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Abstract

Despite the remarkable performance of Large
Language Models (LLMs) in automated dis-
charge summary generation, they still suffer
from hallucination issues, such as generat-
ing inaccurate content or fabricating informa-
tion without valid sources. In addition, elec-
tronic medical records (EMRs) typically con-
sist of long-form data, making it challenging
for LLMs to attribute the generated content to
the sources. To address these challenges, we
propose LCDS, a Logic-Controlled Discharge
Summary generation system. LCDS constructs
a source mapping table by calculating textual
similarity between EMRs and discharge sum-
maries to constrain the scope of summarized
content. Moreover, LCDS incorporates a com-
prehensive set of logical rules, enabling it to
generate more reliable silver discharge sum-
maries tailored to different clinical fields. Fur-
thermore, LCDS supports source attribution
for generated content, allowing experts to ef-
ficiently review, provide feedback, and rec-
tify errors. The resulting golden discharge
summaries are subsequently recorded for in-
cremental fine-tuning of LLMs. Our project
and demo video are in the GitHub repository
https://github.com/ycycyc02/LCDS.

1 Introduction

The discharge summary (DS) is the final section
of an electronic medical record (EMR) that con-
solidates essential patient information, such as ad-
mission details, medical history, diagnoses, treat-
ments, medications, and follow-up recommenda-
tions (Xiong et al., 2019). It plays a critical role
in ensuring continuity of patient care, facilitating
communication between healthcare providers and
patients, and supporting clinical decisions (Lenert
et al., 2014; Kripalani et al., 2007; Li et al.,
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2013; Walraven et al., 2002). Traditionally, dis-
charge summaries are manually written by physi-
cians, making the process time-consuming, labor-
intensive, and susceptible to subjective biases (Xu
et al., 2024; Hartman et al., 2023; Rink et al.,
2023). Recently, large language models (LLMs)
have shown great promise in automating discharge
summary generation by leveraging retrieval, rea-
soning, and fine-tuning techniques (Van Veen et al.,
2024). For example, Liu et al. (2022) propose
Re3Writer, which simulates physician workflows
through medical knowledge retrieval and reason-
ing. Similarly, Lyu et al. (2024) integrate extractive
methods with generative techniques, combining
named entity recognition (NER) and prompt-tuned
text generation.

Despite these advancements, several critical chal-
lenges remain in automated discharge summary
generation using LLMs.

Precise Content Localization: EMRs typically
consist of long-form, complex, and heterogeneous
data spanning multiple sections (Wu et al., 2024).
Directly feeding complete EMRs into LLMs can ex-
ceed their context limits, thus degrading the quality
of generated summaries and increasing interference
from irrelevant or redundant information.

Accuracy and Hallucination Reduce: Al-
though LLMs demonstrate remarkable perfor-
mance, they still suffer from hallucination issues,
generating inaccurate or fabricated content lacking
valid sources (Maynez et al., 2020; Zhang et al.,
2023b; Ji et al., 2023). In the medical domain, this
can significantly compromise patient safety and
care quality. Effective strategies to impose logical
constraints to mitigate these hallucinations remain
underexplored.

Adaptability to Different Clinical Depart-
ments: While discharge summaries share a general
structure across medical specialties, their detailed
content requirements vary significantly. Current
automated generation methods often lack adapt-
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ability to specific departmental needs, risking the
omission of crucial clinical information.

Traceability and Trustworthiness: As dis-
charge summaries directly influence patient care de-
cisions, medication guidance, and follow-up treat-
ments, ensuring content traceability is essential.
However, current LLM-based generation systems
lack explicit source attribution mechanisms, mak-
ing it challenging for medical professionals to ver-
ify and trust the generated content.

To address these challenges, we propose A
LCDS (Logic-Controlled Discharge Summary
Generation) System, featuring source attribution,
logical constraints, and expert review:

• Source Mapping for Precise Content Local-
ization: LCDS constructs a source mapping
table by calculating textual similarity between
EMRs and discharge summaries, effectively
constraining content selection and enhancing
summary accuracy.

• Logic-Controlled Summary Generation:
LCDS incorporates structured prompts guided
by medical-domain logical rules, significantly
improving factual accuracy and reducing hal-
lucinations in generated discharge summaries.

• Attribution-Based Expert Review: LCDS
segments generated summaries at the sentence
level, explicitly attributing content to original
EMR sources. This mechanism supports ex-
pert verification, facilitates error correction,
and enhances clinical reliability.

Our system implements all proposed function-
alities, demonstrating a complete pipeline for dis-
charge summary generation from EMRs. Moreover,
we conducted experiments using real-world clinical
data from 15 medical departments. Experimental
results show that LCDS outperforms existing meth-
ods in terms of accuracy, coherence, and clinical
applicability of the generated discharge summaries,
significantly reducing hallucinations and improv-
ing content traceability.

