
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 3: System Demonstrations), pages 318–328
July 27 - August 1, 2025 ©2025 Association for Computational Linguistics

The Open Argument Mining Framework

Debela Gemechu1, Ramon Ruiz-Dolz1, Kamila Gorska1, Somaye Moslemnejad1,
Eimear Maguire1, Dimitra Zografistou1, Yohan Jo2, John Lawrence1, Chris Reed1

1Centre for Argument Technology, University of Dundee
2Graduate School of Data Science, Seoul National University

Correspondence: debela@arg.tech
Demo Video: https://youtu.be/Gtw0ly9QBZw

Abstract

Despite extensive research in Argument Min-
ing (AM), the field faces significant challenges
in limited reproducibility, difficulty in com-
paring systems due to varying task combina-
tions, and a lack of interoperability caused
by the heterogeneous nature of argumentation
theory. These challenges are further exacer-
bated by the absence of dedicated tools, with
most advancements remaining isolated research
outputs rather than reusable systems. The
oAMF (Open Argument Mining Framework)
addresses these issues by providing an open-
source, modular, and scalable platform that uni-
fies diverse AM methods. Initially released
with seventeen integrated modules, the oAMF
serves as a starting point for researchers and de-
velopers to build, experiment with, and deploy
AM pipelines while ensuring interoperability
and allowing multiple theories of argumenta-
tion to co-exist within the same framework. Its
flexible design supports integration via Python
APIs, drag-and-drop tools, and web interfaces,
streamlining AM development for research and
industry setup, facilitating method comparison,
and reproducibility.

1 Introduction

The automatic recognition of the structure of hu-
man reasoning in natural language discourse – argu-
ment mining (AM) – is a particularly challenging
task in NLP. Various reviews have surveyed the
field (Lippi and Torroni, 2016; Stede and Schnei-
der, 2019; Lawrence and Reed, 2019), though more
recently surveys have become much harder to as-
semble, with the ACL anthology returning 7,500
papers for the search "argument* mining" at time
of writing. The ACL Workshop on AM is running
its twelfth edition in 2025, and the area is set to play

an even more lynchpin role in NLP more broadly as
interest in the capabilities of large language models
to perform reasoning grows rapidly.

Despite a significant pedigree of research, the
area of AM suffers from some significant chal-
lenges. First of all, as Ruosch et al. (2023) have
demonstrated, reproducibility of results in AM is
a pressing issue. Secondly, the challenge of re-
producibility is compounded by the fact that AM
comprises many interdependent tasks, and differ-
ent studies have focused on different combinations
of these subtasks, making it very difficult either
to compare between systems or to leverage previ-
ous work in tackling different parts of the pipeline.
Thirdly, even to the extent that different compo-
nents might successfully be redeployed and har-
nessed in combination, interoperability remains a
key challenge because basic conceptions and in-
tuitions of argument structure are baked in to ad
hoc representation languages which do not support
interchange. Finally, there is a lack of AM tools,
with most of the advancements in the area remain-
ing isolated research prototypes (Kawarada et al.,
2024; Cabessa et al., 2025; Pojoni et al., 2023;
Chen et al., 2024; Gorur et al., 2025; Cabessa et al.,
2024; Mancini et al., 2024; Habernal et al., 2024;
Schaller et al., 2024). Our goal in this work is to
address these challenges through Open Argument
Mining Framework (oAMF), a solution that stan-
dardises and streamlines AM while preserving the
ingenuity and creativity that have been hallmarks
of research in the area.

The rest of this paper is organised as follows.
Section 2 introduces xAIF, the data format enabling
seamless communication in oAMF. Section 3 out-
lines the development, deployment, usage, and the
existing modules in oAMF. Section 4 presents AMF-

318

mailto:debela@arg.tech
https://youtu.be/Gtw0ly9QBZw


Compatible Tools, including visualisation and eval-
uation modules. Section 5 evaluates oAMF, and
related works are detailed in Section 6. The release
of oAMF is in Section 7, with key contributions and
future directions in Section 8.

2 Data Format

The Argument Interchange Format, AIF, is a ma-
ture, well-established and widely used standard
for computational representation of argumentation
(Chesñevar et al., 2006). It provides a formally
specified ontology with which to capture basic
notions of the structure of arguments as graphs
(Rahwan et al., 2011). The AIF (and its exten-
sions to handle argument situated in dialogue) cap-
tures propositions (including a special subclass of
propositions that refer to discourse events and are
referred to as locutions), and relations between
propositions (including relations of inference, con-
flict and rephrase, plus additional relations captur-
ing illocutionary function and protocol-governed
transition in dialogical settings). In combination
with various parts of the Argument Web ecosystem
(Lawrence et al., 2023), the AIF is currently used in
representing the largest extant datasets of annotated
argumentation (Hautli-Janisz et al., 2022).

The AIF imposes a number of well-formedness
constraints on the data it handles, including that
relations must have exactly one consequent and at
least one antecedent, that propositions can only be
interconnected via relations, and so on (Rahwan
et al., 2007). In an environment of incremental
processing where parts of an argument structure
represented in AIF may be added piecemeal such
constraints are too onerous. In addition, it may
be appropriate to markup initial discourse with ad-
ditional intermediate annotation that is not cap-
tured by AIF simpliciter. For both of these reasons,
basic AIF is extended as “xAIF” which offers a
mechanism by which AIF structure can both be
underspecified (with respect to constraints) and
overspecified (with respect to structural markup),
and is made available as a convenient JSON lan-
guage. xAIF provides the interlingua of the open
argument mining framework, acting as the lan-
guage for both input and output of all the mod-
ules. An example of xAIF is available in Fig-
ure 1 and a complete documentation is available
at https://github.com/arg-tech/xaif/blob/
main/docs/tutorial.md.

3 The Open Argument Mining
Framework (oAMF)

oAMF is a modular, open-source framework de-
signed to facilitate end-to-end AM by integrating
diverse AM modules, fostering interoperability,
flexibility, scalability, and ease of use across vari-
ous AM tasks through multiple interfaces, includ-
ing drag-and-drop, web-based, and programming
APIs. oAMF empowers researchers and developers
to create customisable, reproducible, and scalable
AM workflows (pipelines) by seamlessly integrat-
ing multiple modules within a single framework,
thereby simplifying the process of building and
experimenting with AM pipelines and enhancing
both development and research efficiency.

