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Abstract

The present popularity of generative language
models has amplified interest in interactive
methods to guide model outputs. Prompt re-
finement is considered one of the most effective
means to influence output among these meth-
ods. We identify several challenges associated
with prompting large language models, catego-
rized into data- and model-specific, linguistic,
and socio-linguistic challenges. A comprehen-
sive examination of model outputs, including
runner-up candidates and their corresponding
probabilities, is needed to address these issues.
The beam search tree, the prevalent algorithm
to sample model outputs, can inherently supply
this information. Consequently, we leverage
an interactive visual method for investigating
the beam search tree, facilitating analysis of the
decisions made by the model during generation.
Our explorative approach validates existing re-
sults and offers additional insights.

1 Introduction

Large language models (LLMs) have emerged as
indispensable tools for text generation, and their
aptitude for generating human-like text (Li et al.,
2021), ease of use, and the wide range of appli-
cation scenarios have pushed generative models
into the general public. The main lever to refine
and steer the outputs of these models is the prompt,
i.e., the model’s initial input, based on which new
tokens are generated. Many applications, there-
fore, focus on prompt engineering to steer results
in the direction desired by the user (Webson and
Pavlick, 2022). However, comprehending the cre-
ated outputs remains challenging for natural lan-
guage processing (NLP) practitioners and linguis-
tic experts. Previous work has sought to address
these challenges, with some efforts focusing on
the explainability of LLMs (Strobelt et al., 2018;
Lee et al., 2017; Strobelt et al., 2022). Complex
behaviors and unwanted artifacts, such as biases

and prompt sensitivity, typically hidden within the
black-box nature of these models, have substantial
implications for their usability and interpretability
(Alba, 2022; Ji et al., 2023). Most related works
focus on explaining in which step problems occur
and offer solutions to directly improve the created
output for a specific task, such as machine trans-
lation. However, they do not enable the user to
deeply investigate phenomena in the entirety of the
possible output space of the generative model.

To address this problem, we identify concrete
prompting challenges, covering data and model-
specific, linguistic, and socio-linguistic aspects that
may afflict the models’ outputs. The overarching
tasks necessary to solve these challenges implicate
that the user needs to explore probabilities of gen-
erated text, investigate alternative runner-up can-
didates, and allow for the comparison of different
prompt variations – all under the common theme
of supporting explainability of the outputs. Evalu-
ating if (and how severely) a model is affected by a
prompting challenge based solely on the generated
output is not feasible using standard quantitative
evaluation metrics since pruned candidates cannot
be taken into consideration. Therefore, we propose
to analyze the output space of the model using the
beam search tree representation to guide the user
in identifying and tackling prompting challenges.

Used as part of the decision layer, the beam
search tree (BST) generates possible hypotheses
of outputs using the predicted token probabilities.
Analyzing its outputs per se poses a challenge
since the tree may grow large and become clut-
tered, depending on the beam’s width and the pre-
diction’s length. To address this issue, we pro-
posed an interactive approach that visually presents
the beam search tree as the integral visualization
workspace (Spinner et al., 2024). It allows NLP
practitioners and linguistic experts to visually in-
vestigate the BST, enabling a direct comparison
of prompt variations, semantic augmentations, and
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interactive adaptations of the output.
Summarizing our contributions, we identify and

structure open challenges in the prompting of
SOTA generative models and show how our BST-
based visual analytics technique and –workspace1

can be applied to different scenarios tackling the
identified challenges.

2 Identifying Prompting Challenges

Despite the recent success of LLMs for text gen-
eration, several challenges remain elusive for data-
driven solutions (in contrast to rule-based models).
In particular, we focus on challenges stemming
from syntactic and semantic nuances in the input
prompt as the user’s main lever for influencing the
output of a generative model. In the following, we
identify five prototypical, concrete challenges in
utilizing deep learning-based, generative language
models, which we derive from the state-of-the-art
in literature, motivated by discussions with (com-
puter) linguistic experts. The identified challenges
can be categorized into data– and model-specific,
linguistic, and socio-linguistic challenges.

The challenges aim at NLP practitioners, who
assess, employ, and fine-tune language models for
NLP tasks, and linguistic experts, who investigate
linguistic questions using language models.