2 Related Work

Existing methods for automatic DS generation fall
into three categories:

Extraction-Abstracting Methods: These meth-
ods first extract key information from medical
records and then generate summaries, aiming to

balance traceability and textual fluency. Represen-
tative studies include (Shing et al., 2021; VC et al.,
2023; K et al., 2021). While such approaches en-
hance factual accuracy, they heavily rely on the
quality of the source text, making them prone to
information omission.

Knowledge-Enhanced Methods: This category
integrates external knowledge bases or retrieval-
augmented techniques to improve the reliability
of summaries. Examples include reinforcement
learning-based medical entity verification (Zhang
et al., 2020), embedded entity retrieval alignment
(Adams et al., 2024), and a three-step generate
framework comprising retrieval, reasoning, and
synthesis (Liu et al., 2022). However, these meth-
ods are computationally complex and constrained
by the timeliness of the knowledge base.

LLM-Based Methods: These approaches lever-
age prompt engineering or fine-tuning techniques
to adapt large models for medical applications.
(Clough et al., 2024) has shown that GPT-4 and
its variants can generate summaries approach-
ing physician-level quality. However, as noted
by (Williams et al., 2024; Dubinski et al., 2024;
Kim et al., 2024), the generated content still re-
quires human review to ensure clinical accuracy.
Additionally, LLMs are prone to hallucinations, po-
tentially producing misleading or erroneous infor-
mation. The lack of a clear provenance mechanism
further complicates the verification of generated
summaries by medical professionals.

3 System Workflow and Usage Example

This section introduces the system’s usage and
functionality through case studies. As shown in
Figure 2, the workflow consists of four steps:

Input EMR Format Conversion: LCDS con-
verts various types of EMR documents uploaded
by users into a unified JSON format, ensuring data
consistency and standardization.

Reference-Guided Source-Aware Discharge
Summary Generation: Key content is extracted
from standardized EMRs, and a “Silver” DS is
generated based on refined logical field constraints.

Attribution-Based Comparison and Review:
LCDS aligns each sentence in the summary with
the original EMR, allowing experts to review, com-
pare, and modify content for a high-quality “Gold”
Discharge Summary.

Iterative Optimization: Review feedback and
finalized discharge summaries create an incremen-
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Page2:  Preview Patient EMR and configure params.

Page3: Configure generation 
logic rules and view detailed 
source content.

Page4: Review the generated discharge summary.

Page1: Upload 
Patient EMR.

Figure 1: Screenshot of the LCDS web application, where the page functions are annotated.

tal training dataset for continuous model optimiza-
tion once enough data is accumulated.

3.1 Input EMR Format Conversion

As shown in Figure 1, users begin on Page 1 by
uploading multiple EMR documents via a drag-
and-drop interface (see Appendix A for supported
document types). LCDS preprocesses and converts
these documents into a unified JSON format, facili-
tating consistency and accurate source attribution.
The unified format simplifies downstream process-
ing and improves processing efficiency. Upon suc-
cessful conversion, users proceed to Page 2, where
the right panel displays structured EMR data, sum-
marizing all uploaded records, and the left panel
offers configuration options for model selection and
department-specific logical rules, allowing users to
tailor generation parameters to clinical needs.

3.2 Reference-Guided Source-Aware
Discharge Summary Generation

After configuration, users proceed to Page 3, where
they can preview source document names, ex-
tracted key content and customize logical con-
straints. LCDS supports 15 medical departments,
with baseline source references provided for each
DS field. As shown in Page 3 of Figure 1, the

“Source Records Name” section displays source
documents for the breast surgery department’s DS,
while “Detailed Source Content” shows extracted
medical content. Users can modify logical rules in
the “Execution Logic” section, which supports ex-
traction, reasoning, summarization, and judgment
logic types. The fifth logic type, knowledge, gener-
ates follow-up medication recommendations based
on predefined mappings of medical history and test
results to department-specific guidelines.
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Figure 2: System workflow overview. The process includes four steps: (1) Upload and convert EMRs; (2) Extract
key information, configure generation logic, and generate the discharge summary; (3) Perform attribution analysis
and review; (4) Construct an incremental dataset and perform incremental learning.

3.3 Attribution-Based Comparison and
Review

After configuring Page 3, LCDS generates the “Sil-
ver” DS and redirects users to the comparison inter-
face on Page 4. The upper section displays the
generated summary on the left, with physician-
authored summaries for comparison. The lower
section lists the source documents and their con-
tents. Users can hover over the generated summary
to highlight the matching content in the physician-
written summary. Clicking on any part updates the
lower section to show the corresponding source
document and highlights related sentences. The
top toolbar provides Edit, Comment, and Export
functions for experts to modify content, annotate
feedback, and download the final “Golden” DS in
JSON format.

3.4 Iterative Optimization

Through the aforementioned steps, LCDS accumu-
lates a dataset of “Silver” DSs and expert-reviewed
“Golden” counterparts, which serves as an incre-
mental training corpus for continuous model refine-
ment. As data accumulates, trainers use these re-
vised summaries for ongoing model improvement.