Currently, the framework includes 17 open-
source AM modules (see Table 2), all deployed on
the oAMF server and available on GitHub for com-
munity contributions. New modules can be added,
with each module expected to follow specific in-
put/output formats, implementation guidelines, and
configuration requirements (see Section 3.1).
oAMF can be accessed through multiple inter-

faces. The web interface (3.3.3) allows the selec-
tion and execution of pre-built AM pipelines. A
drag-and-drop interface (3.3.2) lets users construct
AM pipelines based on deployed components on
the oAMF server. The oAMF Python library can be
installed to deploy modules locally and create AM
pipelines using either the locally deployed modules
or those on the oAMF server or both, offering a flex-
ible solution for both local and remote execution.

3.1 oAMF Module Development

oAMF allows developers to extend its capabilities by
adding new modules, following a structured devel-
opment approach that ensures interoperability.

Input-Output Format: Each module uses xAIF
for input and output to ensure interoperability. To
streamline the process, oAMF offers a Python li-
brary, which simplifies input and output format-
ting into the required xAIF structure. As shown
in Figure 1, this library simplifies xAIF manipu-
lation, aiding developers in managing argument
units and relations. For more details on instal-
lation and usage, visit the PyPI package page at
https://pypi.org/project/xaif/.

Implementation: Modules are implemented as
Flask-based web services to ensure smooth deploy-
ment. Each module is containerised to isolate its

319

https://github.com/arg-tech/xaif/blob/main/docs/tutorial.md
https://github.com/arg-tech/xaif/blob/main/docs/tutorial.md
https://pypi.org/project/xaif/


1 from xaif import AIF
2 # Sample xAIF JSON with 2 L nodes and 2 I nodes
3 aif_data = {"AIF": {"nodes": [
4 {"nodeID": 0, "text": "Example L node 1", "type": "L"},
5 {"nodeID": 1, "text": "Example L node 2", "type": "L"},
6 {"nodeID": 2, "text": "Example I node 1", "type": "I"},
7 {"nodeID": 3, "text": "Example I node 2", "type": "I"},
8 {"nodeID": 4, "text": "Default Inference", "type": "RA"}
9 ],

10 "edges": [
11 {"edgeID": 0, "fromID": 0, "toID": 2},
12 {"edgeID": 1, "fromID": 1, "toID": 3},
13 {"edgeID": 2, "fromID": 2, "toID": 4},
14 {"edgeID": 4, "fromID": 2, "toID": 3}
15 ],
16 "locutions": [{"nodeID": 0, "personID": 0}],
17 "participants": [{"firstname": "Speaker", "participantID": 0,

"surname": "Name"}]
18 },
19 "dialog": True
20 }
21
22 aif = AIF(aif_data) # Initialise the AIF object with xAIF data
23 # aif = AIF("here is the text.") # Or initialise with raw text
24 # 1. Adding entries
25 aif.add_component(component_type = "locution", text = "Example L node

3.", speaker = "Another Speake") # The next ID (5) is assigned
26 aif.add_component(component_type = "proposition", Lnode_ID = 5,

proposition = "Example I node 3.") # The L-NodeID is required
27 aif.add_component(component_type = "argument_relation", relation_type

= "RA", iNode_ID2=3, iNode_ID1=6) # Requires I-Node IDs and AR
type

28 print(aif.xaif) # Print the generated xAIF data
29 print(aif.get_csv("argument-relation")) # Exports to tabular format

Figure 1: xaif package to manipulate xAIF data.

dependencies. For detailed information on new
module development process, refer to Appendix A.
An empty oAMF project that can be cloned and
customised to add new modules is available at
https://github.com/arg-tech/AMF_NOOP/.

3.2 oAMF Deployment

The release of oAMF includes the open-source
Python library, available at https://pypi.org/
project/oamf/, which can be installed via pip
install oAMF. It is used to deploy oAMF modules
locally, create and run AM pipelines using either
locally deployed or remote modules (see Section
3.3.1). The user provides the GitHub repository
link (specified as ‘repo’) for local deployment or
URLs for remote modules (specified as ‘ws’), along
with the web-service route and tag. The library re-
trieves the ‘repo’s and deploys the modules locally
as containerised Flask applications, dynamically
loading only the specified modules. The script in
Figure 2 shows the deployment and loading of the
specified modules. Loaded modules are referenced
using their tags for pipeline construction.

3.3 oAMF for Creating and Running Pipelines

oAMF offers interfaces for building and executing
AM pipelines, supporting all technical levels in-
cluding API for advanced customisation, a drag-
and-drop interface for quick setup, and a web inter-
face for easy execution.

1 from oamf import oAMF
2 oamf = oAMF() # Initialise the library
3 # Specify the URL, module type ('repo' or 'ws'), route, and tag. Use

multiple tags to use the same module multiple times.
4 modules_to_load = [
5 ("https://github.com/arg-tech/default_turninator.git", "repo",

"turninator-01", "turninator"),
6 ("https://github.com/arg-tech/default_segmenter.git", "repo",

"segmenter-01", "segmenter"),
7 ("https://github.com/arg-tech/default_segmenter.git", "repo",

"segmenter-01", "segmenter2"),
8 ("http://bert-te.amfws.arg.tech/bert-te", "ws", "bert-te", "bert-te")
9 ]

10 oamf.load_modules(modules_to_load) # Load and deploy the modules

Figure 2: Install and load modules with oAMF API.

3.3.1 Programming API
The programming API allows defining a pipeline as
a directed graph by specifying and connecting mod-
ules through their associated tags. The pipeline can
be executed by providing an input file, typically in
xAIF format. The script shown in Figure 3, shows
how to build and execute a pipeline using both lo-
cal and remote modules. See the Jupyter Notebook

1
2 from oamf import oAMF
3 # Initialize the library
4 oamf = oAMF()
5 # Define pipeline as a graph
6 pipeline_graph = [
7 ("turninator", "segmenter"),
8 ("turninator", "segmenter2"),
9 ("segmenter", "bert-te"),

10 ("segmenter2", "bert-te2")
11 ]
12 oamf.pipelineExecutor(pipeline_graph, "input_file.json")

Figure 3: Create and execute pipeline with oAMF API.

for a step-by-step guide on using deployed web ser-
vices to construct and execute pipelines here, and
a Python script for deploying modules locally and
building an AP pipeline here.

