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Abstract

We introduce FORG3D, a 3D rendering
toolkit developed with Blender and Python,
which synthesizes vision-language data for
two primary purposes: (1) supporting human
cognitive experiments that require fine-grained
control over material and (2) analyzing and
improving the visual reasoning capabilities
of large vision-language models. The toolkit
provides flexible and precise control over
object placement, orientation, inter-object
distances, and camera configurations while
automatically generating detailed spatial meta-
data. Additionally, it includes a built-in feature
for integrating Al-generated backgrounds,
enhancing the realism of synthetic scenes.
FORGS3D is publicly available at https://
github.com/compling—-wat /FORG3D,
and a video demonstration is available at
https://www.youtube.com/watch?
v=QvIgib_PUS8A.

1 Introduction

Spatial reasoning is a fundamental aspect of hu-
man cognition, where language is closely inter-
twined with visual perception to form a holistic un-
derstanding of the world (Landau and Jackendoff,
1993; Hayward and Tarr, 1995; Regier and Carl-
son, 2001; Levinson, 2003, inter alia). Cognitive
scientists and psycholinguists have studied human
spatial reasoning using diverse experimental ma-
terials, including text-only narratives (Bryant and
Tversky, 1992; Bryant et al., 1992), 2D sketches
or images (Carlson-Radvansky and Irwin, 1994;
Logan, 1995), and simple 3D scenes (Li and Gleit-
man, 2002; Carlson and Van Deman, 2008; Bender
et al., 2020) as the experimental material. However,
developing 3D vision-language materials that si-
multaneously capture the complexity of real-world
scenarios and maintain experimental control has
remained a significant challenge due to the lack of
easily accessible 3D rendering toolkits.
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Figure 1: Example rendered image showing a person facing
to the right and a car facing the front and three rendered images
of the same scene but with different configurations.

In machine learning, particularly the subfields
of vision-language models (VLMs; Radford et al.,
2021; Wang et al., 2024b; Liu et al., 2023b, inter
alia) and embodied artificial intelligence (Li et al.,
2024, inter alia), the ability to comprehend and rea-
son about spatial relationships has become vital for
applications such as image captioning, visual ques-
tion answering, and robotic navigation. Despite
their potential, current VLMs encounter challenges
in spatial reasoning (Kamath et al., 2023; Liu et al.,
2023a; Zhang et al., 2025), partially due to limi-
tations in training data (Chen et al., 2024a; Ogezi
and Shi, 2025)—existing datasets often lack spatial
annotations and fail to adequately represent vari-
ations in object rotations, positions, and camera
perspectives, thereby constraining the reasoning
capabilities of VLMs.

Generating image-text pairs from 3D scenes
holds the potential to address challenges in both
cognitive experimental material design and vision-
language model development. Along this line, we
introduce FORG3D, a cross-platform 3D render-
ing toolkit developed using the Python interface
of Blender 4.3 (Blender Team, 2024), specifically
designed to generate high-quality vision-language
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datasets for spatial reasoning tasks.

Functioning as a higher-level wrapper layer for
the Blender rendering engine, FORG3D saves user
effort in configuring complicated Blender environ-
ments and, thereby, empowers researchers with
minimal Blender expertise to effortlessly create in-
tricate 3D scenes by putting together objects on a
planar surface. FORG3D uses objects under the
Creative Commons license from Sketchfab,! and
synthesizes diverse 3D scenes with high flexibility
and controllability in object placement, orientation,
and camera positioning (Figure 1), along with the
accompanying metadata. This enables a pipeline to
easily generate visual question answering or image
captioning datasets based on custom 3D scenes,
providing a comprehensive yet controlled environ-
ment that supports nuanced investigations of spa-
tial reasoning. We anticipate that FORG3D will
facilitate both cognitive science and multimodal
machine learning research. The FORG3D toolkit
is released under the MIT License.

