SOIL!

ADEPT-SQL: A High-performance Text-to-SQL Application for
Real-World Enterprise-Level Databases

Yongnan Chen 2, Zhuo Chang!, Shijia Gu?, Yuanhang Zong?, Mei Zhang?,
Shiyu Wang?, Zixiang He?, HongZhi Chen 2, Wei Jin?, Bin Cui'

Peking University, 2Kunlun Digital Technology, CNPC

Correspondence: yongnanchen@pku.edu.cn, chenyongnan@cnpc.com.cn

Abstract

This paper presents ADEPT-SQL, a domain-
adapted Text2SQL system that addresses crit-
ical deployment challenges in professional
fields. While modern LLM-based solutions
excel on academic benchmarks, we identify
three persistent limitations in industrial appli-
cation: domain-specific knowledge barriers,
the schemas complexity in real-world, and
the prohibitive computational costs of large
LLMs. Our framework introduces two key
innovations: a three-stage grounding mecha-
nism combining dynamic terminology expan-
sion, focused schema alignment, and historical
query retrieval; coupled with a hybrid prompt-
ing architecture that decomposes SQL gener-
ation into schema-aware hinting, term disam-
biguation, and few-shot example incorporation
phases. This approach enables efficient exe-
cution using smaller open-source LLMs while
maintaining semantic precision. Deployed in
petroleum engineering domains, our system
achieves 97% execution accuracy on real-world
databases, demonstrating 49% absolute im-
provement over SOTA baselines. We release
implementation code to advance research in
professional Text2SQL systems.

1 Introduction

The democratization of data access remains a fun-
damental challenge in modern database systems.
While structured query languages like SQL pro-
vide precise data manipulation capabilities, their
technical complexity creates a substantial barrier
for non-expert users. The Natural Language to
SQL (Text2SQL) task (Gao et al., 2024; Li et al.,
2023b) has emerged as a promising solution, bridg-
ing this gap through intuitive natural language
interfaces. While early systems employed rule-
based approaches (Xu et al., 2020; Yaghmazadeh
et al., 2017), the advent of large language mod-
els (LLMs) (Achiam et al., 2023; Ouyang et al.,

2022; Guo et al., 2025) has revolutionized the field
through their superior code-generation capabilities.
Contemporary LLM-based solutions (Pourreza and
Rafiei, 2023; Dong et al., 2023; Li et al., 2023a;
Lyu et al., 2025; Fan et al., 2024) have developed
sophisticated multi-stage paradigms incorporating
schema linking, few-shot in-context learning, and
automatic prompt generation, achieving state-of-
the-art performance on standard benchmarks like
Spider (Yu et al., 2018b) and BIRD (Li et al.,,
2023b).

Nevertheless, significant gaps persist when de-
ploying these systems in real-world professional
domains (Pi et al., 2022). Our empirical analysis
reveals a significant performance drop for leading
LLM-based methods (Gao et al., 2023; Pourreza
and Rafiei, 2023; Gorti et al., 2025; Fan et al., 2024)
on industrial databases. Three fundamental chal-
lenges undermine practical deployment:

Domain Knowledge Barriers. Professional do-
mains exhibit unique semantic characteristics that
challenge conventional Text2SQL paradigms due
to: (1) Domain-specific terminology (e.g., "CDU"
denoting atmospheric and vacuum distillation unit
in petroleum engineering) often falls outside LLMs’
general vocabulary; (2) Complex formulations of
professional metrics (e.g., "production ratios" may
vary across subdomains and require explicit con-
textualization) (Guo et al., 2019).

Semantic Schema Complexity. Real-world
database schemas violate the clean structural as-
sumptions of academic benchmarks. Our study
on industrial databases uncovered two prevalent
issues: (1) Opaque column naming practices (e.g.,
"PDO_23A" representing production daily output)
requiring expert interpretation (Lin et al., 2020;
Yu et al., 2018a), and (2) Versioned tables with
overlapping semantics (e.g., "prod_2023v2" vs.
"rpt_refinery_23" storing equivalent metrics under
divergent schemas).

Computational Constraints. While current sys-

275

Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 3: System Demonstrations), pages 275-283
July 27 - August 1, 2025 ©2025 Association for Computational Linguistics

mailto:email@domain

Similar Questions

distance: 0.03] Q: Name of
aketing region of Store Name
 SELECT t1.mkt_n from Mkt_rg
S t1 JOIN Stores AS 12 ON tl.c
. 12.c WHERE t2.store_n = 'store |-
User Question ame"
What is the name of the distance: 0.12] Q: Code of
marketing region that the marketing region of store
store Rob Dinnjng belongs to0?