4 System Overview

4.1 Summary Generator

In our work, we utilize ChatGLM3-6B (GLM et al.,
2024) to generate DSs. To enhance the model’s
understanding of task details and improve its per-
formance in this text generation task, we construct
a high-quality instruction dataset and fine-tune
the model using LoRA.1 The fine-tuned model
is named EMRLLM. Since our backend model is
modular, we can also replace EMRLLM with other
LLMs such as Alpacare (Zhang et al., 2023c), Ben-
taso (Wang et al., 2023), or HuatuoGPT (Zhang
et al., 2023a).

4.2 Source Mapping Table Construction

To enhance input precision, minimize hallucina-
tions caused by excessive text scope, and improve
the efficiency and accuracy of information local-
ization, we construct a DS-EMR mapping table,
which clearly defines the relationships between the
DS and its corresponding source documents and
relevant fields.

1We provide some examples of instruction dataset in
https://github.com/ycycyc02/LCDS.
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We collect 500 EMRs from 15 departments, each
containing a physician-authored DS. These DSs
serve as ground truth for localizing information
from the corresponding source documents. To fa-
cilitate structured generation, we divide each DS
into six distinct Fields: (1) Patient Information, (2)
Discharge Diagnosis, (3) Tests and Examinations,
(4) Disease Course and Treatment, (5) Condition
at Discharge, and (6) Post-Discharge Medication
Advice.

For short-text Fields such as “patient informa-
tion”, we directly use the ground truth as a keyword
to search across all fields of the medical records. If
a field contains the keyword, it is identified as the
corresponding information source.

For long-text Fields such as “Disease Course and
Treatment”, content may originate from multiple
medical records, and different sentences may cor-
respond to different source documents. To address
this, we first perform sentence-level semantic seg-
mentation and then determine the source of each
segment. Specifically, we employ in-context learn-
ing (ICL) for semantic segmentation, where the
input consists of the “Disease Course and Treat-
ment” text, and the output includes categorized
labels and their corresponding content. For in-
stance, if a patient’s disease course involves surgery,
chemotherapy, pathology, and discharge details,
the output should be {Surgery: corresponding sur-
gical description, Chemotherapy: corresponding
chemotherapy description, Pathology: correspond-
ing pathology description, Discharge Details: cor-
responding discharge description}. Using this ap-
proach, we break down long texts into finer-grained
queries, which are then used to retrieve relevant in-
formation from all fields in the patient’s EMRs.

We employ the BM25 (Robertson et al., 2009)
algorithm to compute semantic similarity, ranking
and filtering field contents within the same category
based on similarity scores. Fields with similarity
scores exceeding 0.8 are considered valid sources.
For example, if chemotherapy information for pa-
tients A and B originates from Field P of Document
X (with similarity scores of 0.9 and 0.85, respec-
tively), and for patient C from Field O of Document
Y (with a similarity score of 0.95), while also ap-
pearing in Field N of Document Y (with a similarity
score of 0.75), only X-P and Y-O are retained as
valid sources during selection. Here, X-P appears
as a source in 2/3 of cases (covering patients A and
B), and Y-O appears in 1/3 of cases (covering only
patient C), assigning them priorities of 2/3 and 1/3,

respectively. During new patient data processing,
the system first extracts content from the highest-
priority field. If the field is missing, it sequentially
falls back to the next most relevant field.

Ultimately, this strategy leverages semantic seg-
mentation, similarity-based retrieval, and relevance-
based filtering to refine input text, ensuring that the
model generates high-quality discharge summaries
that better meet clinical needs within the constraints
of limited scope.

4.3 Logic-Guided Prompt Engineering
To suppress hallucinations caused by free-text gen-
eration while accommodating the specific needs of
different medical departments, we establish explicit
generation rules and constraints for various DS con-
tent types. The generation logic is categorized into
five types, with corresponding optimizations ap-
plied to each:

Extraction: Extracts deterministic information
(e.g., name, hospitalization number) for data accu-
racy.

Summarization: Summarizes key information
from multiple documents (e.g., medical history) or
a concise overview.

Judgment: Evaluates input based on clinical
standards (e.g., abnormal test results) and outputs
compliant conclusions.

Inference: Integrates data points to infer disease
progression or treatment outcomes (e.g., discharge
time).

Knowledge: Uses clinical knowledge bases to
generate advisory information (e.g., follow-up de-
partments, precautions).

To implement logic-driven DS generation, we
first collaborate with medical experts to define nat-
ural language generation rules for each DS field.
We then employ GPT-4o (Hurst et al., 2024) with
a three-stage intelligent processing mechanism for
optimization:

Task Parsing: Automatically matches gener-
ation rules with 1-4 logical structures based on
predefined logic types.

Rule Matching: Assigns detailed generation
rules to each logical structure.

Logic Orchestration: Integrates and generates
structured, coherent, and logically sound prompt
composite instructions.