2 Related Work

3D rendering toolkits and datasets for vision-
language research. The most relevant work to
ours is CLEVR (Johnson et al., 2017)—in addi-
tion to the widely used dataset, a data synthesis
pipeline built with Blender 2.78 (Blender Team,
2016) has been released. The CLEVR synthesis
pipeline allows researchers to generate synthetic
data that controls color, size, and material (i.e.,
texture) for three simple objects, including cubes,
spheres, and cylinders. Follow-up efforts have ex-
tended CLEVR for more complex visual reasoning
tasks, such as referring expression comprehension
(Liu et al., 2019) and physics understanding (Yi
et al., 2020; Mao et al., 2022). Compared to them,
FORG3D supports a wider range of objects, in-
cluding but not limited to human figures, animals,
vehicles, furniture, and buildings, and allows for
more complex spatial configurations. Notably, the
involvement of objects with an intrinsic frame of
reference (FoR), such as humans, animals, and ve-
hicles, enables the complex FoR-based analysis of
spatial relations through rotations and translations
of the objects (see Levinson, 2003, inter alia).

Synthetic datasets for training VLLMs. Recent
work has proposed to enhance the spatial reasoning
abilities of VLMs using structured spatial priors
(Cheng et al., 2024) or large-scale question-answer

"https://sketchfab.com/

pairs (Chen et al., 2024b; Ogezi and Shi, 2025).
However, the reliance on real-world photographs
poses challenges in precisely interpreting spatial
relations. Compared to them, FORG3D facilitates
systematic diagnosis and potential improvement
of large VLMs by providing precise 3D metadata
alongside the rendered images.

Another line of work has proposed to incorpo-
rate 3D point clouds into VLMs (Hong et al., 2023,
inter alia), which enriches the spatial perception
of VLMs. However, the 3D point clouds are often
resource intensive and require significant computa-
tional resources for training. In this work, we focus
on generating 2D images from 3D scenes, which
better aligns with the existing VLMs.

3D spatial reasoning benchmarks for VLMs.
Several benchmarks have been introduced to evalu-
ate and diagnose the spatial reasoning capabilities
of VLMs, focusing on basic spatial relation recog-
nition (Liu et al., 2023a; Kamath et al., 2023; Shiri
et al., 2024; Wang et al., 2025), frame-of-reference
adoption (Zhang et al., 2025), and cross-linguistic
visual-question answering (Pfeiffer et al., 2022;
Zhang et al., 2025). One major concern for these
static benchmarks is the potential data leakage in
training future models (Villalobos et al., 2024)—to
this end, FORG3D supports dynamic benchmark-
ing through generating unseen examples.

3 Methods

The FORG3D pipeline (Figure 2) supports control-
ling a broad range of factors in rendering scenes
with two distinct objects on a planar surface. The
scenes are annotated with precise spatial metadata.
We offer support for and have tested extensively on
Linux, Windows, and MacOS systems.

3.1 Framework

We formally define a scene, S, as a collection of the
key parameters that generate it: the selected objects
(01, O9), their relative spatial configuration R, and
the camera setup C. The spatial configuration, R,
specifies the relative position of the second object
to the first (e.g., ’left’), the individual rotations for
each object (11, r2), and the distance between them
(d). The camera configuration, C, contains values
for tilt, pan, height, and focal length. The FORG3D
pipeline then operates as a deterministic function,
which we can denote as Render (S), that maps
this complete parameter set .S to a pair of outputs:
the rendered image, I, and corresponding metadata,
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Figure 2: Compact pipeline diagram of the FORG3D tool. Objects are loaded, scenes are rendered in batch or
single mode, metadata is generated, an output folder is created with the rendered scenes and metadata, and optional
Al-generated backgrounds can be added to the output images.

M. This metadata is a direct record of the parame-
ters in .S, ensuring that every image is paired with
its exact ground-truth data for reproducibility.

3.2 Rendering Pipeline Setup

The pipeline initializes by integrating the project
repository with the Blender Python environment.
This involves configuring Blender to recognize
the FORG3D source directory through a dedicated
.pth file placed in its site-packages. Since
the rendering tool relies solely on libraries that
are pre-installed in the Blender 4.3 Python envi-
ronment, no additional dependencies are required.
Users can either load our 21 preset objects from an
external repository by running the provided shell
script or add custom objects as .blend files and
label their properties in properties. json.

3.3 Camera Configuration

FORG?3D provides extensive customization of cam-
era parameters, allowing for controlled manipula-
tion of the viewpoint. The supported camera set-
tings include:

* Tilt: vertical angle of the camera;

* Pan: horizontal angle of the camera;

» Height: camera’s vertical position;

* Focal length: camera’s zoom.
These parameters are supplied via command-line
arguments or configuration files, facilitating repro-
ducibility across experiments.