Few-Shot Prompt

Matched SQLs |

Special Word Recognition
&
TimeStamp Format

Masked Question

Answer SQL

SELECT
T1. Marketing_Region_Name
FROM Marketing_Regions AS T1
», JOIN Stores AS T2 ON

T1. Marketing_Region_Code =
T2 . Marketing_Region_Code
WHERE T2.Store_Name = "Rob
Dinning"

I

User Question
Zero-Shot Prompt

| Schema Linking -

—_————

name of the marketing region ___
that [Store_Name] belongs to

Special Word
"Rob Dinning" -> [Store_Name] -------

S -

Table: Stroes
Store_ID, store id, PRT
Store_Name, store name,
Marketing_Region_Code, .., FK

—
Table: Marketing_Regions

Marketing_Region_Code, ...,
IMarketing_Region_Name, ...,

woiyoauuoy Aoy ubiaog

Semantic Input Masker > Contextual SQL Retriever >

Adaptive Prompt Composer >

Figure 1: ADEPT-SQL framework architecture with three core modules: (a) Semantic Input Masker handles domain
terminology alignment, (b) Contextual SQL Retriever resolves hidden business rules through vector-based QS pair
matching, (c) Adaptive Prompt Composer optimizes prompt strategies based on the retrieval results. The dashed

arrow indicates conditional execution flow.

tems rely on large-scale LLM APIs (175B+ parame-
ters) for optimal performance (Fan et al., 2024; Lyu
et al., 2025; Wang et al., 2024), their operational
costs and latency become prohibitive for enterprise
deployment. Smaller open-source models (<13B
parameters) remain inadequate due to their lim-
ited capacity for complex, end-to-end Text2SQL
generation. It necessitates reducing the LLM’s ac-
curacy burden, enabling smaller LLMs to perform
efficiently.

To address these challenges, we propose
ADEPT-SQL, a novel framework for domain-
adapted Text2SQL generation that integrates two
complementary innovations. First, our three-stage
grounding mechanism systematically enhances do-
main understanding through: (1) dynamic termi-
nology expansion using domain-specific corpora
to capture specialized vocabulary (Zhao et al.,
2022), (2) context-aware schema alignment map-
ping opaque schema elements to their conceptual
equivalents, and (3) historical query retrieval that
minimizes ambiguous references by leveraging
past successful queries. Second, we introduce a
hybrid prompting architecture (Tan et al., 2024;
Shi et al., 2024; Tai et al., 2023) that strategi-
cally decomposes the SQL generation process into
three coordinated phases: schema-aware hinting
for structural guidance, term disambiguation for
precise concept mapping, and few-shot example
incorporation for syntactically valid output. The

combined approach specifically targets the identi-
fied limitations of existing systems in professional
deployment scenarios. Also, it enables smaller
open-source models to achieve performance com-
parable to large-scale LLMs while maintaining ex-
ecution efficiency.

Our system has been successfully deployed in
petroleum domains, demonstrating a 97% execu-
tion accuracy on production databases - a 49% ab-
solute improvement over existing baselines, show-
casing operational reliability and usability in real-
world deployment scenarios.

2 Architecture of ADEPT-SQL

Figure 1 shows system overview of ADEPT-SQL
(Adaptive Dynamic Enhanced Prompt Text-to-
SQL), with three core modules: (1) Semantic Input
Masker handles domain terminology alignment, (2)
Contextual SQL Retriever resolves hidden business
rules through vector-based QS pair matching, and
(3) Adaptive Prompt Composer optimizes prompt
strategies based on the retrieval results.

2.1 Semantic Input Masker

The Semantic Input Masker (SIM) identifies the
domain-specific terminologies and masks the ter-
minologies with database metadata.

The SIM module clarifies user domain-specific
questions using two knowledge repositories: the
Metadata repository and the Terminology repos-

276

itory. It first masks the disambiguated terminolo-
gies in the user query to the database field names us-
ing the Terminology repository. The Terminology
repository stores domain-specific nominal words
(e.g., "CDU-I" and "hydrocracking") and their cor-
responding field names in user database. These
words are continuously updated with the database.

Next, the SIM module aligns the schema with the
user’s question by utilizing the Metadata repository.
This repository contains table and field information,
including names, comments and data-type, from
the enterprise database. It filters versioned tables
and fields, and keeps their comments clean and
clear for better understanding.

