Time Inference

For real-time inference, the input spectral features
(mel spectrogram and MFCC) are calculated on the
fly. The window size is chosen to be 1024 at 16kHz
for all spectral features, with reflection padding to
center each output frame. This translates into a
lookahead of half the window size, i.e. 32ms. Since
our system is causal, we only need to maintain a
ring buffer to store the running past context for
each module during streaming, where the length
of the context is determined by the receptive field
of the causal convolution network. Additionally,
to facilitate pitch rescaling to the target speaker’s

1https://github.com/iver56/audiomentations

388

https://github.com/iver56/audiomentations


Figure 3: Screenshot of the RT-VC web demo interface.

range, a running median of the source pitch is also
maintained.

The end-to-end latency L is calculated as:

L = tlookahead + tchunksize + tprocessing (2)

Here tlookahead = 32ms (half the window size),
tchunksize = 15ms (the input chunk size), and
tprocessing = 14.4ms is the average processing time
for each chunk on an Apple M3 CPU. Therefore,
the end-to-end latency is 61.4ms, which is faster
than the current SOTA (StreamVC, 70.8ms) by
13.3%.

4 System Design

A screen shot of the RT-VC web demo is shown in
Figure 3. This demo enables real-time voice conver-
sion directly through the web interface, eliminating
the need for any downloads. During conversion,
the user speaks into the frontend, where the incom-
ing audio is sampled at 16 kHz and segmented into
15ms chunks. These chunks are then transmitted
to the backend for real-time inference (see Sec-
tion 3.6), and the converted audio is returned to
the frontend for playback through the designated
output device.

For audio input and output, they are configured
to use the system’s default devices. We recommend
using a high-quality microphone with echo cancel-
lation to minimize input noise and reduce speaker

feedback. If necessary, users may modify their au-
dio device settings via the system configuration and
refresh the webpage to apply the changes.

For target speaker selection, users may choose
from 10 pre-enrolled target speakers drawn from
the VCTK dataset (Yamagishi et al., 2019), with
all target speakers being unseen during training.
Moreover, the system allows users to dynamically
switch the target speaker while speaking, with the
generated voice updating instantly.

The web demo is deployed on an AWS CPU
server (C7i instance type) equipped with an Intel
Xeon Scalable processor. Due to CPU resource
constraints, only one user can access the web demo
at a time for at most 5 minutes. Additional users
are queued and notified when their session begins.

5 Results

5.1 Dataset

Each module of the system is trained on the train
subset of LibriTTS-R (Koizumi et al., 2023), which
is a restored version of LibriTTS (Zen et al., 2019).
The train subset contains 555 hours of speech
from 2311 speakers. All samples are downsampled
to 16kHz.

For evaluation and direct comparison with the
current SOTA StreamVC, we use the same test
set: we extract 377 source utterances from the
test-clean subset of LibriTTS and select 6 target
speakers from VCTK (Yamagishi et al., 2019). Im-
portantly, all source and target speakers are unseen
during training, thereby assessing the zero-shot
voice conversion capability of the systems.

5.2 Metrics

We evaluate the models along four key dimensions:
naturalness, intelligibility, speaker similarity, and
f0 consistency. Since StreamVC is not open source,
to enable a direct comparison with StreamVC, we
adopt the same evaluation protocol for all metrics
except for naturalness and speaker similarity, as
StreamVC did not incorporate subjective evalua-
tion for these aspects. In addition, we were unable
to reproduce the naturalness results using the offi-
cial DNSMOS2 repository because the upper bound
of DNSMOS for clean speech appears to be around
3.33, whereas StreamVC reports a DNSMOS of
3.99 for source utterances from LibriTTS. Conse-
quently, we use alternative, widely used metrics for

2https://github.com/microsoft/DNS-Challenge
3https://github.com/microsoft/DNS-Challenge/issues/189
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Model Name
Naturalness Intelligibility Speaker Similarity f0 Consistency CPU

UTMOS ↑ MOS ↑ WER ↓ CER ↓ Resemblyzer Score ↑ SMOS ↑ f0 PCC ↑ Latency ↓

Source (LibriTTS) 4.03 ± 0.04 4.13 ± 0.16 5.06% 1.36% - - - -

StreamVC - - 6.22% 2.17% 77.81% - 0.842 70.8ms

RT-VC 3.81 ± 0.02 3.87 ± 0.17 6.69% 2.12% 76.65% 3.59 ± 0.19 0.865 61.4ms

Table 1: Performance comparison of StreamVC and RT-VC. StreamVC values are taken directly from its publication.
Values are presented with their corresponding 95% confidence intervals where applicable.

naturalness evaluation.
Naturalness is measured automatically using UT-

MOS4, which is a machine-evaluated mean opinion
score (MOS), and subjectively via a 5-point MOS
test on Prolific5. Each model receives 200 unique
ratings. Intelligibility is evaluated using word error
rate (WER) and character error rate (CER), both
obtained using the HuBERT-Large ASR model6.
Speaker similarity is measured automatically by
the cosine similarity between speaker embeddings
generated by Resemblyzer7, and subjectively by
similarity mean opinion score (SMOS) ratings from
human raters. Lastly, f0 consistency is evaluated
using the Pearson correlation coefficient (PCC) be-
tween source and converted speech f0 contours.