3.4 Object Spatial Configurations

The current version of FORG3D is designed to
render scenes with two objects, with the potential
to extend to more in the future. There are two
primary rendering modes:

Batched rendering (-render—-random). Under
this mode, the toolkit automatically renders scenes
for all pairs of objects found in a specified data di-
rectory. The output is organized into subdirectories
labeled according to the relative positioning of the
objects:

* [objectl]_[object2]_{left,
right, front, behind}

For each of these subdirectories, the system gen-
erates renderings that encompass all possible com-
binations of rotations around the vertical z-axis,
where each rotation of object1 is paired with
each rotation of object 2, capturing a full range
of variations in orientations and relative perspec-
tives between the two objects. If no camera config-
uration is specified, each of these renderings will
be repeated a specified number of times, for each
of the manually created configuration settings that
include all combinations of tilt, pan, height, and fo-
cal length. These settings are created in the source
code to ensure optimal visibility of the scene, as
poorly chosen camera settings can obscure or dis-
tort the view, making it difficult to observe the ob-
jects clearly. The additional parameters that can be
specified in the command line are listed as follows:

* Object selection;

* Distance between the two objects;

* Maximum number of images to render for
each subdirectory (various rotations);

* Camera configurations.

Furthermore, FORG3D supports object overlap
prevention to ensure clarity and object visibility.
Specifically, we discard images where (1) a smaller
object is hidden behind a larger one (determined by
> 75% overlap of bounding box pixels) or (2) ob-
jects positioned side-by-side share common pixels.

Single-image rendering (default option). In this
mode, additional parameters enable precise control
over the spatial relations:

* Position of object 2 relative to object1;
* Individual object rotations around the z-axis
in degrees (clockwise).

This dual-mode functionality allows for both
exhaustive dataset generation and targeted experi-
mental material synthesis.
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3.5 Metadata Generation and Organization

After each image is rendered, a corresponding
JSON metadata file is generated, containing de-
tailed information on applied camera settings and
object transformations. The metadata encapsulates:

* Numerical values for camera tilt, pan, height,
and focal length.

* Positions (x-y coordinates) and orientations
(left, right, front, behind) of the objects.

* Spatial relationship between the objects from
the viewer’s perspective, as well as the relative
perspectives of both objects

This rigorous documentation of scene parameters is
critical for reproducibility and systematic analyses.

3.6 Al-Generated Background Integration

As an extended feature, FORG3D can optionally
integrate Al-generated background using the
Stable Diffusion XL inpainting model (Rombach
et al., 2022), which modifies the background
pixels while preserving the objects. Every time
an image is rendered, a corresponding masked
image is also saved, with the background being
white and the objects colored black. By executing
the provided script with a custom prompt, users
can mask out the default plain backgrounds
of the rendered images and replace them with
more realistic environments generated by the
model. This ensures that the original objects and
their spatial relationships remain intact while
introducing diverse contextual settings. Users can
also customize the diffusion model’s parameters in
the Python script, including guidance_scale
(creativity), num_inference_steps, and
strength. This feature works best on images
with square resolutions, as the inpainting model is
optimized for those dimensions.

3.7 Controlled and Uncontrolled Elements

The rendering pipeline balances precision and flex-
ibility through controlled, semi-controlled, and un-
controlled elements. Fully controlled elements in-
clude the objects themselves, object positions de-
fined by relative relationships, object orientations,
inter-object distances, object scaling (set in the
properties. json file), image resolutions (set
in the config. json file), and camera settings.
Semi-controlled elements are those that offer
customization with limits. For instance, the back-
grounds generated with Stable Diffusion allow
users to replace plain defaults with realistic scenes

using custom prompts, though the exact details
of the backgrounds depend on the model. Object
texture is another feature being semi-controlled, re-
quiring manual application in Blender for material
properties, outside the automated pipeline.

Uncontrolled elements are those that lie beyond
direct manipulation, imposing limitations on cus-
tomization. For example, scene lighting defaults
to the uniform setup from Blender, with no control
over directional sources of shadows. Additionally,
the specific positions of the two objects in each
scene cannot be set using coordinates. Instead,
their positions are calculated in the source code,
using the relative directions of the objects, for con-
sistency. However, the implementation maintains
sufficient flexibility to accommodate these addi-
tional controls in future developments.