Original Question:
The production of CDU-I on 3 Mar?

With Terminology Repository:
The production of [UNIT_ALIAS] on 3 Mar?

With Metadata Repository:
The production of [refinery unit name] on 3 Mar?

In the above example, SIM module maps "CDU-
I" to the field "UNIT_ALIAS" using the Termi-
nology repository, then maps "UNIT_ALIAS" to
its description "refinery unit" from the Metadata
repository. The finalized Masked Question pre-
serves the user’s intent while bypassing the domain
knowledge barriers.

Original Question:
The production of CDU-I on 3 Mar?

Hint Sentence:
Word [CDU-I] is a value of field [UNIT_ALIAS].

During this process, SIM module produces Hint
sentences for domain-knowledge augmentation.
The hint sentences consist of the detected termi-
nologies and the their field names. It will be incor-
porated in Adaptive Prompt Composer to ensures
value bindings for SQL generation.

2.2 Contextual SQL Retriever

The Contextual SQL Retriever (CSR) retrieves
in-context learning (ICL) materials by matching
the masked user query to pre-stored Question-SQL
(QS) pairs in the QS Repository via vector simi-
larity search.

We observe from operational traces of practical
database queries that a limited number of high-
frequency SQL queries cover the majority of usage
scenarios. For example, in manufacturing fields,
high-frequency QS pairs like "Retrieve Line A’s
production of today — SELECT..." cover 50% of

daily reporting needs. Based on this, we build the
QS repository by extracting these high-frequency
queries from the database’s query history log, cap-
turing query semantics and business logic.

Inside the QS repository, questions, masked
question, and its answer SQL query are maintained,
and the masked question is vectorized using Bge-
m3 (Chen et al., 2024a). The CSR module cal-
culates the similarity between the masked ques-
tion vector (vq) and vectors stored in QS repository
(v4, * € 1...n) with L2-norm distance (Bektas and
Sisman, 2010):

n

Z(qui —v4)?, Vxel.n

i=1
ey
The QS pairs with d(v,, v,) larger than the user
set threshold would be used as the ICL materials in
the downstream SQL generation module.

d(vg,vs) =

Input Question
Q1: Yesterday production of Line B?

In Repository
Q2: Retrieve Line A’s production of today.
SQL: SELECT ... WHERE unit = "Line A"

Embedding Similarity Score = 0.8, for:
Q1:Yesterday production of [unit name]
Q2:Retrieve [unit name]’s production of today

As above, CSR identifies the similar questions
of user input question from the repository.

Further, this module enables LLMs to "acquit"
the implicit business logic behind the user question,
as the solutions for complex operations like metrics
calculation and multi-table joins are implied in the
answer SQLs stored in QS repository.

2.3 Adaptive Prompt Composer

The Adaptive Prompt Composer (APC) com-
bines the relevant information gathered from pre-
vious modules, including domain-specific termi-
nologies identified by the SIM and the contextual
QS pairs retrieved by the CSR. These informa-
tion is adaptively incorporated into two distinct
prompt templates for SQL generation: the Few-
shot prompt and the Zero-shot prompt, which are
determined based on the availability of matching
QS pairs in the CSR module (Figure 1).

Both prompt templates share common compo-
nents, Instructions, User Question, and Hints sen-
tences; while differ in contextual components.

Few-shot Prompt utilizes a set of QS pair ex-
amples retrieved from the QS repository. With the

277

Front-end

LLM and Embeddmg
"[LLMPage <> " el Llnkmg
Daf:choeurce Schema Parsing 4—{
q) Terminology

< User Pipeline Repository

Connect to models

> Connect to DB
> Select mata data
> Confirm comments

(optional)
> Check auto-generated
QS pair y"”P" SQLs ICL Generation €— QS paris
> Add QS pairs (optional) CE2
A\ J
< Start Chat Page
Automatically parse the User Question and Generate SQL query answer

Figure 2: The interactions of User, Front-end, Backend
Pipeline and Repositories of the ADEPT-SQL system.

augmentation of hints and examples, we exclude
the large-scale databases schema in the prompt.
This decision stems from our observations: (1) the
schema information is already embedded in the
example SQLs, and (2) redundancies in real-word
database schema hinder SQL generation.

This approach enables the LLM to effectively
imitate correct SQL patterns and reducing the like-
lihood of typographical errors.