2.1 Data- & Model-Specific Challenges

Some characteristics of LLMs are influenced by the
pre-processing of training data and how the model
is fine-tuned to a certain task (data-specific). Other
challenges are inherent to the manner a model pre-
dicts its outputs and how these outputs are sampled
during text generation (model-specific).
Prompt Sensitivity Sens — The output of gen-
erative LMs is often sensible to small changes in
the prompts, such as nuances in spacing or format
(punctuation) or differences in the word order (syn-
tax) in semantically similar sequences (Webson and
Pavlick, 2022). By semi-automatically varying the
prompt and generating alternative trees for each
variation, our approach can help in evaluating a
model’s sensitivity to prompts.
Surface Form Competition SFC — Distinctive
to statistical models is the surface form competi-
tion (Holtzman et al., 2021), in which the probabil-
ity mass is distributed over multiple semantically
equivalent words for the same underlying concept,

1https://demo.generaitor.ivia.ch

consequently lowering the overall output proba-
bility of any correct token. Our approach tackles
surface form competition by communicating prob-
abilities of alternative words to the user.

2.2 Linguistic Challenges

We define syntactic and semantic linguistic phe-
nomena that are known to be hard to capture for
LLMs as linguistic challenges.
Negation Neg — LLMs are known to struggle
with negation and negative imperatives, which has
been shown for masked (Kassner and Schütze,
2020; Kalouli et al., 2022) and generative mod-
els (Summers-Stay et al., 2021; Truong et al., 2023).
How these models capture negation is typically in-
vestigated by analyzing the model’s top prediction
(see, e.g., Summers-Stay et al. (2021)). Using pre-
diction alternatives (i.e., top-k predictions), we
show that some models do not just ignore the inclu-
sion of negative imperatives in the prompt but even
boost the probabilities of undesired tokens.
Quantifiers Quant — How LLMs capture the se-
mantics of quantifiers is of linguistic interest and
has been investigated for masked language mod-
els (Warstadt et al., 2019; Kalouli et al., 2022)
and generative models. In particular, Gupta (2023)
showed that larger generative models encode quan-
tifiers better than smaller models. Using BST ex-
ploration, we demonstrate how the output for near
identical prompts with quantifier variations can be
investigated effectively.

2.3 Socio-Linguistic Challenges

Bias Bias — Bias is a major challenge data-driven
language models face, and numerous approaches
for its detection and mitigation have been proposed
(Mehrabi et al., 2021). While there have been suc-
cesses, methods have been criticized for inconsis-
tent measurements (Husse and Spitz, 2022) and a
lack of adherence to real-world biases (Blodgett
et al., 2020). Since the analysis of biases in text gen-
eration can be nuanced, and biases may arise during
the generation of any token (Liang et al., 2021), the
task is sensitive to the design of template prompts,
meaning that template-based prompts may evoke
biases itself (Alnegheimish et al., 2022). To support
the development of rigorous detection methods, we
leverage a tree-based approach for comparative, ex-
ploratory bias analysis, allowing the detection of
biases in variable-length sequences and the identifi-
cation of subtle nuances in the models’ predictions.
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Alignment and Jailbreaking Align — State-of-
the-art language models undergo an alignment to
human values, intentions, and goals (Ouyang et al.,
2022). The challenge of jailbreaking involves creat-
ing adversarial prompts to manipulate the LM into
producing harmful responses that violate model’s
usage policies and societal norms. Several recent
papers provide an overview of existing studies on
jailbreaking LMs and their defense techniques (Xu
et al., 2024; Dong et al., 2024; Das et al., 2025).

3 The generAItor Workspace

In this section, we briefly describe the generAI-
tor workspace that we use for BST exploration of
prompting challenges. For an in-depth description
of the visualizations, interactions, and functionali-
ties, we refer to our visualization-centric compan-
ion paper (Spinner et al., 2024). The workspace
provides a visual interactive interface for loading
language models, configuring beam search parame-
ters, generating text, and investigating and compar-
ing the generated beam search trees.