4 Demonstration

In this section, we present examples generated by
FORGS3D. For detailed descriptions of each func-
tion’s parameters and return values, refer to the
official documentation.?

8 b1 - S

(a) Chair (medium) and bed
(medium).

(b) Basketball (small) and
shoe (small).

. S .

(d) Basketball (small) and
tree (large).

(c¢) Chair (medium) and shoe
(small).

Figure 3: Rendered scenes of various object pairs.

CZ0)

(b) Dog facing front-right
(45 degrees).

G ) e

(a) Dog facing behind.
Figure 4: Example rendered scenes of a dog and a bike

with the dog facing different orientations.

https://compling-wat.github.io/
FORG3D/
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(b) Dog to the right of bike.

o D

(a) Dog to left of bike.

o

(c) Dog in front of bike.

c40)

(d) Dog behind bike.

Figure 5: Example rendered scenes of a dog and a bike
with different relative positions.

o D
o

(a) Camera tilted down. (b) Camera panned right.

k2l @?@ o D

(c) Camera shifted down. (d) Camera zoomed out.

Figure 6: Various camera configurations for the scene
in Figure Sa.

Various object combinations. Any pair of
Blender objects can be rendered into a scene.
For each pair of objects rendered, the objects are
scaled according to their size groups recorded in
properties. json. For example, the basket-
ball, when placed next to the shoe, which is classi-
fied as a “small” object, appears larger than when
it is placed next to the tree, which is classified a
“large” object (Figure 3).

Different orientations. The toolkit supports ren-
dering images with different orientations of the
objects, which can be specified in the command
line or configuration files (Figure 4).

Relative positions. The toolkit supports rendering
images with different relative positions of the ob-
jects, which can be specified in the command line
or configuration files (Figure 5). Data synthesized
with respect to relative positions can be used to re-
produce and validate the generalizability of results
by Zhang et al. (2025).

Camera configurations. The toolkit supports ren-
dering images with different camera configurations,
which can be specified in the command line or con-
figuration files (Figure 6). Data synthesized with
respect to camera configurations can be used to
study human and model preference towards certain
linguistic descriptions of spatial relations from dif-
ferent angles of views, which, to the best of our
knowledge, has not been studied in the literature.

1 {

2 "camera": { },

3 "ground_object": {

4 "name": "puma",

5 "orientation": "left",

6 "intrinsic_caption":

7 "From the puma's perspective,
8 the sign is to the right of it."
9 by

10 "figure_ object": {

11 "name": "sign",

12 "orientation": "front",

13 "intrinsic_caption":

14 "From the sign's perspective,
15 the puma is in front of it."
16 },

17 "translational relation_caption":

18 "The sign is in front of the puma.",
19 "reflectional_relation_caption":

20 "The sign is behind the puma."

21 }

Figure 7: Example rendered image (top) and correspond-
ing syntax-highlighted JSON metadata (bottom). The
camera configuration is omitted for brevity.

at o

(b) With Al-generated
background.

(a) Original image of a
hut and a tree.

Figure 8: Example of applying the background generation
process to a rendered image.

Example metadata. The JSON metadata file for
each rendered image is mostly self-explanatory
(Figure 7), containing the camera configuration
for the scene, both objects’ rotations, positions,
and orientations relative to the camera, as well as
the scene captions. The intrinsic_caption
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field for an object represents the description of
the scene from the perspective of that object,
while the last two fields specify the objects’ spa-
tial placements from the viewer’s perspective
intranslational and reflectional con-
texts (Levinson, 2003), respectively—the former
treats the direction towards the background as the
front, while the latter treats the direction towards
the camera as the front.

Al-generated backgrounds. Figure 8 presents an
example of applying the inpainting model to gen-
erate a background based on the original rendered
image, with the prompt: "realistic sky and ground,
textures, colours, lighting, detailed."

5 Quantitative Evaluation

We generate a dataset of rendered images using
FORG?3D, which includes 210 unique pairs from 21
objects using the render_multiple. sh script.
Each pair is rendered in four relative positions, or-
ganized into separate subdirectories, with at most
five variations in object rotations per subdirectory
and at most four camera configurations per scene.
The process took approximately 5 hours of user
time and 2 hours of system time on a machine
equipped with an NVIDIA RTX 4090 GPU.