Through the three-stage optimization of task
parsing, rule matching, and logic orchestration, the
system generates field-specific logical combination
templates that comply with medical standards and
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Method ROUGE-L LLM-as-a-Judge Human
GPT-4o with COT 24.01 24.68 31.41

GPT-4o with LCDS 40.24 54.81 52.57
EMRLLM with LCDS 77.60 75.26 79.45

Table 1: Performance comparison of different methods,
including GPT-4o with COT, GPT-4o with LCDS, and
EMRLLM with LCDS. The results are evaluated using
ROUGE-L, LLM-as-a-Judge, and human evaluation.
The best results in each column are highlighted in bold.

maintain a clear logical flow. This enables an au-
tomated transformation from business directives
to precise prompts. Additionally, physicians can
modify the results during the rule-matching stage
to meet personalized requirements. For example,
if a physician wishes to include intraocular pres-
sure test results in the DS, they can adjust the rule
matching output accordingly, further optimizing
the final generated content.

4.4 Attribution-Based Comparison

In the medical domain, the generation of discharge
summaries requires clear content attribution for
auditing and verification. To this end, we propose
an attribution-based review method that establishes
explicit correspondence between generated content
and original medical records, ensuring accuracy
and reliability.

Specifically, we first perform sentence-level seg-
mentation on both the generated DS and the asso-
ciated original medical records. Then, we lever-
age the GPT-4o model to process each generated
sentence and determine its supporting sentence(s)
within the original medical records. To ensure
precise attribution, each sentence in the original
records is assigned a unique identifier, and GPT-
4o is instructed to return only the corresponding
identifiers of supporting sentences.

On the user interface, when a user clicks on a sen-
tence in the generated DS, the system highlights the
corresponding original medical record sentences
with the same identifier, facilitating easy compari-
son and verification.

5 Evaluation

In this section, we validate the effectiveness of
LCDS through a combination of automatic and
human evaluation. The experimental results are
presented in Table 1.

Dataset: We collect 150 EMRs, selecting 10
from each of 15 departments.

Baseline Methods: To evaluate the effectiveness

of LCDS, we compare it with the following three
baseline methods: 1) GPT-4o with COT (Chain
of Thought (Wei et al., 2022)): Using GPT-4o for
EMR-based text generation, incorporating the COT
reasoning method to enhance logical consistency.
2) GPT-4o with LCDS: Using GPT-4o within the
LCDS framework to optimize its performance and
enhance its applicability in the medical domain. 3)
EMRLLM with LCDS: Using EMRLLM within
the LCDS framework to optimize DS generation
and enhance output precision.

Evaluation Metrics: We employ both automatic
and human evaluation metrics. Automatic Evalua-
tion: ROUGE-L (Lin, 2004) measures the longest
common subsequence overlap between the gener-
ated DS and the reference DS, providing an indi-
cation of lexical similarity. LLM-as-a-Judge (Gu
et al., 2024) employs DeepSeek-R1 (Guo et al.,
2025) to assess the generated text along four di-
mensions, including accuracy, completeness, stan-
dardization, and practicality, with a combined total
score of 100 points. The evaluation criteria are
detailed in Appendix B. Human Evaluation: Med-
ical experts assign an overall score to the generated
text based on the same four dimensions, with the to-
tal score ranging from 0 to 100. Detailed evaluation
guidelines are provided in Appendix C.

Evaluation Results: The results demonstrate
that GPT-4o with LCDS outperforms GPT-4o
with COT across all metrics, indicating that the
LCDS framework contributes to improved genera-
tion quality. Furthermore, EMRLLM with LCDS
achieves superior performance compared to GPT-
4o with LCDS, suggesting that task-specific fine-
tuning on medical datasets significantly enhances
generation quality.

6 Conclusion

We present LCDS, a logic-controlled discharge
summary generation system that integrates precise
content localization, logic-guided generation, and
attribution-based expert review. By accurately ex-
tracting relevant source content, LCDS effectively
reduces irrelevant information, thereby improv-
ing the quality and coherence of generated sum-
maries. Through medical domain-specific logical
constraints, LCDS significantly mitigates halluci-
nations and adapts to varied requirements across
different clinical departments. Additionally, LCDS
supports content traceability, enabling efficient ex-
pert validation, feedback, and iterative improve-
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ment of large language models in clinical practice.
Our experiments on real-world clinical data demon-
strate that LCDS consistently outperforms existing
methods, highlighting its potential for reliable and
trustworthy clinical deployment.

Limitations

Despite the remarkable progress achieved in dis-
charge summary generation, our study still has sev-
eral limitations. First, our approach primarily relies
on a specific dataset for training and evaluation,
which may limit the model’s generalization ability
and result in degraded performance when applied to
different healthcare settings or other types of elec-
tronic medical records. Second, due to the highly
specialized and complex nature of medical texts,
the model may generate inaccurate or ambiguous
content, affecting its applicability in clinical prac-
tice. Finally, although we employ both automated
and manual evaluation methods, a more compre-
hensive assessment of the generated text’s quality
and usability remains necessary. Future work could
incorporate additional expert reviews or real-world
clinical testing to further refine the evaluation pro-
cess.