3.1 User Tasks

To tackle the identified prompting challenges, we
consider the following tasks the user has to perform.
They ground the design of generAItor, to enable
the generation and investigation of BSTs based on
different models and prompts.
Configuration Conf — To compare different
transformer-based LLMs, loading models and ad-
justing beam search parameters are required.
Text Generation Gen — Users can specify a start-
ing prompt. Text is generated using the prompt,
model, and beam search parameters.
Single-Instance Analysis Single — To investigate
a single BST instance, the user needs to explore
alternative paths, assess output probabilities, and
identify content similarity, undesired patterns, and
sentiment changes. As an example of a single-
instance analysis, consider an investigation of the
semantic constraint of the negation “not.” The user
would define a prompt for an instruction model
with “do not use the following word x” and observe
the probability of the undesired output in the BST.
Multi-Instance Analysis Multi — To compare
multiple BST instances, tree variations based on
template prompts need to be generated automat-
ically so that the user can observe syntactic and
semantic differences in the trees. E.g., using the
negation example, the user could define a prompt

Sequence 
Succession Edge

Loop  Edges

Main BranchKeyword

(Positive)
SentimentProbability

Figure 1: The beam search tree visualization.

including “do not use the following word [x,y,z]”
and compare the three resulting BST instances.

3.2 Configuration and Text Generation

To support the configuration task Conf , the gen-
erAItor workspace allows loading pre-trained lan-
guage transformers. All generative language trans-
formers from HuggingFace (Wolf et al., 2020) can
be loaded and used. The interface also allows con-
figuring parameters for the beam search algorithm,
such as the beam width k and the beam length n. Fi-
nally, the user can create prompts to be loaded into
the workspace for text generation, implementing
the text generation task Gen .

3.3 Beam Search Tree Visualization

Central to the generAItor workspace is a visualiza-
tion of the beam search tree. As shown in figure 1,
we augment the tree with additional information,
supporting the single-instance analysis task Single .
The edges of the tree show alternative paths and en-
code the probability of the following nodes, which
allows investigating surface form competition SFC .
Semantic node highlights (El-Assady et al., 2022)
facilitate the identification of related keywords in
the tree based on their high-dimensional token em-
beddings in the language model. The edges are
highlighted with the branch’s sentiment to investi-
gate the influence of negations Neg or to analyze
negative connotations through biased outputs Bias .

3.4 Comparative Tree Visualization

Complementing the single-instance analysis, gener-
AItor provides a second mode for comparing mul-
tiple tree instances. This comparative mode is en-
tered by inserting placeholder strings in the prompt
and defining replacements. Each replacement is
automatically inserted into the prompt, leading to a
new tree instance. The instances are shown next to
each other, facilitating comparison across multiple
trees, enabling comparative analysis Multi . This al-
lows the investigation of changes in the output, e.g.,
to probe different quantifiers Quant or investigate
prompt sensitivity Sens by dynamically changing
punctuation in the prompt.
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Figure 2: A comparative BST, showing how strongly
punctuation in the input prompt influences the outputs.

3.5 Highlighting and Abstraction

To alleviate the complexity of the produced tree
visualization and ensure scalability to longer out-
puts, generAItor implements several mechanisms
for reducing visual complexity.

First, the system allows reducing the number
of displayed nodes for close reading through tree
collapse. The user can specify a wordlist with
interesting words for the analysis (or select one
of the pre-defined wordlists). By collapsing the
tree, only nodes in the selected wordlist(s) will be
displayed, enabling a more targeted exploration of
specific phenomena (e.g., stereotypical words). An
example is shown in figure 6.

Second, the system provides an option to merge
sequences of tokens with exactly one child node
into a combined node. This significantly reduces
the visual complexity of linear paths in the tree
while preserving the branching structure that is
essential for understanding the model’s decision-
making process.

4 Prompting Challenge Scenarios

In the following, we present five demo scenarios of
how to use the generAItor workspace to examine
the prompting challenges introduced in section 2.

4.1 Scenario: Prompt Sensitivity

Model RedPajama-INCITE-Instruct-3B-v1

Prompt Answer the following questions.
Q: What is the current GDP of India?

A:<PH>

<PH> {}, ␣, ␣␣

Challenge Prompt Sensitivity Sens

Task Multi-Instance Multi

Figure 3: The BST for the example from Holtzman et al.
(2021), showing how surface form competition affects
the output probabilities.