The metadata co-generated with the images have
provided spatial orientation and positional details
necessary for generating captions and correspond-
ing questions. The format of the questions was
taken from specific categories from the 3DSR-
Bench benchmark (Ma et al., 2024), which is a
dataset of multiple-choice questions related to the
relative positioning and perspectives of objects in a
scene, as well as the viewpoint of the observer. The
generated questions were then systematically orga-
nized into both a CSV and a JSONL file, pairing
each image with its respective queries. In addition,
the dataset could potentially be used to fine-tune
VLMs on answering similar types of questions.

Human users’ endorsement. We randomly select
20 rendered images from the dataset, along with
their captions, and invite volunteer users to rate the
captions’ correctness with two options (yes or no;
Figure 9a). Most responses agree with all captions
generated for the rendered images. Grouping cap-
tions into three categories: (1) object relations from
the viewer’s perspective, (2) object relations from
the objects’ intrinsic perspectives, and (3) object
orientations, we find that each category has an aver-
age endorsement rate above 93% with low standard

Viewer Perspective
Intrinsic Relations B

Object Orientations

0 20 40 60 80 100
Average Endorsement Percentage

(a) Human user endorsement.

Mismatched Object-Labels {t

Matched Object-Labels

0.0 0.2 0.4 0.6 0.8
CLIP Probability

(b) CLIP endorsement.

Figure 9: Average user and CLIP endorsement percent-
ages of captions for each caption category.

errors, indicating strong participant agreement and
supporting the toolkit’s accuracy and reliability—
in fact, the only cases where the participants dis-
agreed were due to a single bookshelf object with
a somewhat unclear front view.

CLIP endorsement. The CLIP model (Radford
et al., 2021) is known to be fairly capable of recog-
nizing objects; therefore, we also evaluate whether
the selected objects can be correctly identified by
the model. For each of the 21 preset objects, we ren-
der 5 scenes with random orientations and camera
configurations, and then we use the CLIP probabil-
ity over labels as its endorsement level, with the
full label set being the 21 object names (Figure 9b).
The results show that our present objects are recog-
nized with strong probabilities, serving as evidence
that the objects appear in a canonical form.

6 Fine-Tuning Experiments

To further demonstrate the potential of FORG3D,
we perform fine-tuning experiments as follows. We
synthesize a dataset comprising 31,986 unique ren-
dered images depicting diverse objects and scenes
with FORG3D. Each image is paired with con-
textually relevant questions and answers gener-
ated through constructed templates derived from
the 3DSR Benchmark, resulting in a dataset of
122,870 question-answer pairs. We then fine-tune
the Qwen2-VL-2B-Instruct model (Wang et al.,
2024a), which has around 2.2 billion parameters.
Due to the computational demands inherent in train-
ing models of this size, we utilized Low-Rank
Adaptation (LoRA; Hu et al., 2022), significantly
reducing computational overhead by limiting up-
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Accuracy (cat.1) Accuracy (cat. 2) Accuracy (cat. 3)

State Dataset Evaluated  Accuracy (overall)
Before Fine-tuning FORGS3D Validation 34.61%
After Fine-tuning FORG3D Validation 46.33%
After Fine-tuning (enhanced) FORG3D Validation 49.79%
Before Fine-tuning 3DSR Benchmark 45.37%
After Fine-tuning 3DSR Benchmark 45.66%
After Fine-tuning (enhanced) 3DSR Benchmark 47.00%

46.12% 52.24% 23.54%
42.92% 52.03% 45.34%
46.80% 52.03% 50.00%
58.72% 49.86% 27.41%
53.20% 49.86% 33.82%
52.91% 49.57% 38.48%

Category 1: front-back categorization

Minimal change (<5% difference)

Noticeable increase (between 5-10%)

Category 2: left-right categorization

Category 3: viewpoint-relative reasoning

Noticeable decrease (-5% or more)

Significant increase (10% or more)

Table 1: Performance before and after fine-tuning across datasets and reasoning categories.

dates to a small subset of parameters.

After the fine-tuning procedure, we measure the
model’s accuracy on questions selected from both
the 3DSR dataset and a separate validation set con-
structed from images generated by the FORG3D
that is disjoint from the training set. The questions
fall into three categories (Table 1): both front-back
and left-right tasks require a binary choice; in con-
trast, viewpoint-relative reasoning demands locat-
ing one object with respect to another (left, right,
in front of, or behind).