3.3.2 Drag-and-Drop Interface
oAMF integrates with n8n, an open-source workflow
automation tool (https://n8n.io), available
at https://n8n.oamf.arg.tech/1, offering
a visual, intuitive interface for constructing
pipelines. Users can easily drag and drop
modules and establish connections. Pipelines
can be executed using (1) the n8n interface with
user-provided input or (2) the oAMF library by
downloading workflow JSON files and running
oamf.pipelineExecutor(pipeline_graph,
“input_file.json”, “workflow.json”),
where pipeline_graph can be an empty list,
input_file.json holds xaif input data, and
workflow.json is the 8n8 workflow.

1Login with email: oamf-user@arg.tech; Password: Pass-
word1

320

https://github.com/arg-tech/AMF_NOOP/
https://pypi.org/project/oamf/
https://pypi.org/project/oamf/
https://github.com/arg-tech/oAMF/blob/main/example/example_usage.ipynb
https://github.com/arg-tech/oAMF/blob/main/example/install_and_run_componenets.py
https://n8n.io
https://n8n.oamf.arg.tech/


Figure 4: Drag-and-drop interface in n8n.

3.3.3 Web Interface
oAMF provides a web interface for quickly running
AM pipelines, which can be accessed at https:
//oAMF.arg.tech. Users can upload input data
(e.g., text or xAIF files), select pre-built pipelines
using the n8n interface, and execute them directly
on the oAMF server—removing the need for manual
pipeline construction.

Figure 5: Web interface.

3.4 Modules
The oAMF comes with a series of modules covering
basic functionalities for natural language argument
analysis, including argument segmentation, clas-
sification and relation identification, among oth-
ers. Argumentation is a theoretically rich topic,
with multiple ways of representing similar con-
cepts. The oAMF allows for different modules based
on different theories of argumentation to co-exist
and work together. These variations are reflected in
the module description provided below, in which
it can be observed how fundamental concepts such
as the boundaries of an argumentative span (e.g.,
proposition, component, unit) or the relations be-
tween them (e.g., attack, support, conflict, infer-
ence, rephrase) differ between modules. The oAMF,
therefore, makes it possible to create and evalu-
ate pipelines in which modules designed based on
different theories of argumentation work together.

default-turn-separator–Gemechu-2025 (DTSG).
This module addresses the task of segmenting un-
structured text into turns of speech. These turns

include the complete speech transcripts divided by
speaker interventions in the case of dialogue ar-
gumentation, or a unique segment in the case of
monologue argumentation.

default-segmenter–Gemechu-2025 (DSG).
This module takes unstructured text or text
segmented into turns of speech as its input, and
produces a structured segmented output. The
process involves dividing the complete text
transcripts into sequences of smaller units of
locutions related with transition relations that
capture the flow of discourse.

targer-segmenter–Chernodub-2019 (TARGER).
The TARGER (Chernodub et al., 2019) module ad-
dresses the task of discourse segmentation. It there-
fore processes unstructured text into segmented
argumentative discourse units.

deepseek-segmenter–Gemechu-2025 (DSS).
This module utilises the deepseek-r1.1.5b model to
segment argumentative text into discourse units.
Using a few-shot prompting approach, it segments
unstructured text into argumentative discourse
units.

default-anaphora-resolver–Jo-2019 (DARJ).
Given an xAIF document containing segmented
locutions, this module addresses the task of
resolving anaphora in co-references completing
the locutions containing pronouns with the missing
information as described in (Jo et al., 2019).

simple-propositionaliser–Gemechu-2025 (SPG).
The goal of this module is to extract argumentative
propositions from the locutions identified in the
discourse. It therefore takes a text input segmented
into locution nodes and analyses them extracting
the argumentative propositions into information
nodes. Finally, the model anchors information and
locution nodes with illocutionary acts, forming a
complete graph representation of the discourse.

cascade-propositionaliser–Jo-2019 (CPJ). This
module extracts argument propositions using a cas-
caded approach with seven sequential steps. Start-
ing from a set of utterances, it resolves anaphora,
then extracts the locutions and performs a series
of checks (such as whether it contains reported
speech). The subject is then reconstructed, and
with a final revision the argument proposition is
extracted (Jo et al., 2019).

321

https://oAMF.arg.tech
https://oAMF.arg.tech


decompositional-argument-miner–Gemechu-
2019 (DAMG). Given a text segmented into
argument components, this module identifies
inference and conflict relations between these
components (Gemechu and Reed, 2019).

default-textual-entailment-recogniser–
Gemechu-2025 (DTERG). Starting from
an unstructured set of argument propositions, this
module pre-trained on textual entailment tasks
identifies positive and negative entailment between
proposition pairs.

simple-argument-relation-identifier–
Moslemnejad-2025 (SARIM). This module
uses Support Vector Machine trained to identify
attack and support relations given a set of argument
propositions from an already segmented text input.

argument-relation-identifier–RuizDolz-2021
(ARIR). This module implements a fine-tuned
RoBERTa encoder that performs a sentence-pair
4-class classification task, identifying non-related,
inference, conflict, and rephrase relations between
pairs of argument propositions from a set of
already segmented text (Ruiz-Dolz et al., 2021).

decoder-relation-identifier–Gemechu-2024
(DRIG). This model is the implementation of
Gemechu et al. (2024) decoder-only architecture,
which is fine-tuned in classifying argument
relations into 4-classes using sequence pair
classification setup.

targer-AM–Chernodub-2019 (TARGER-AM).
The TARGER (Chernodub et al., 2019) module
classifies the argument relation between a pair of
argument units into support, attack and none.

deepseek-relation-miner–Gemechu-2025
(DSRM). Given a pair of argument units, this
module employs the deepseek-r1.1.5b model with
few-shot prompting to classify their relationship as
support, attack, or none, capturing argumentative
connections between discourse components.