In this scenario, we show how our workspace can
be used to analyze prompt sensitivity to minor adap-
tations. In particular, we show the sensitivity of
the RedPajama Instruct model (Computer, 2023) to
white spaces added to the input prompt. We use the
prompt Answer the following questions. Q: What is

the current GDP of India? A:<PH> whereby the <PH>

stands for 0–2 concatenated white spaces (i.e., the
prompt starts with either , ␣, or ␣␣). As shown
in figure 2, the model generates three unique BST
trees, each containing a unique text output. The ex-
ample highlights the significance of punctuation in
the prompt; with the correct punctuation, the model
generates reasonable answers. However, when in-
serting a single space, the model fails in generating
an answer and ends up in a loop of linefeeds. The
observed behavior is likely caused by the tokeniza-
tion of the input prompt, which byte-pair encodes
the dollar sign with the leading space. Then, the
model is trained to expect the combined ␣$ preced-
ing the answer.

4.2 Scenario: Surface Form Competition

Models gpt2, RedPajama-INCITE-Base-3B-v1

Prompt A human wants to submerge himself in
water, what should he use?
Possible answers are: "Coffee cup",
"Whirlpool bath", "Cup", "Puddle"

Answer: "

Challenge Surface Form Competition SFC

Task Single-Instance Single

In this scenario, we show how our workspace is
used to analyze surface form competition using the
prompt A human wants to submerge himself in water,

what should he use? Possible answers are: "Coffee

cup", "Whirlpool bath", "Cup", "Puddle" Answer: "

from Holtzman et al. (2021). Our tree confirms
that the most likely result is not the correct answer
Whirlpool bath, but the hallucinations Coffee cup

for GPT-2 (Radford et al., 2019) and Cup for Red-
Pajama Base. It should be noted that we also tried
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Figure 4: The baseline for the negation analysis: the
token raspberries is not among the top-3 predictions.

other examples from the paper, e.g., the prompt
What is the most populous nation in North America?

Valid answers: "U.S. of A.", "Canada" Answer: ".
However, we were not able to reproduce the results
from the paper, as both GPT-2 and RedPajama Base
rated U.S. of A. more likely than Canada.

4.3 Scenario: Negation

Model RedPajama-INCITE-Instruct-3B-v1

Prompt Answer my questions. Do not use the
word ‘strawberries‘.
Q: Which type of red berries grows
on small, green bushes?
A:

Answer my questions. Do not use the
word ‘raspberries‘.
Q: Which type of red berries grows
on small, green bushes?

A:

Challenge Negation Neg

Task Single-Instance Single

In this scenario, we investigate how RedPajama’s
Instruct model captures the semantic constraints
of the negation not. First, we aim to explore the
most likely prediction for the prompt Answer my

questions. Q: Which type of red berries grows on

small, green bushes? A:. The model predicts multi-
ple berry types including cranberries and strawber-
ries, shown in figure 4. Since these predictions do
not include the word raspberries, we use it to ver-
ify whether the model can interpret the meaning of
not. Thus, we additionally create a prompt Answer
my questions. Do not use the word ‘raspberries‘.

Q: Which type of red berries grows on small, green

bushes? A:. If the model can interpret the meaning
of the negation, the predictions should not include
the word raspberries. However, the model ranks
this word as the most likely one, see figure 5, from
which we conclude that the model does not capture
the semantic constraints of the negation.

4.4 Scenario: Quantifiers

Model gpt2, bloom-3b

Prompt <PH> women like to

<PH> All, Some, A few

Challenge Quantifiers Quant

Task Multi-Instance Analysis Multi

In the following, we explore how language mod-
els encode quantifiers such as all, some, and a few.
Gupta (2023) shows that larger generative mod-
els are able to learn the semantic constraints of
these function words better than smaller models or
masked language models (Kalouli et al., 2022). We
explore the ability of GPT-2 and BLOOM to cap-
ture these properties using the prompt <PH> women

like to whereby the <PH> stands for the placeholder
for words all, some, and a few. The GPT-2 model,
as expected, generates semantically poor and ver-
bose outputs. The prompts that include the word
all and a few produce the same top prediction, i.e.,
the model generates a sequence <PH> women like

to think that they are the only ones who have the

power to change the world. As shown in figure 6, the
predictions of BLOOM differ from GPT-2. In par-
ticular, BLOOM produces distinct outputs for each
of the three function words, encompassing unique
concepts in each case. This confirms the findings
by Gupta (2023) that larger models generate out-
puts that address the quantifiers better. However,
we also observe that the outputs include stereotypi-
cal assumptions about women. Especially for the
quantifier all, the predictions overemphasize the
relevance of aesthetics to the female gender (see
All women like to feel beautiful and confident in

their own skin. in figure 6). In the following, we
describe how our approach helps in investigating
biases encoded in the model’s parameters.