Zero-shot Prompt offers target-oriented schema
information related to user question when no QS
pair is provided. The schema is identified by: (a)
field names mentioned directly in the user query,
(b) field names derived from the hint sentences,
and (c) schema of the tables that contains these
fields. Unlike semantic relevance-based schema
linking methods (Gorti et al., 2025; Chen et al.,
2024b; Gao et al., 2023), which might introduce re-
dundancy and overlook the target columns, this ap-
proach ensures precise schema identification while
maintaining system fluency.

For example, when user quires "The production
amount of CDU-I of today", our method links the
fields names to tables:

e pm_unit_t < UNIT_ALIAS « "CDU-I"
* rpt_daily_refinery_unit <— "amount"

While semantical methods returns the additionally
unrelated table (unit_maintain with UNIT_ALIAS
but no useful fields).

In the Appendix B, we show details for these
two prompt branches.

3 Pipeline and Use Cases

As shown in Figure 2, the ADEPT-SQL system
adopts a four-stage pipeline paradigm: (1) Envi-
ronment Setting, (2) Schema Parsing, (3) ICL Se-
lection, and (4) Prompt Generation. Users interact

Check Descriptions

able -, Table Description Column -, Column Descripti

Bookings booking info of customers and stores Booking_ID booking id

Bookings Customer_ID customer id
Bookings Store_ID storeid
customer id

Customers customers individaul info Customer_ID

Customers. Customer_Name customer name

Stores stores information Store_ID storeid

Stores. Store_Name store name

Save

Figure 3: An example of Metadata Grounding and Ter-
minology Grounding for the booking information in-
quiry assistant built on cre_db.

Check and Save your QS pairs

Did Blake book Adan Dinning? Did [customer name] book [store name]? SELECT * FROM Bookings B INNER JOIN

Fine the phone No. of Harold Fine the phone No. of [customer name] SELECT Customer_Phone , Custorner._|

Rob Dinning belongs to which marketing region ? _[store name] belongs to which marketing region 7 SELECT T1Marketing_Region_Name Fi

Save

Figure 4: An example of QS candidate identified from
the database log file of cre_db.

with the Front-end pages step by step, navigating
through the Pipeline to complete the Repository
maintaining.

Check the websites for online demo' and its
video® and code®. A tutorial database from Spider
dataset: cre_Drama_Workshop_Groups.sqlite (re-
fer to as cre_db) is provided in the demo. Also,
an use case, called Booking Information Inquiry
Assistant, is illustrated throughout this section.

3.1 Environment Setting

In the LLM and Data Source page, users connect
to their locally deployed LLMs, embedding mod-
els, and user database. We employ locally deployed
open-source LL.Ms to meet confidentiality and se-
curity requirements for industrial deployments.

3.2 Schema Parsing

In the Data Source page, the system prepares the
tables and fields that are related to the target topic
of the assistant.

With user database connected, the system lists
the names and comments of all tables and fields

1ht’cps: //adept-sql-demo-for-text-to-sql.
streamlit.app/

2https: //youtu.be/iW205j61QwM

3https://github.com/lilichennn/ADEPT—SQL—Demo/
tree/main

278

https://adept-sql-demo-for-text-to-sql.streamlit.app/
https://adept-sql-demo-for-text-to-sql.streamlit.app/
https://youtu.be/iW2O5j61QwM
https://github.com/lilichennn/ADEPT-SQL-Demo/tree/main
https://github.com/lilichennn/ADEPT-SQL-Demo/tree/main

& Did Ephraim book Lur Photo?

w Summary: The SQL query matched a booking to Ephraim at Lur Photo. However, no data was
returned, indicating no booking exists.

SELECT * FROM Bookings B INNER JOIN Customers C ON B.Customer_ID
C.Customer_ID INNER JOIN Stores S ON B.Store_ID = S.Store_ID WHERE
AND S.Store_Name = 'Lur Photo’

C.Customer_Name = 'Ephraim’

D rkshop_Group_ID ~ Status_Code Order_D: d_Delivery_Date al_C

& List 3 stores that do not have any booking record.

w Tolist 3 stores without booking records, | crafted a SQL query. It selects Store_Name from Stores
where the Store_ID isn't found in Bookings, limiting the output to 3 rows. The result includes 'FJA

Filming', 'Rob Dinning', and 'Adan Dinning'.

SELECT Store_Name FROM Stores WHERE Store_ID NOT IN (SELECT Store_ID
FROM Bookings) LIMIT 3;

FJA Filming
Rob Dinning

Adan Dinning

Figure 5: Chat examples of ADEPT-SQL using Few-shot (left) and Zero-shot (right) Promptings

in the database, where the comments are automati-
cally extracted from the Data Definition Language
(DDL). The tables and columns are ranked by
the following rules: (a) tables/fields that are se-
mantically similar with the assistant target are put
top (Wang et al., 2020); (b) tables/fields with words
like "copy, temp, v1" are put bottom.