pragma-dialectics-scheme-classifier–
Zografistou-2025 (PDSCZ). The aim of
this module is to identify the three pragma-
dialectical argumentation schemes of comparison,
symptomatic, and causal argumentation. Taking
the set of already segmented argument propositions
and the inference relations between them as its
input, this module classifies the existing inference
relations into one of the three scheme classes.

walton-scheme-classifier–RuizDolz-2025
(WSCR). Given a set of already identified
inference relations between argument propositions,
this module classifies the inference into one
group of Walton’s argumentation schemes such
as case-based, or practical reasoning arguments
among others (Walton and Macagno, 2015), thus
providing further insight about the argumentative
structures identified in the discourse.

proposition-type-classifier–RuizDolz-2025
(PTCR). Starting from a set of already seg-
mented argument propositions, this module,
consisting of a fine-tuned RoBERTa encoder, clas-
sifies them into three possible classes depending
on their argumentative role: value, fact, or policy.

4 AMF-Compatible Tools

Within the oAMF ecosystem, several tools are avail-
able to facilitate the management input, output vi-
sualisation, and evaluation.

whisper-speech-to-text-2025 (WSTT): This
module converts spoken language into text using
the Whisper model (Radford et al., 2023). It en-
ables transcription of speech, supporting AM tasks
that involve processing speech input data.

svg-visualiser-2025 (SV): This module is used
to convert the xAIF output from each oAMF module
into SVG format, enabling easy visualisation of the
argument structure produced by oAMF modules.

Figure 6: An argument map generated by the visualiser.

CASS-Moslemnejad-2025 (CASS): This tool
compares two xAIF files with a Combined Ar-
gument Similarity Score (Duthie et al., 2016).
Originally part of the Argument Analytics suite
(Lawrence et al., 2016), it is now available as an
oAMF module. CASS combines scores for multiple
aspects of AM, providing a comprehensive assess-
ment of AM systems. It now also reports individual
metrics comparing the argument graphs (Macro F1,
Accuracy, Text Similarity, Kappa, U-Alpha).

322



5 Evaluation

We evaluate oAMF by configuring three AM
pipelines and comparing their performance against
SOTA methods, pipelines A, B and C:

A: DTSG → DSG → SPG → DTERG.
B: DTSG → TARGER → CPJ → DRIG.
C: DTSG → TARGER → CPJ → DTREG →

DRIG.
Following the comparison approaches, the

pipelines are evaluated on Argument Component
Identification (ACI) and Argument Relation Identi-
fication (ARI) tasks. These pipelines are evaluated
on the AAEC dataset (Stab and Gurevych, 2017),
and compared with end-to-end AM approaches
(Eger et al., 2017; Morio et al., 2022; Bao et al.,
2022) on ACI and ARI. Additionally, the pipelines
are compared with individual models that have
achieved SOTA results in cross-dataset evaluations
for the ARI task (ARI*) (Ruiz-Dolz et al., 2025).

Pipeline ACI ARI ARI*
Pipeline A 54.85 24.76 -
Pipeline B 56.32 32.65 -
Pipeline C 56.32 - 47.37

Ruiz-Dolz et al. (2025) - 42.00
Eger et al. (2017) 66.21 29.56 -

Morio et al. (2022) 76.55 54.66 -
Bao et al. (2022) 75.94 50.08 -

Table 1: oAMF evaluation and comparison works.

Evaluation Metrics. For ACI, we treat it as a
span detection task and compute the F1 score for
exact matches, while for ARI, we compute the F1
score for classification of argument pairs.

Result. The pipelines match SOTA performance
while offering a simplified drag-and-drop process
for AM tasks. oAMF models were not trained on the
AAEC dataset used for this evaluation, yet achieve
comparable performance. Notably, oAMF modules
outperform the cross-dataset performance of SOTA
models on ARI. LLM-based modules are slower;
e.g. DSRM takes 19.461s for a single sample on the
ARI task, whereas DTERG completes it in 0.345s.

6 Related work

In the broader NLP landscape, tools like AllenNLP
(Gardner et al., 2018) offer modularity for general-
purpose NLP tasks while specialised tools, like
TweetNLP (Camacho-Collados et al., 2022), focus
on specific tasks like sentiment analysis. Aside
from some tools addressing specific AM tasks, like

TARGER (Chernodub et al., 2019), there is no tool
offering a complete and robust AM solution.

There have been recent advancements in re-
search that propose end-to-end approaches for AM.
These approaches combine standard tasks, such as
ACI and ARI, into unified workflows. For instance,
Eger et al. (2017) frame AM as a token-based se-
quence tagging task, classifying tokens into argu-
ment components (premise, conclusion) and their
respective relations (support, attack) using the BIO
tagging approach. Morio et al. (2022) propose an
end-to-end cross-corpus training strategy, while
Bao et al. (2022) introduce a generative framework
leveraging a constrained pointer mechanism and
reconstructed positional encoding. However, these
remain research prototypes, rather than fully de-
veloped tools ready for deployment by end users.
oAMF emerges as a solution to address these gaps,
offering a unified platform that orchestrates vari-
ous AM modules, providing a comprehensive and
scalable tool for diverse AM tasks with easy-to-use
interfaces for both local and remote execution.

7 Release

oAMF is released as an open-source framework
under the LGPLv3 license. All resources, in-
cluding links to source code, APIs, web ap-
plications, and documentation, are available
through the web page at https://oAMF.arg.tech.
The Github page is at https://github.com/
arg-tech/oAMF. The oAMF Python package is on
PyPI: https://pypi.org/project/oAMF/. The
drag-and-drop interface is available at https:
//n8n.oamf.arg.tech/. The xAIF library is
available at https://libraries.io/pypi/xaif.
Complete documentation of oAMF is available
at https://github.com/arg-tech/oAMF/blob/
main/docs/tutorial.md.