Figure 5: A BST showing how the negative imperative
do not use boost the probability of the unwanted token.
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Figure 6: The BSTs for the prompt <PH> women like to with different quantifiers used in the place of the <PH> token.
The user can select wordlists for exploration; the tree is collapsed showing only interesting nodes for the analysis.

4.5 Scenario: Bias
Model bloom-3b

Prompt <PH> women like to

<PH> All, Some, A few

Challenge Bias Bias

Task Multi-Instance Multi

As shown in figure 6, the predictions for the prompt
<PH> women like to with words all, some, and a

few in the place of the placeholder <PH> produce
stereotypical predictions. Although the given input
prompt is general, and, thus, theoretically enables
a generation of a wide range of semantically dif-
ferent outputs, the model focuses on very specific
topics. In particular, in addition to the aesthetic as-
pects associated with the prompt All women like to,
the other prompts produce predictions that contain
properties related to female body characteristics
(see figure 6).

4.6 Scenario: Alignment and Jailbreaking

Model DeepSeek-R1-Distill-Qwen-1.5B

Prompt Is human surveillance <PH>? <think>

<PH> good, bad

Challenge Alignment and Jailbreaking Align

Task Multi-Instance Multi

In the following, we test how DeepSeek-
R1 (DeepSeek-AI et al., 2025) reacts to politi-
cally controversial world views. As shown in fig-
ure 7, we observe several notable behaviors from
the model when responding to the prompt Is hu

man surveillance <PH>? <think> with replacements
good and bad. First, the model exhibits a learned

content filtering mechanism, responding with “I
am sorry, I cannot answer that question.” as the
most likely output. Second, for other branches, the
model shows a strong tendency to argue about the
Chinese government, suggesting the presence of in-
tentional bias introduced by the creators. Lastly, the
extreme probabilities of 99 + % for certain tokens
suggest extensive fine-tuning on repetitive example,
likely to enforce this behavior. This highlights the
importance of investigating alternative branches as
well as probabilities in the LLM’s output, as they
can reveal patterns with severe sociopolitical im-
plications as well as potential gaps in a model’s
alignment.

5 Discussion & Take-Home Messages

In the following, we discuss our work and derive
the most important take-home messages.
Visual, Qualitative Analysis — Our case studies
highlight the importance of inspecting the prompt
output differences visually. Visualizations are often
used to gain detailed insights into specificities that
might become opaque when applying solely quanti-
tative evaluation approaches (e.g., accuracy scores).
They can be especially useful to test assumptions
since such tests are cheap to execute. The gained
insights can then be used to define hypotheses that
are evaluated quantitatively.
Comparative Analysis — Comparative analysis,
i.e., the possibility to compare the outputs for mul-
tiple prompts simultaneously, is crucial to detect
model limitations. Often, only the relative differ-
ence to another prompt can reveal the cues to which
the model pays attention, to which aspect it is sen-
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Figure 7: A BST showing how DeepSeek-R1 reacts to politically controversial world views. The model exhibits
content filtering mechanisms (a), bias towards talking about the Chinese government (b), and strong signs of
fine-tuning on repetitive alignment examples (c).

sitive, and which linguistic properties are not con-
sidered for the prediction making.

Simplicity — Since language is inherently inter-
pretable, individuals are led to engage in a process
of rationalizing LLM outputs (Sevastjanova and
El-Assady, 2022). Studies have shown that users
tend to place trust in the explanations provided by
language models, even in cases where those expla-
nations are proven to be incorrect (Lai and Tan,
2019). The fundamental principle underlying our
BST approach lies in the simplicity of both the
beam search algorithm and the underlying data,
such as token probabilities.

Flexibility & Abstraction — The analysis of lan-
guage model outputs using the BST enables the
expansion of sequences to variable lengths, which
distinguishes it from template-based analysis. This
approach also facilitates the exploration of alter-
native outputs, providing linguistic experts with
the ability to generate novel hypotheses and detect
subtle nuances in the model outputs.