Ethics Statement

This study strictly adheres to ethical guidelines, en-
suring that all data usage complies with relevant pri-
vacy protection and data security regulations. The
datasets employed have been anonymized to pre-
vent the exposure of sensitive patient information.
Additionally, we acknowledge the potential risks
associated with generative models in automated
medical text generation, including the possibility of
producing inaccurate or misleading content. There-
fore, we emphasize that the model should be used
solely as an assistive tool and that all generated
outputs must be rigorously reviewed and validated
by medical professionals.

Acknowledgments

We sincerely thank the anonymous reviewers for
their valuable comments and suggestions. We also
appreciate the support from Ruijin Hospital, Shang-
hai Jiaotong University School of Medicine, for
this work.

References
Griffin Adams, Jason Zucker, and Noémie Elhadad.

2024. Speer: Sentence-level planning of long
clinical summaries via embedded entity retrieval.
arXiv:2401.02369.

Akari Asai, Zeqiu Wu, Yizhong Wang, Avirup Sil, and
Hannaneh Hajishirzi. 2023. Self-rag: Learning to
retrieve, generate, and critique through self-reflection.
In The Twelfth International Conference on Learning
Representations.

Shuyang Cao and Lu Wang. 2024. Verifiable generation
with subsentence-level fine-grained citations. arXiv
preprint arXiv:2406.06125.

Yung-Sung Chuang, Benjamin Cohen-Wang, Shan-
non Zejiang Shen, Zhaofeng Wu, Hu Xu, Xi Victoria
Lin, James Glass, Shang-Wen Li, and Wen-tau Yih.
2025. Selfcite: Self-supervised alignment for context
attribution in large language models. arXiv preprint
arXiv:2502.09604.

Reece Alexander James Clough, William Anthony
Sparkes, Oliver Thomas Clough, Joshua Thomas
Sykes, Alexander Thomas Steventon, and Kate King.
2024. Transforming healthcare documentation: har-
nessing the potential of ai to generate discharge sum-
maries. BJGP open, 8(1):BJGPO.2023.0116.

Benjamin Cohen-Wang, Harshay Shah, Kristian
Georgiev, and Aleksander Madry. 2024. Contextcite:
Attributing model generation to context. Advances in
Neural Information Processing Systems, 37:95764–
95807.

Daniel Dubinski, Sae-Yeon Won, Svorad Trnovec, Bed-
jan Behmanesh, Peter Baumgarten, Nazife Dinc, Juer-
gen Konczalla, Alvin Chan, Joshua D. Bernstock,
Thomas M. Freiman, and Florian Gessler. 2024.
Leveraging artificial intelligence in neurosurgery-
unveiling chatgpt for neurosurgical discharge sum-
maries and operative reports. Acta Neurochirurgica,
166(1):38.

Constanza Fierro, Reinald Kim Amplayo, Fantine Huot,
Nicola De Cao, Joshua Maynez, Shashi Narayan, and
Mirella Lapata. 2024. Learning to plan and generate
text with citations. arXiv preprint arXiv:2404.03381.

Team GLM, Aohan Zeng, Bin Xu, Bowen Wang, Chen-
hui Zhang, Da Yin, Diego Rojas, Guanyu Feng, Han-
lin Zhao, Hanyu Lai, Hao Yu, Hongning Wang, Ji-
adai Sun, Jiajie Zhang, Jiale Cheng, Jiayi Gui, Jie
Tang, Jing Zhang, Juanzi Li, Lei Zhao, Lindong Wu,
Lucen Zhong, Mingdao Liu, Minlie Huang, Peng
Zhang, Qinkai Zheng, Rui Lu, Shuaiqi Duan, Shu-
dan Zhang, Shulin Cao, Shuxun Yang, Weng Lam
Tam, Wenyi Zhao, Xiao Liu, Xiao Xia, Xiaohan
Zhang, Xiaotao Gu, Xin Lv, Xinghan Liu, Xinyi Liu,
Xinyue Yang, Xixuan Song, Xunkai Zhang, Yifan
An, Yifan Xu, Yilin Niu, Yuantao Yang, Yueyan Li,
Yushi Bai, Yuxiao Dong, Zehan Qi, Zhaoyu Wang,
Zhen Yang, Zhengxiao Du, Zhenyu Hou, and Zihan
Wang. 2024. Chatglm: A family of large language

290

https://arxiv.org/abs/2406.12793


models from glm-130b to glm-4 all tools. Preprint,
arXiv:2406.12793.

Jiawei Gu, Xuhui Jiang, Zhichao Shi, Hexiang Tan,
Xuehao Zhai, Chengjin Xu, Wei Li, Yinghan Shen,
Shengjie Ma, Honghao Liu, et al. 2024. A survey on
llm-as-a-judge. arXiv preprint arXiv:2411.15594.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song,
Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma,
Peiyi Wang, Xiao Bi, et al. 2025. Deepseek-r1: In-
centivizing reasoning capability in llms via reinforce-
ment learning. arXiv preprint arXiv:2501.12948.

Vince C Hartman, Sanika S Bapat, Mark G Weiner,
Babak B Navi, Evan T Sholle, and Thomas R Cam-
pion Jr. 2023. A method to automate the discharge
summary hospital course for neurology patients.
Journal of the American Medical Informatics Associ-
ation, 30(12):1995–2003.