8 Conclusion

The oAMF presents a significant advancement in
the field of AM by providing a modular, scalable,
and interoperable platform. By integrating several
AM modules, oAMF enables researchers and devel-
opers to construct, experiment with, and deploy
AM pipelines with minimal effort. Its flexible inter-
faces, including Python APIs and visual tools, cater
to both technical and non-technical users. With its
open-source nature, scalability, and user-friendly
design, oAMF promotes collaboration and advances
AM research and applications.

323

https://oAMF.arg.tech
https://github.com/arg-tech/oAMF
https://github.com/arg-tech/oAMF
https://pypi.org/project/oAMF/
https://n8n.oamf.arg.tech/
https://n8n.oamf.arg.tech/
https://libraries.io/pypi/xaif
https://github.com/arg-tech/oAMF/blob/main/docs/tutorial.md
https://github.com/arg-tech/oAMF/blob/main/docs/tutorial.md


While oAMF achieves comparable performance
to state-of-the-art results despite not being trained
on the evaluation dataset, some modules lag be-
hind models trained and tested on the same data.
This highlights the platform’s strong generalisabil-
ity while pointing to opportunities for targeted im-
provements. Future work will extend evaluations
to additional datasets, improve component accu-
racy, and foster collaborations to encourage broader
adoption and incorporate user feedback. These ef-
forts aim to further establish oAMF as a versatile
and effective tool for advancing argument mining
research and applications.

Acknowledgements

This work has been supported in part by: the
Swiss National Science Foundation under grant
10001FM200857, "Mining argumentative patterns
in context"; the European Media Information Fund
under grant 268755; Volkswagen Stiftung Foun-
dation under grant 98 543, "Deliberation Labora-
tory"; the ‘AI for Citizen Intelligence Coaching
against Disinformation (TITAN)’ project, funded
by the EU Horizon 2020 research and innovation
programme under grant agreement 101070658, and
by UK Research and innovation under the UK gov-
ernments Horizon funding guarantee grant num-
bers 10040483 and 10055990; the ‘Artificial Intelli-
gence for Institutionalised, Multimodal, Gamified,
Mass Democratic Deliberations’ project, funded
by the EU Horizon Europe Framework Programme
(HORIZON) under grant agreement 101178806;
the ‘CLARUS’ project, funded by the EU Horizon
Europe Framework Programme (HORIZON) under
grant agreement 101121182.

Limitations

This work has several limitations. First, the eval-
uation is currently based on a single dataset, pro-
viding an initial but limited indication of oAMF’s
robustness across different AM scenarios. Sec-
ond, although some modules achieve comparable
performance to state-of-the-art models despite not
being trained on the evaluation dataset, they still
trail behind models trained and tested on the same
data, highlighting room for targeted improvements.
Third, the platform’s real-world adoption and us-
ability remain to be validated through broader col-
laborations and user studies. Addressing these lim-
itations will be a priority in future work to enhance
oAMF’s effectiveness and applicability.

References
Jianzhu Bao, Yuhang He, Yang Sun, Bin Liang, Jiachen

Du, Bing Qin, Min Yang, and Ruifeng Xu. 2022.
A generative model for end-to-end argument min-
ing with reconstructed positional encoding and con-
strained pointer mechanism. In Proceedings of the
2022 Conference on Empirical Methods in Natural
Language Processing, pages 10437–10449.

Jérémie Cabessa, Hugo Hernault, and Umer Mushtaq.
2024. In-context learning and fine-tuning gpt for
argument mining. arXiv preprint arXiv:2406.06699.

Jérémie Cabessa, Hugo Hernault, and Umer Mushtaq.
2025. Argument mining with fine-tuned large lan-
guage models. In Proceedings of the 31st Inter-
national Conference on Computational Linguistics,
pages 6624–6635.

Jose Camacho-Collados, Kiamehr Rezaee, Talayeh Ri-
ahi, Asahi Ushio, Daniel Loureiro, Dimosthenis An-
typas, Joanne Boisson, Luis Espinosa Anke, Fangyu
Liu, and Eugenio Martínez-Cámara. 2022. Tweetnlp:
Cutting-edge natural language processing for social
media. In Proceedings of the 2022 Conference on
Empirical Methods in Natural Language Processing:
System Demonstrations, pages 38–49.

Guizhen Chen, Liying Cheng, Luu Anh Tuan, and Li-
dong Bing. 2024. Exploring the potential of large
language models in computational argumentation. In
Proceedings of the 62nd Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 2309–2330.

Artem Chernodub, Oleksiy Oliynyk, Philipp Heidenre-
ich, Alexander Bondarenko, Matthias Hagen, Chris
Biemann, and Alexander Panchenko. 2019. Targer:
Neural argument mining at your fingertips. In Pro-
ceedings of the 57th Annual Meeting of the Associa-
tion for Computational Linguistics: System Demon-
strations, pages 195–200.

C. Chesñevar, J. McGinnis, S. Modgil, I. Rahwan,
C. Reed, G. Simari, M South, G. Vreeswijk, and
S. Willmott. 2006. Towards an argument inter-
change format. The Knowledge Engineering Review,
21(4):293–316.

Rory Duthie, John Lawrence, Katarzyna Budzynska,
and Chris Reed. 2016. The cass technique for evalu-
ating the performance of argument mining. In Pro-
ceedings of the Third Workshop on Argument Mining
(ArgMining2016), pages 40–49.

Steffen Eger, Johannes Daxenberger, and Iryna
Gurevych. 2017. Neural end-to-end learning for
computational argumentation mining. arXiv preprint
arXiv:1704.06104.

Matt Gardner, Joel Grus, Mark Neumann, Oyvind
Tafjord, Pradeep Dasigi, Nelson F Liu, Matthew E Pe-
ters, Michael Schmitz, and Luke Zettlemoyer. 2018.
Allennlp: A deep semantic natural language process-
ing platform. In Proceedings of Workshop for NLP
Open Source Software (NLP-OSS), pages 1–6.

324



Debela Gemechu and Chris Reed. 2019. Decomposi-
tional argument mining: A general purpose approach
for argument graph construction. In Proceedings
of the 57th Annual Meeting of the Association for
Computational Linguistics, pages 516–526.

Debela Gemechu, Ramon Ruiz-Dolz, and Chris Reed.
2024. Aries: A general benchmark for argument re-
lation identification. In 11th Workshop on Argument
Mining, ArgMining 2024, pages 1–14. Association
for Computational Linguistics (ACL).