5.3 Conversion Quality

Table 1 summarizes the performance of RT-VC and
StreamVC. Overall, the two models exhibit compa-
rable conversion quality. For naturalness, RT-VC
achieves a UTMOS of 3.81 and a MOS of 3.87,
both of which are greater than 3.8, which is a good
indicator of high fidelity. For intelligibility, RT-VC
performs similarly to StreamVC, with a slightly
higher WER (+0.47%) and a marginally lower CER
(–0.05%), and both metrics are close to those of
the ground truth. This indicates that the converted
speech of RT-VC is highly intelligible. Addition-
ally, both systems demonstrate comparable speaker
similarity and f0 consistency, with RT-VC showing
a slightly lower Resemblyzer score (–1.16%) and a
marginally higher f0 consistency (+0.023), under-
scoring its strong zero-shot conversion capability.

5.4 Noise Robustness

We assess the noise robustness of RT-VC by mea-
suring the WER and UTMOS of the converted
speech when the input source is contaminated

4https://github.com/sarulab-speech/UTMOS22
5https://www.prolific.com/
6https://huggingface.co/facebook/hubert-large-ls960-ft
7https://github.com/resemble-ai/Resemblyzer
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Figure 4: WER and UTMOS against input SNR for
three types of additive noise: white, brown, and pink.

with noise while the target remains clean. Noisy
source speech is generated by adding white, pink,
and brown noise at various signal-to-noise ratios
(SNRs) to the original utterances. Figure 4 presents
the results. Overall, RT-VC is most robust to brown
noise, with minimal degradation in WER and UT-
MOS as the SNR decreases from 40dB to 10dB.
In contrast, white noise has the greatest impact:
at 20dB SNR, the WER is around 10%, but it
increases sharply to approximately 25% at 10dB.
Moreover, UTMOS drops below 3.5 when the SNR
is lower than 20dB. These findings indicate that RT-
VC effectively handles static noise when the input
SNR is above 20dB, demonstrating strong noise
robustness.

6 Conclusion

We introduce RT-VC, a zero-shot real-time voice
conversion system that delivers low CPU latency
and high conversion quality. RT-VC leverages the
Speech Articulatory Coding (SPARC) framework
in conjunction with a real-time DDSP vocoder,
enabling natural speaker-content disentanglement
with rapid conversion. Compared with the cur-
rent SOTA, RT-VC achieves lower CPU latency
while maintaining comparable conversion quality,
and it demonstrates robustness against static back-
ground noise. Future work will explore prompt-
free real-time voice conversion by incorporating
offline design of target speaker characteristics, such
as gender, age, emotion, and accent.

390

https://github.com/sarulab-speech/UTMOS22
https://www.prolific.com/
https://huggingface.co/facebook/hubert-large-ls960-ft
https://github.com/resemble-ai/Resemblyzer


7 Limitations

RT-VC leverages the Speech Articulatory Cod-
ing (SPARC) framework to enable natural and
grounded disentanglement between speaker and
content representations. However, there are still
limitations. First, relying solely on electromagnetic
articulography (EMA) does not fully capture vocal
tract kinematics, as it omits crucial dynamics such
as nasal cavity movements and laryngeal behav-
ior, which are vital for modeling nasal sounds and
larynx-specific phenomena like vocal fry. Second,
the pseudo EMA labels are generated by a self-
supervised learning model (WavLM) that was pre-
trained exclusively on English data and probed onto
an English speaker’s articulation space. Although
our video demonstration shows that the system can
perform cross-lingual conversion, this language-
specific EMA inversion restricts the model’s mul-
tilingual capabilities. Third, despite training with
static noise augmentation, the system remains sen-
sitive to the quality of the input speech, and conver-
sion performance is ultimately constrained by the
recording equipment’s quality.

8 Ethical Considerations

The ethical concerns surrounding RT-VC arise
from the broader risks associated with voice con-
version and generative speech models, notably the
potential for impersonation and privacy violations.
To mitigate these risks, RT-VC checkpoints will
not be made open source, thereby limiting unre-
stricted access to the technology. In addition to
this initial safeguard, we plan to implement further
measures to prevent misuse. In particular, devel-
oping robust detection mechanisms is a priority,
as these can help identify and deter unauthorized
applications. Furthermore, we intend to explore the
integration of watermarking or traceable metadata
into the converted audio, facilitating tracking and
accountability in instances of unethical use.
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