With fine-tuning, the model’s accuracy on the
FORG3D validation improves to 46.33% from
34.61%. However, the gains only appear in
viewpoint-relative reasoning (23.54% to 45.34%),
while the other categories’ accuracies decreased
slightly.  On 3DSR, the overall accuracy ex-
hibits stability, with very minor improvement from
45.37% to 45.66%. However, viewpoint-relative
reasoning questions again shows a noteworthy in-
crease, from 27.41% to 33.82%. Conversely, a
decline was observed in simpler spatial reasoning
questions (front-back categorization), reflecting a
potential trade-off as the model adapted to more
complex tasks. There was no change in accuracy
for the left-right categorization questions (Table 1).
The results resonate with those reported by Zhang
et al. (2025), where viewpoint-related tasks are
identified as challenging problems for VLMs.

Furthermore, we generate a smaller enhanced
dataset with 20,652 images and 98,536 question-
answer pairs, introducing background variability
via the Al background generation pipeline, aiming
to improve model robustness by adding noise. By
fine-tuning the model with this enhanced dataset,
further minor improvements in accuracy are ob-
served: the fine-tuned model reaches an accuracy
of 49.79% on the FORG3D validation set, with

significant improvements in the viewpoint-relative
reasoning category (23.54% to 50.00%) and similar
performance on other categories. Furthermore, the
fine-tuned model achieves 47% overall accuracy on
3DSR, with viewpoint-relative reasoning accuracy
improving by over 11% to 38.48%. However, front-
back categorization accuracy again decreases while
left-right categorization accuracy remains similar.

Although the overall accuracy improvements ob-
served through fine-tuning are modest, the substan-
tial gains in viewpoint-relative reasoning accuracy
are notable and show that the system does have po-
tential. A key limitation, however, is that the train-
ing dataset involves only 21 distinct objects, which
does not introduce significant variety and may re-
strict the model’s ability to generalize. Future work
should focus on refining fine-tuning methods and
dataset composition to bolster performance in ad-
vanced reasoning tasks without compromising ac-
curacy on simpler spatial categories.

7 Conclusion and Discussion

We have presented FORG3D, a cross-platform 3D
rendering toolkit designed to generate high-quality
vision-language datasets for spatial reasoning tasks,
and demonstrated its potentials through both qual-
itative demonstrations (§4) and quantitative (§5)
evaluations. It offers a user-friendly command-line
interface for creating intricate 3D scenes with mini-
mal Blender expertise, allowing researchers in both
cognitive science and computer science to focus on
the design of their experiments rather than the tech-
nical details of rendering. We anticipate FORG3D
will facilitate research in both areas.
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A Limitations

Despite its versatility, the current implementation
of FORG3D has several limitations:

1. User interface and usability: Currently, the
toolkit is primarily operated via command-line
inputs, which may deter users unfamiliar with
scripting. Developing an intuitive graphical user
interface could enhance accessibility.

2. Support for multiple objects in one scene: The
toolkit is designed to render scenes containing
only two objects, focusing on their relative spa-
tial configurations. Expanding the tool to sup-
port scenes with more than two objects would
better reflect real-world environments.

B Future Improvements

Our roadmap for extending the FORG3D toolkit in
the future involves implementing a detailed strategy
to effectively manage the complexity of rendering
multi-object scenes. Specifically, we plan to imple-
ment advanced:

(a) Positioning logic: develop a hierarchical posi-
tioning system that extends current pairwise
logic to efficiently handle positioning for n-
body collections. This will involve spatial par-
titioning techniques to systematically manage
relationships among multiple objects.

(b) Occlusion prevention: introduce real-time oc-
clusion checking for multiple objects using
depth analysis to ensure they remain visible.

(c) Combinatorial management: use Al to auto-
matically discard redundant or visually similar
scenes, reducing the vast number of possible
arrangements for multiple objects and improv-
ing overall efficiency.

By addressing the limitations and implementing
the proposed enhancements, future iterations of the
toolkit can further enhance its role as a robust plat-
form for synthetic spatial reasoning dataset genera-
tion, advancing scientific research in both cognitive
science and machine learning.
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