Deniz Gorur, Antonio Rago, and Francesca Toni. 2025.
Can large language models perform relation-based
argument mining? In Proceedings of the 31st Inter-
national Conference on Computational Linguistics,
pages 8518–8534.

Ivan Habernal, Daniel Faber, Nicola Recchia, Sebastian
Bretthauer, Iryna Gurevych, Indra Spiecker genannt
Döhmann, and Christoph Burchard. 2024. Mining
legal arguments in court decisions. Artificial Intelli-
gence and Law, 32(3):1–38.

Annette Hautli-Janisz, Zlata Kikteva, Wassiliki Siskou,
Kamila Gorska, Ray Becker, and Chris Reed. 2022.
QT30: A corpus of argument and conflict in broad-
cast debate. In Proceedings of the Thirteenth Lan-
guage Resources and Evaluation Conference, pages
3291–3300, Marseille, France. European Language
Resources Association.

Yohan Jo, Jacky Visser, Chris Reed, and Eduard Hovy.
2019. A cascade model for proposition extraction in
argumentation. In Proceedings of the 6th Workshop
on Argument Mining, pages 11–24, Florence, Italy.
Association for Computational Linguistics.

Masayuki Kawarada, Tsutomu Hirao, Wataru Uchida,
and Masaaki Nagata. 2024. Argument mining as a
text-to-text generation task. In Proceedings of the
18th Conference of the European Chapter of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 2002–2014.

John Lawrence, Rory Duthie, Katarzyna Budzynska,
and Chris Reed. 2016. Argument Analytics. In 6th
International Conference on Computational Models
of Argument, COMMA 2016, volume 287 of Frontiers
in Artificial Intelligence and Applications. IOS Press.

John Lawrence and Chris Reed. 2019. Argument min-
ing: A survey. Computational Linguistics, 45(4):765–
818.

John Lawrence, Jacky Visser, and Chris Reed. 2023.
Translational argument technology: Engineering a
step change in the argument web. Journal of Web
Semantics, 77:100786.

Marco Lippi and Paolo Torroni. 2016. Argumentation
mining: State of the art and emerging trends. ACM
Trans. Internet Technol., 16(2).

Eleonora Mancini, Federico Ruggeri, Paolo Torroni,
et al. 2024. Multimodal fallacy classification in politi-
cal debates. In Proceedings of the 18th Conference of
the European Chapter of the Association for Compu-
tational Linguistics (Volume 2: Short Papers), pages
170–178. Association for Computational Linguistics.

Gaku Morio, Hiroaki Ozaki, Terufumi Morishita, and
Kohsuke Yanai. 2022. End-to-end argument min-
ing with cross-corpora multi-task learning. Transac-
tions of the Association for Computational Linguis-
tics, 10:639–658.

Mircea-Luchian Pojoni, Lorik Dumani, and Ralf
Schenkel. 2023. Argument-mining from podcasts
using chatgpt. In ICCBR Workshops, pages 129–144.

Alec Radford, Jong Wook Kim, Tao Xu, Greg Brock-
man, Christine McLeavey, and Ilya Sutskever. 2023.
Robust speech recognition via large-scale weak su-
pervision. In International conference on machine
learning, pages 28492–28518. PMLR.

Iyad Rahwan, Bita Banihashemi, Chris Reed, Douglas
Walton, and Sherief Abdallah. 2011. Representing
and classifying arguments on the semantic web. The
Knowledge Engineering Review, 26(4):487–511.

Iyad Rahwan, Fouad Zablith, and Chris Reed. 2007.
Laying the foundations for a world wide argument
web. Artificial Intelligence, 171(10):897–921.

Ramon Ruiz-Dolz, Jose Alemany, Stella M Heras Bar-
berá, and Ana García-Fornes. 2021. Transformer-
based models for automatic identification of argu-
ment relations: A cross-domain evaluation. IEEE
Intelligent Systems, 36(6):62–70.

Ramon Ruiz-Dolz, Debela Gemechu, Zlata Kikteva, and
Chris Reed. 2025. Looking at the unseen: Effective
sampling of non-related propositions for argument
mining. In Proceedings of the 31st International Con-
ference on Computational Linguistics, pages 2131–
2143. Association for Computational Linguistics.

Florian Ruosch, Cristina Sarasua, and Abraham Bern-
stein. 2023. DREAM: Deployment of recombination
and ensembles in argument mining. In Proceedings
of the 2023 Conference on Empirical Methods in Nat-
ural Language Processing, pages 5277–5290, Singa-
pore. Association for Computational Linguistics.

Nils-Jonathan Schaller, Andrea Horbach, Lars Ingver
Höft, Yuning Ding, Jan Luca Bahr, Jennifer Meyer,
and Thorben Jansen. 2024. Darius: A comprehen-
sive learner corpus for argument mining in german-
language essays. In Proceedings of the 2024 joint in-
ternational conference on computational linguistics,
language resources and evaluation (LREC-COLING
2024), pages 4356–4367.

Christian Stab and Iryna Gurevych. 2017. Parsing argu-
mentation structures in persuasive essays. Computa-
tional Linguistics, 43(3):619–659.

Manfred Stede and Jodi Schneider. 2019. Argumenta-
tion Mining. Morgan Claypool.

325

https://aclanthology.org/2022.lrec-1.352
https://aclanthology.org/2022.lrec-1.352
https://doi.org/10.18653/v1/W19-4502
https://doi.org/10.18653/v1/W19-4502
https://doi.org/10.3233/978-1-61499-686-6-371
https://doi.org/10.1162/coli_a_00364
https://doi.org/10.1162/coli_a_00364
https://doi.org/10.1017/S0269888911000191
https://doi.org/10.1017/S0269888911000191


Douglas Walton and Fabrizio Macagno. 2015. A clas-
sification system for argumentation schemes. Argu-
ment & Computation, 6(3):219–245.

326



A New Module Development

The oAMF module is a web service that is dockerised to ensure portability and scalability. It is built using
the Flask framework, which is a lightweight Python web framework for creating RESTful services. The
module takes and outputs xAIF data.