Lucas Torroba Hennigen, Shannon Shen, Anirud-
dha Nrusimha, Bernhard Gapp, David Sontag, and
Yoon Kim. 2023. Towards verifiable text gener-
ation with symbolic references. arXiv preprint
arXiv:2311.09188.

Aaron Hurst, Adam Lerer, Adam P Goucher, Adam
Perelman, Aditya Ramesh, Aidan Clark, AJ Os-
trow, Akila Welihinda, Alan Hayes, Alec Radford,
et al. 2024. Gpt-4o system card. arXiv preprint
arXiv:2410.21276.

Ziwei Ji, Nayeon Lee, Rita Frieske, Tiezheng Yu, Dan
Su, Yan Xu, Etsuko Ishii, Ye Jin Bang, Andrea
Madotto, and Pascale Fung. 2023. Survey of hal-
lucination in natural language generation. ACM com-
puting surveys, 55(12):1–38.

Krishna K, Khosla S, Bigham J, and Lipton ZC. 2021.
Generating soap notes from doctor-patient conversa-
tions using modular summarization techniques. As-
sociation for Computational Linguistics, pages 4958–
4972.

Hanjae Kim, Hee Min Jin, Yoon Bin Jung, and
Seng Chan You. 2024. Patient-friendly discharge
summaries in korea based on chatgpt: Software devel-
opment and validation. Journal of Korean Medical
Science, 39(16):e148.

Sunil Kripalani, Amy T Jackson, Jeffrey L Schnipper,
and Eric A Coleman. 2007. Promoting effective
transitions of care at hospital discharge: a review
of key issues for hospitalists. Journal of hospital
medicine: an official publication of the Society of
Hospital Medicine, 2(5):314–323.

Leslie A Lenert, Farrant H Sakaguchi, and Charlene R
Weir. 2014. Rethinking the discharge summary: a fo-
cus on handoff communication. Academic Medicine,
89(3):393–398.

Jordan YZ Li, Tuck Y Yong, Paul Hakendorf, David
Ben-Tovim, and Campbell H Thompson. 2013. Time-
liness in discharge summary dissemination is asso-
ciated with patients’ clinical outcomes. Journal of
evaluation in clinical practice, 19(1):76–79.

Chin-Yew Lin. 2004. Rouge: A package for automatic
evaluation of summaries. In Text summarization
branches out, pages 74–81.

Fenglin Liu, Bang Yang, Chenyu You, Xian Wu, Shen
Ge, Zhangdaihong Liu, Xu Sun, Yang Yang, and
David Clifton. 2022. Retrieve, reason, and refine:
Generating accurate and faithful patient instructions.
Advances in Neural Information Processing Systems,
35:18864–18877.

Mengxian Lyu, Cheng Peng, Daniel Paredes, Ziyi
Chen, Aokun Chen, Jiang Bian, and Yonghui Wu.
2024. Uf-hobi at" discharge me!": A hybrid solution
for discharge summary generation through prompt-
based tuning of gatortrongpt models. arXiv preprint
arXiv:2407.15359.

Joshua Maynez, Shashi Narayan, Bernd Bohnet, and
Ryan McDonald. 2020. On faithfulness and factu-
ality in abstractive summarization. arXiv preprint
arXiv:2005.00661.

Lesley C Rink, Tolu O Oyesanya, Kathryn C Adair,
Janice C Humphreys, Susan G Silva, and John Bryan
Sexton. 2023. Stressors among healthcare workers:
a summative content analysis. Global qualitative
nursing research, 10:23333936231161127.

Stephen Robertson, Hugo Zaragoza, et al. 2009. The
probabilistic relevance framework: Bm25 and be-
yond. Foundations and Trends® in Information Re-
trieval, 3(4):333–389.

Han-Chin Shing, Chaitanya Shivade, Nima Pour-
damghani, Feng Nan, Philip Resnik, Douglas Oard,
and Parminder Bhatia. 2021. Towards clinical en-
counter summarization: Learning to compose dis-
charge summaries from prior notes. arXiv preprint
arXiv:2104.13498.

Aviv Slobodkin, Eran Hirsch, Arie Cattan, Tal Schuster,
and Ido Dagan. 2024. Attribute first, then generate:
Locally-attributable grounded text generation. arXiv
preprint arXiv:2403.17104.

Dave Van Veen, Cara Van Uden, Louis Blanke-
meier, Jean-Benoit Delbrouck, Asad Aali, Christian
Bluethgen, Anuj Pareek, Malgorzata Polacin, Ed-
uardo Pontes Reis, Anna Seehofnerová, et al. 2024.
Adapted large language models can outperform med-
ical experts in clinical text summarization. Nature
medicine, 30(4):1134–1142.

Hartman VC, Bapat SS, Weiner MG, and et al. 2023.
A method to automate the discharge summary hos-
pital course for neurology patients. Journal of the
American Medical Informatics Association, 12:12.