To ensure scalability to longer outputs, it is cru-
cial to employ effective abstraction techniques that
prevent users from getting overwhelmed by the vast
exploration space. As described in Section 3.5, our
system implements several mechanisms for this
purpose, including tree collapse to show only rel-
evant nodes and the merging of token sequences
with exactly one child node into combined nodes.
For integration into commercial tools, additional
interaction techniques could be considered, such as
displaying local subtrees when hovering over text,
highlighting tree branches with extreme probabili-
ties, or marking significant topic changes.

6 Related Work

Beam search is an essential part of the decoding
process in LMs. Lee et al. (2017) use a basic beam
search tree visualization for the task of neural ma-
chine translation. Their tool visualizes the beam
search decoder with probabilities and allows basic
tree manipulation. Also, for machine translation,
Seq2Seq-Vis was proposed by Strobelt et al. (2018),
which focuses on helping the user debug and find
errors in the translation result. The user can inves-
tigate all steps of the translation pipeline to help
improve the translation result for single instances.
For larger document collections, Munz et al. (2022)
propose a visual analytics system utilizing beam
search tree to help identify and correct single in-
stances and propagate corrections for larger docu-
ment collections. Strobelt et al. (2022) introduce
GenNI, a system for collaborative text generation
by applying user-defined constraints to the beam
search tree, guiding the produced outputs.

7 Conclusion

We show how generAItor, our beam-search-
centered approach to explainability for generative
language models, is used to explain the model’s
decision process and compare model outputs. Eval-
uating its applicability to real-world scenarios, we
identify and classify five state-of-the-art challenges
in the prompting of LLMs and show how gener-
AItor can be used to tackle them. Thereby, we
demonstrate how the visual investigation of prob-
abilities and alternative branches aids in verifying
and generating hypotheses for LM developers and
linguistic researchers alike.
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Limitations

Investigation of Proprietary Models — Since
our approach requires full access to the probability
distribution output by the model, it can only be
applied to open-source models. However, similar
approaches could be included in commercial tools
for language generation, as prompt engineering is
gaining relevance (Zamfirescu-Pereira et al., 2023).
Gaining insights into the generated outputs has the
potential to greatly enhance human control.
Comparison Across Language Models — While
our approach allows loading different, transformer-
based models into the workspace, the comparison
of outputs is at present only supported between
trees produced by the model that is currently loaded.
This limitation should be supported by future im-
plementations.
Focus on the English Language — Due to the
prevalence of English training data, most models
are known to provide the best performance with
English text. We, therefore, focus on English text
for the examples and evaluations presented in this
paper. Since the linguistic phenomena we exam-
ine can strongly differ between languages, further
languages should be investigated in future work.
Extension to further Prompt Challenges — The
identified and addressed prototypical challenges
represent current areas of active research. Never-
theless, it is likely that there are further interest-
ing linguistic, socio-linguistic, or data- and model-
specific prompting challenges that can be investi-
gated using the generAItor workspace.
Focus on Text Generation — Other tasks, such
as machine translation or text summarization were
not investigated. While our approach technically
supports these tasks, additional visualizations and
interaction patterns may have to be implemented
to optimally support the user and should be part of
future research.
Explainability Instead of Problem Solving —
While some of our insights indicate model defects
and imply ways to resolve them (e.g., preventing
tokenization issues, see 4.1), this is not the primary
focus of our approach. To find tangible ways to
refine a model, other tools to investigate training
data or the deep learning architecture of the model
are needed.

Ethics Statement

All datasets and models used in this paper are either
open-source or open-access. The results presented
in this paper investigate the identified challenges
only locally using discrete examples. For substan-
tiated generalizable statements, the hypotheses de-
rived from the presented examples must be verified
through a statistical evaluation of both model and
training data. Furthermore, we do not claim the
challenges and findings presented in this paper to
be exhaustive.
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A Quantitative BST Evaluation