• Webservice: The application exposes a set of endpoints that allow users to interact with the module
through HTTP requests.

• Dockerised: The module is encapsulated in a Docker container for easy deployment. The container
is configured using Dockerfile and docker-compose.yaml.

A.1 Project Structure
The project follows a standard web application structure with the following components:

• config/metadata.yaml: Contains metadata information about the module (See A.2).

• project_src_dir/: The directory containing the application code, including Flask routes and logic.

• boot.sh: A shell script to activate the virtual environment and launch the application.

• docker-compose.yaml: Defines the Docker service and how the application is built and run.

• Dockerfile: Specifies the Docker image, environment, and installation of dependencies.

• requirements.txt: Lists the Python dependencies required by the project.

A.2 Metadata Configuration (config/metadata.yaml)
The metadata file provides essential information about the module, including:

Name: "Module Name" Date: "2024-10-01" Originator: "Author" License: "Your License"
AMF_Tag: Tag_name Domain: "Dialog" Training Data: "Annotated corpus X" Citation: ""
Variants:
- name: 0 version: null
- name: 1 version: null

Requires: text Outputs: segments

A.3 Flask Application Routes
• Index Route (/): Displays the contents of the README.md file, serving as documentation route.

• AMF Module Route: Any route name can be used.

– The POST requests are typically used to upload xAIF file, apply the module logic. The response
is then returned as a JSON object containing the updated xAIF data.

– The GET request is used to provide the documentation and the metadata.

A.4 Summary of Steps to Develop an oAMF Module
To create a custom oAMF module, follow these steps:

1. Clone the NOOP template from the repository: https://github.com/arg-tech/AMF_NOOP.

2. Modify Metadata: Update metadata.yaml with module details.

3. Implement Core Logic: Modify routes.py to add module functionality.

4. Integrate with xAIF: Use xaif library to manipulate xAIF data.

5. Configure Docker: Ensure Dockerfile and docker-compose.yaml are set up.

6. Documentation: Update the README.md for usage instructions.

327

https://github.com/arg-tech/AMF_NOOP


Module Input Output Web-Service URL Repo URL
DTSG Unsegmented

text and no
structure.

Text segmented into turns (i.e.
contiguous text from one speaker
in the case of dialogue; NOOP in
the case of monologue).

http://default-turninator.
amfws.arg.tech/turninator-01

https://github.com/arg-tech/
default_turninator

DSG Unsegmented
text; no struc-
ture.

Segmented text; structure contain-
ing L-nodes with IDs crossrefer-
ring to those in SPAN tags.

http://default-segmenter.
amfws.arg.tech/segmenter-01

https://github.com/arg-tech/
default_segmenter

TARGER Unsegmented
text; no struc-
ture.

Segmented text; structure contain-
ing L-nodes with IDs crossrefer-
ring to those in SPAN tags.

http://targer.amfws.arg.tech/
targer-segmenter

https://github.com/arg-tech/
targer

DSS Unsegmented
text; no struc-
ture.

Segmented text; structure contain-
ing L-nodes with IDs crossrefer-
ring to those in SPAN tags.

http://amf-llm.amfws.staging.
arg.tech/segmenter

https://github.com/arg-tech/
oamf_llm

DARJ Segmented locu-
tions.

Resolve co-references in locution
nodes.

cascading-propositionUnitiser.
amfws.arg.tech/anaphora-01

https://github.com/arg-tech/
cascading_propositionaliser

SPG Segmented text;
structure con-
taining L-nodes.

Segmented text segmented; struc-
ture containing L-nodes anchor-
ing YA-nodes connected to I-
nodes.

http://
default-proposition-unitiser.
amfws.arg.tech/
propositionUnitizer-01

https://github.com/arg-tech/
proposition-unitizer

CPJ Segmented text
; structure con-
taining L-nodes.

Segmented text; structure contain-
ing L-nodes anchoring YA-nodes
connected to I-nodes.

http://
cascading-propositionUnitiser.
amfws.arg.tech/
propositionaliser-cascading

https://github.com/arg-tech/
cascading_propositionaliser

DAMG Segmented text;
with I-nodes.

Segmented text; with I-nodes con-
nected with RA and CA nodes.

http://dam.amfws.arg.tech/
dam-03

https://github.com/arg-tech/
dam

DTERG Segmented text;
with I-nodes.

Segmented text; structure with I-
nodes connected with RA nodes.

http://bert-te.amfws.arg.
tech/bert-te

https://github.com/arg-tech/
bert-te

PDSCZ Segmented text;
structure with I-
nodes connected
with RA nodes.

Segmented text; structure with I-
nodes connected with RA nodes
specified by pragma-dialectical
scheme type.

http://
amfws-schemeclassifier.arg.
tech/schemes_clsf

https://github.com/arg-tech/
AMF_Scheme_Classifier2

SARIM xAIF file with
the I-nodes.

xAIF file with I-Nodes and rela-
tions nodes.

http://amfws-rp.arg.tech/
somaye

https://github.com/arg-tech/
AMF-RP

ARIR xAIF file con-
taining proposi-
tional argumen-
tative nodes.

xAIF file with the complete
propositional argument graph
covering three argumentative re-
lation (RA, CA, or MA)

http://amfws-ari.arg.tech/ https://github.com/arg-tech/
AMF_ARI

TARGER-AM xAIF file con-
taining proposi-
tional argumen-
tative nodes.

xAIF file with the complete
propositional argument graph
covering three argumentative re-
lation (RA, CA, or MA)

http://targer.amfws.arg.tech/
targer-am

https://github.com/arg-tech/
targer/

DRIG xAIF file con-
taining the I
nodes.

Segmented text; structure with
I-nodes connected with RA,MA
and CA nodes.

http://vanilla-dialogpt-am.
amfws.arg.tech/caasra

https://github.com/arg-tech/
dialogpt-am-vanila

DSRM xAIF file con-
taining the I
nodes.