Carl Van Walraven, Ratika Seth, Peter C Austin, and An-
dreas Laupacis. 2002. Effect of discharge summary
availability during post-discharge visits on hospital
readmission. Journal of general internal medicine,
17:186–192.

291

https://arxiv.org/abs/2406.12793
https://doi.org/10.1093/jamia/ocad177
https://doi.org/10.1093/jamia/ocad177


Haochun Wang, Chi Liu, Nuwa Xi, Zewen Qiang,
Sendong Zhao, Bing Qin, and Ting Liu. 2023. Hu-
atuo: Tuning llama model with chinese medical
knowledge. Preprint, arXiv:2304.06975.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
et al. 2022. Chain-of-thought prompting elicits rea-
soning in large language models. Advances in neural
information processing systems, 35:24824–24837.

Christopher Y. K. Williams, Jaskaran Bains, Tianyu
Tang, Kishan Patel, Alexa N. Lucas, Fiona Chen,
Brenda Y. Miao, Atul J. Butte, and Aaron E. Korn-
blith. 2024. Evaluating large language models for
drafting emergency department discharge summaries.
medRxiv: The Preprint Server for Health Sciences.

Haotian Wu, Paul Boulenger, Antonin Faure, Berta Cés-
pedes, Farouk Boukil, Nastasia Morel, Zeming Chen,
and Antoine Bosselut. 2024. Epfl-make at “discharge
me!”: An llm system for automatically generating dis-
charge summaries of clinical electronic health record.
In Proceedings of the 23rd Workshop on Biomedical
Natural Language Processing, pages 696–711.

Ying Xiong, Buzhou Tang, Qingcai Chen, Xiaolong
Wang, and Jun Yan. 2019. A study on automatic
generation of chinese discharge summary. In 2019
IEEE International Conference on Bioinformatics
and Biomedicine (BIBM), pages 1681–1687. IEEE.

Justin Xu, Zhihong Chen, Andrew Johnston, Louis
Blankemeier, Maya Varma, Jason Hom, William J
Collins, Ankit Modi, Robert Lloyd, Benjamin Hop-
kins, et al. 2024. Overview of the first shared task on
clinical text generation: Rrg24 and" discharge me!".
In BioNLP@ ACL.

Xi Ye, Ruoxi Sun, Sercan Ö Arik, and Tomas Pfister.
2023. Effective large language model adaptation for
improved grounding and citation generation. arXiv
preprint arXiv:2311.09533.

Hongbo Zhang, Junying Chen, Feng Jiang, Fei Yu, Zhi-
hong Chen, Jianquan Li, Guiming Chen, Xiangbo
Wu, Zhiyi Zhang, Qingying Xiao, et al. 2023a. Hu-
atuogpt, towards taming language model to be a doc-
tor. arXiv preprint arXiv:2305.15075.

Jingyu Zhang, Marc Marone, Tianjian Li, Benjamin
Van Durme, and Daniel Khashabi. 2024. Verifiable
by design: Aligning language models to quote from
pre-training data. arXiv preprint arXiv:2404.03862.

Nan Zhang, Yusen Zhang, Wu Guo, Prasenjit Mitra,
and Rui Zhang. 2023b. Famesumm: investigating
and improving faithfulness of medical summarization.
arXiv preprint arXiv:2311.02271.

Xinlu Zhang, Chenxin Tian, Xianjun Yang, Lichang
Chen, Zekun Li, and Linda Ruth Petzold. 2023c.
Alpacare: Instruction-tuned large language mod-
els for medical application. arXiv preprint
arXiv:2310.14558.

Yuhao Zhang, Derek Merck, Emily Tsai, Christopher D.
Manning, and Curtis Langlotz. 2020. Optimizing the
factual correctness of a summary: A study of sum-
marizing radiology reports. Proceedings of the 58th
Annual Meeting of the Association for Computational
Linguistics, pages 5108–5120. Online.

292

https://arxiv.org/abs/2304.06975
https://arxiv.org/abs/2304.06975
https://arxiv.org/abs/2304.06975


A Details on Document Types

Our system encompasses eight types of EMR
documents, including medical records, nursing
records, examinations, laboratory tests, medical
orders, pathology reports, diagnoses, and vital sign
records. The specific content of each document
type is detailed in Table 2, with representative ex-
amples available in our public repository.

To ensure consistent data representation and en-
able effective cross-source integration, all docu-
ments are transformed into a standardized JSON
format via predefined conversion scripts upon up-
load. This conversion framework is designed to be
both highly generalizable and configurable: by im-
plementing tailored scripts for specific data types,
we achieve precise format mapping and data nor-
malization. Consequently, our system exhibits
strong adaptability, enabling flexible application
to a wide range of EMR datasets.

B Evaluation Criteria for
LLM-as-a-Judge

Below is the translated version of the evaluation
prompt for LLM-as-a-Judge:

Your task is to evaluate the quality of AI-
generated discharge summaries (compared to the
physician-written reference version).