In the following, we show the relevance of our tree-
centered approach by evaluating how many relevant
words are hidden in runner-up branches and would,
therefore, be discarded in a usual text generation
setting. For this, we rank the branches of the beam
search tree, match the tree nodes with the words
from a keyword list, and count how often and with
which probability keywords appear in each rank.
Ranking Beam Search Branches — We require
a ranking function on the branches of the beam
search tree to determine their relevance. Notably,
we want to rank the branches according to the order
the beam search algorithm discards them. To this
end, we propose algorithm 1. Intuitively, the algo-
rithm assigns the lowest rank 0 to the main branch
of the beam search tree; then, at each branching
point, the longest beam inherits its parent’s rank,
while the other branches receive a higher rank ac-
cording to their order of being discarded. Figure 8
shows an example ranking.
Evaluating Keyword Coverage — We evaluate
the keyword coverage for beam search trees pro-
duced with the models bloom-3b and RedPajama-
INCITE-Base-3B-v1 and different input prompts.
For each prompt, we match the generated tree
nodes with a keyword list related to the prompt’s
subject. E.g., we use a keyword list containing
the names of all countries to match the generated
output of the prompt World economy is strongly de

pendent of some countries. The nodes of a branch
are ranked according to algorithm 1. We then
count the occurrences c of keyword nodes in rank
0, 1, . . . , k − 1, where k is the beam width. We
also compute the normalized probability pnorm =
pbeam

1/d of the keyword nodes, based on their
beam probability pbeam and depth d in the tree.
This compensates for the exponential drop in prob-
ability as the beam length increases and allows us
to compute an averaged probability p of the key-
word nodes in each rank.

def get_best_leaf(n):
return n.leafs.sort(

key=lambda l: (l.max_beam_length , l.max_beam_prob),
reverse=True )[0]

def rank(p):
C = p.children.sort(

key=lambda c: (get_best_leaf(c). max_beam_length ,
get_best_leaf(c). max_beam_prob),

reverse=True)
for i, c in enumerate(C):

c.rank = p.rank + i
rank(c)

root.rank = 0
rank(root)

Algorithm 1: Ranking the branches of a BST.

Figure 8: Example of applying algorithm 1 to a BST.

Results — The results of our experiment are de-
picted in table 1, showing that branches of rank 1
contain the most keyword nodes, surpassing the
number in the main branch with rank 0. While
we observe a lower average node probability p of
the keyword nodes of higher rank in BLOOM, p
only slightly decreases with higher rank in RedPa-
jama, indicating that the higher-ranked branches
die from the low probability of subsequent tokens
rather than the probability of the keyword nodes.

In summary, the results demonstrate the impor-
tance of a beam-search-tree-based approach. Valu-
able and high-probability predictions are often hid-
den in branches of rank 1 and 2 and should not be
ignored for both linguistic investigations and text
generation. Our results also show that examining
BSTs with a beam width k > 4 may only rarely
make sense since these branches tend to die early
and hardly contain relevant keywords.
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Prompt <John,Jessica> works as [Occupations] World economy is strongly dependent of some countries,
such as [Countries]

Model bloom-3b RedPajama-INCITE-Base-3B-v1 bloom-3b RedPajama-INCITE-Base-3B-v1

n 25 50 100 25 50 100 25 50 100 25 50 100

Rank c p c p c p c p c p c p c p c p c p c p c p c p
0 4 0.305 4 0.305 4 0.305 4 0.220 4 0.220 5 0.270 3 0.317 3 0.317 3 0.317 10 0.358 11 0.358 27 0.420
1 5 0.256 5 0.256 6 0.282 4 0.179 4 0.179 6 0.272 5 0.334 5 0.334 5 0.334 15 0.345 17 0.346 41 0.414
2 5 0.169 5 0.169 5 0.169 1 0.197 1 0.197 2 0.331 1 0.067 1 0.067 1 0.067 6 0.295 8 0.310 30 0.422
3 2 0.094 2 0.094 2 0.094 0 N/A 0 N/A 0 N/A 1 0.045 1 0.045 1 0.045 2 0.198 2 0.198 4 0.337
4 1 0.003 1 0.003 1 0.003 0 N/A 0 N/A 0 N/A 0 N/A 0 N/A 0 N/A 1 0.027 1 0.027 1 0.027

Table 1: The results of our quantitative BST evaluation. We evaluate the number c of keywords appearing in
branches of rank 0 to 4 and compute the averaged, normalized keyword probability p for each rank. The results
indicate that the branches of rank 0 to 2 are the most important to investigate since they contain viable alternatives
to the main branch. Also, the probability only slightly decreases in the lower ranks.
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