Segmented text; structure with
I-nodes connected with RA,MA
and CA nodes.

http://amf-llm.amfws.staging.
arg.tech/relation_identifier

https://github.com/arg-tech/
oamf_llm

WSCR xAIF file con-
taining I nodes
and the RA be-
tween them.

xAIF file where the "Default In-
ference" have been replaced by
argumentation scheme (e.g., "Ar-
gument From Analogy").

http://amf-schemes.amfws.arg.
tech

https://github.com/arg-tech/
AMF_SchemeClassifier

PTCR xAIF file with I-
Nodes.

xAIF file with the "proposi-
tionClassifier" key containing I-
Nodes with one of "Value", "Pol-
icy", or "Fact" categories.

http://amf-ptc.amfws.arg.
tech

https://github.com/arg-tech/
AMF_PTC_VFP

†CASS Two xAIF with
the same text

CASS, Macro F1, Accuracy, Text
Similarity, Kappa, U-Alpha

http://
amf-evaluation-metrics.amfws.
arg.tech

https://github.com/arg-tech/
amf-evaluation-metrics

†WSTT Audio Input xAIF with the text field populated
with transcription

realtime-backend.amfws.arg.
tech/transcribe_whisper-0

https://github.com/arg-tech/
realtime-backend

†SV xAIF SVG http://svg.amfws.arg.tech https://github.com/arg-tech/
svg-visualiser

Table 2: Summary of the oAMF modules and related tools (the latter modules marked by †).

328

http://default-turninator.amfws.arg.tech/turninator-01
http://default-turninator.amfws.arg.tech/turninator-01
https://github.com/arg-tech/default_turninator
https://github.com/arg-tech/default_turninator
http://default-segmenter.amfws.arg.tech/segmenter-01
http://default-segmenter.amfws.arg.tech/segmenter-01
https://github.com/arg-tech/default_segmenter
https://github.com/arg-tech/default_segmenter
http://targer.amfws.arg.tech/targer-segmenter
http://targer.amfws.arg.tech/targer-segmenter
https://github.com/arg-tech/targer
https://github.com/arg-tech/targer
http://amf-llm.amfws.staging.arg.tech/segmenter
http://amf-llm.amfws.staging.arg.tech/segmenter
https://github.com/arg-tech/oamf_llm
https://github.com/arg-tech/oamf_llm
cascading-propositionUnitiser.amfws.arg.tech/anaphora-01
cascading-propositionUnitiser.amfws.arg.tech/anaphora-01
https://github.com/arg-tech/cascading_propositionaliser
https://github.com/arg-tech/cascading_propositionaliser
http://default-proposition-unitiser.amfws.arg.tech/propositionUnitizer-01
http://default-proposition-unitiser.amfws.arg.tech/propositionUnitizer-01
http://default-proposition-unitiser.amfws.arg.tech/propositionUnitizer-01
http://default-proposition-unitiser.amfws.arg.tech/propositionUnitizer-01
https://github.com/arg-tech/proposition-unitizer
https://github.com/arg-tech/proposition-unitizer
http://cascading-propositionUnitiser.amfws.arg.tech/propositionaliser-cascading
http://cascading-propositionUnitiser.amfws.arg.tech/propositionaliser-cascading
http://cascading-propositionUnitiser.amfws.arg.tech/propositionaliser-cascading
http://cascading-propositionUnitiser.amfws.arg.tech/propositionaliser-cascading
https://github.com/arg-tech/cascading_propositionaliser
https://github.com/arg-tech/cascading_propositionaliser
http://dam.amfws.arg.tech/dam-03
http://dam.amfws.arg.tech/dam-03
https://github.com/arg-tech/dam
https://github.com/arg-tech/dam
http://bert-te.amfws.arg.tech/bert-te
http://bert-te.amfws.arg.tech/bert-te
https://github.com/arg-tech/bert-te
https://github.com/arg-tech/bert-te
http://amfws-schemeclassifier.arg.tech/schemes_clsf
http://amfws-schemeclassifier.arg.tech/schemes_clsf
http://amfws-schemeclassifier.arg.tech/schemes_clsf
https://github.com/arg-tech/AMF_Scheme_Classifier2
https://github.com/arg-tech/AMF_Scheme_Classifier2
http://amfws-rp.arg.tech/somaye
http://amfws-rp.arg.tech/somaye
https://github.com/arg-tech/AMF-RP
https://github.com/arg-tech/AMF-RP
http://amfws-ari.arg.tech/
https://github.com/arg-tech/AMF_ARI
https://github.com/arg-tech/AMF_ARI
http://targer.amfws.arg.tech/targer-am
http://targer.amfws.arg.tech/targer-am
https://github.com/arg-tech/targer/
https://github.com/arg-tech/targer/
http://vanilla-dialogpt-am.amfws.arg.tech/caasra
http://vanilla-dialogpt-am.amfws.arg.tech/caasra
https://github.com/arg-tech/dialogpt-am-vanila
https://github.com/arg-tech/dialogpt-am-vanila
http://amf-llm.amfws.staging.arg.tech/relation_identifier
http://amf-llm.amfws.staging.arg.tech/relation_identifier
https://github.com/arg-tech/oamf_llm
https://github.com/arg-tech/oamf_llm
http://amf-schemes.amfws.arg.tech
http://amf-schemes.amfws.arg.tech
https://github.com/arg-tech/AMF_SchemeClassifier
https://github.com/arg-tech/AMF_SchemeClassifier
http://amf-ptc.amfws.arg.tech
http://amf-ptc.amfws.arg.tech
https://github.com/arg-tech/AMF_PTC_VFP
https://github.com/arg-tech/AMF_PTC_VFP
http://amf-evaluation-metrics.amfws.arg.tech
http://amf-evaluation-metrics.amfws.arg.tech
http://amf-evaluation-metrics.amfws.arg.tech
https://github.com/arg-tech/amf-evaluation-metrics
https://github.com/arg-tech/amf-evaluation-metrics
realtime-backend.amfws.arg.tech/transcribe_whisper-0
realtime-backend.amfws.arg.tech/transcribe_whisper-0
https://github.com/arg-tech/realtime-backend
https://github.com/arg-tech/realtime-backend
http://svg.amfws.arg.tech
https://github.com/arg-tech/svg-visualiser
https://github.com/arg-tech/svg-visualiser