Scoring range: 0–100 points
Scoring dimensions:
1. Information Accuracy
- Correctness of patient identity information

(e.g., name, bed number, admission number)
- Accuracy of key time points (e.g., admis-

sion/discharge times)
- Accuracy of brief medical history and physical

examination summary at admission
- Consistency of diagnostic terms with the refer-

ence answer
2. Medical Completeness
- Must include core sections: brief admission

history, physical exam summary, in-hospital medi-
cal course, disease progression and treatment, dis-
charge diagnosis, medication recommendations af-
ter discharge, patient condition at discharge

- Coverage of key data: laboratory tests, imag-
ing results, surgical details, follow-up suggestions,
medication guidance, etc. (no errors allowed in
numerical values and test items related to the in-
hospital course)

3. Professional Standardization
- Standardization of medical terminology

- Clear logical structure (description of diagnosis
and treatment process in chronological order)

- Avoid unnecessary redundancy (e.g., full-
system physical examination descriptions)

4. Clinical Practicality
- Actionability of discharge instructions (e.g.,

specific dressing change times, pathology report
follow-up points)

- Completeness of risk warnings (e.g., signs of
incision infection)

Output format:
{
“score” [overall score],
“breakdown” {
“Information Accuracy” [score]/40,
“Medical Completeness” [score]/35,
“Professional Standardization” [score]/15,
“Clinical Practicality” [score]/10
}
}

C Evaluation Criteria for Human

To ensure reliable human evaluation of discharge
summaries, we developed a scoring manual with a
total of 100 points. The evaluation is based on four
core dimensions: accuracy, completeness, standard-
ization, and clinical utility, with an emphasis on
patient safety and clinical relevance. Each dimen-
sion is scored on a scale from 0 to its maximum
value; negative scores are not permitted, and any
deductions resulting in a negative value will be
recorded as zero.

C.1 Accuracy of Core Information (30 points)

• Patient Identification: Name, admission ID,
and bed number must be correct.Each error
results in a 3-point deduction.

• Time Points: Admission and discharge dates
must be accurate (minute-level precision not
required).Each error results in a 3-point de-
duction.

• Diagnostic Consistency: The discharge diag-
nosis must fully align with the final clinical
conclusion. Descriptors like “pending paraffin
section” must be included if applicable. Con-
tradictions (e.g., benign vs. malignant mis-
classification) result in a 15-point deduction;
omission of key diagnostic content incurs a
10-point deduction.
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No. Document Name Content Included Structure
1 Medical Records Admission records, surgery records, ward round records, etc. Unstructured data with HTML tags
2 Nursing Records Discharge summary, etc. XML data
3 Examination Examination information Structured data
4 Laboratory Test Laboratory test information Structured data
5 Medical Orders Tests, prescriptions, textual reminders, etc. Structured data
6 Pathology Report Pathology examination information and reports Structured data
7 Diagnosis Diagnoses given by doctors during hospitalization Structured data
8 Vital Signs Records Vital signs measurements during hospitalization Structured data

Table 2: Details on Document Types

• Admission History and Physical Exam
Summary: Should be consistent with the ini-
tial clinical documentation. Each error results
in a 3-point deduction.

C.2 Completeness of Medical Content (30
points)

• Treatment Process Description: Must in-
clude the procedure name, specific date, anes-
thesia type, and key surgical details (e.g.,
“right breast Mammotome excision under gen-
eral anesthesia”). Missing any critical element
results in an 8-point deduction.

• Key Examinations During Hospitalization:
Laboratory (e.g., CBC, liver function, hep-
atitis panel) and imaging reports (e.g., ultra-
sound, chest X-ray) should be fully docu-
mented. Missing a category of essential re-
sults incurs a 5-point deduction.

• Post-Discharge Instructions: Should clearly
specify pathology report follow-up timing
(e.g., “10 working days”), wound care de-
tails (frequency, location, contraindications),
medications, signs of complications (e.g., in-
fection), and follow-up plans. Missing any
important item leads to a 6-point deduction.

• Discharge Condition: Should be consistent
with the physician’s final record; a discrep-
ancy will result in a 5-point deduction.

C.3 Professional Standardization (25 points)
• Terminology: Use standardized clinical terms

(e.g., “US-BI-RADS category 3”). Each error
or improper abbreviation results in a 3-point
deduction.

• Logical Structure: Clinical descriptions
should follow chronological order with co-
herent logic. Disordered descriptions result in
an 8-point deduction.

• Content Focus: Irrelevant details (e.g., nor-
mal neurological exams in healthy patients)
should be avoided. Redundant information
results in a 5-point deduction per instance.

C.4 Clinical Utility (15 points)
• Actionable Recommendations: Instructions

must be specific (e.g., “change dressing on day
3 after surgery” rather than “change dressing
regularly”). Vague advice results in a 5-point
deduction.

• Risk Mitigation: Key complications (e.g.,
redness, discharge, fever) and pathology re-
port tracking must be addressed. Missing
these incurs an 8-point deduction.

• Individualized Follow-up: Abnormal find-
ings (e.g., hepatitis B positive) should include
tailored follow-up suggestions. Up to ±2
points may be adjusted based on appropriate-
ness.
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