User can go through the tables and field to select
suitable fields according to the target topic of the as-
sistant. In addition, considering the descriptions in
the DDLs may not be very precise or too technical,
the system allows the user to make changes to the
descriptions. As shown in Figure 3, this step forms
the metadata repository, and benefits the system to
concentrate on assistant target.

In the meantime, the system decides the fields
to be maintained in the terminology grounding and
displays them in the "Terminology" column, as in
Figure 3. Specifically, Fields named with "name",
"alias" or "description" are selected, e.g. prod-
uct_name or material_alias. It is highly probable
that these fields contain the nominal vertical words
of the user database. Also, users can check and
change the field selections according to the assis-
tant target.

Note that such terminology selection policy is
more effective in real-world databases. Due to
the scale and complexity of these databases, their
metadata carries more property information.

3.3 ICL generation

In this stage, the system provides user with high-
frequent SQLs in database query history and main-
tain them in QS repository. In detail, the SQL
queries that were appeared and successfully exe-
cuted for over three times were selected, and the
corresponding questions generated with LLMs and
confirmed by domain-specific users.

As shown in Figure 4, the system identified SQL:

SELECT ... WHERE T2.Store_Name = ... a
high-frequency query from the database log. Then,
it adopted the connected LLM to generate a NL
question "Did Blake book Adan Dinning?" for this
query, and loaded the QS pair as candidate for QS
repository.

During this process, the system also generates
the masked question (i.e. "qmask" column) for
each question leveraging the metadata repository,
and the masked question is vectorized by the con-
nected embedding model.

Similarly, the system allows users to upload new
QS pair and modify or delete the QS candidates in
Your SQL page.

3.4 Start Chat

The Start Chat Page provides an interface for
users to interact with their dataset using natural
language questions.

The user’s input question goes through the SIM,
CSR, and APC components to generate the cor-
responding SQL query. The SQL query is then
executed on the user database, and the resulting
table is sent back to the front-end. Additionally,
the LLM is invoked again to summarize the entire
task and provide natural language answers to the
user’s question.

Figure 5 shows two chat examples of the sys-
tem. The left example adopts the Few-shot prompt
template. The masked user input question in this
example is semantically matched with the QS pair
displayed in Figure 4. The resulting SQL correctly
imitates the SQL and provides the natural language
answer to the question.

The right example adopts the Zero-shot prompt.
In this case, the system detects the word "Book-
ing" and identifies tables containing this word from
the metadata grounding, ultimately generating the
correct SQL by itself.

279

Method Hard(4) Extra Hard(62)
Stand-alone DeepSeek-V3 0.25 0.03
DIN-SQL + DeepSeek-V3 1.00 0.48
ADEPT-SQL + Qwen2.5-7b 1.00 0.90
ADEPT-SQL + DeepSeek-V3 1.00 0.97

Table 1: Execution Match on Industry dataset mes_db.
Bold text indicates the highest score. Note the mes_db
does not have Easy or Medium levels according to the
difficulty levels of Spider.

4 [Experiments

We deploy a relatively small-scale LLM Qwen2.5-
7b (Team, 2024) and a SOTA LLM DeepSeek-R1-
Distill-Llama-70b (refer to as DeepSeek-V3) (Guo
et al., 2025) for the experiments. Bge-m3 (Chen
et al., 2024a) is used as embedding model.

4.1 Industry Database

We collect a real-word Manufacturing Execution
System database (refer to as "mes_db") from a
petrochemical company of the PetroChina Co., Ltd.
as the Industry dataset. This database contains
data of materials and productions of production
equipments. In total, the database has exceed 100
tables with on average 15 columns for each table.
Also, 66 Questions-SQL pairs are collected from
the daily usage scenarios. The detailed analysis of
the database and ADPET-SQL settings are in A.

According to the SQL difficulty levels of Spi-
der (Yu et al., 2018b), we divided the Question-
SQL pairs into four levels according to the SQL
token length, Easy (less than 10), Medium (10 to
20), Hard (20 to 30) and Extra Hard (over 30).
To demonstrate the efficiency of ADPET-SQL, we
compared it with DIN-SQL (Pourreza and Rafiei,
2023).

The Execution Match (EM) accuracies (Finegan-
Dollak et al., 2018) are shown in Table 3. The
results demonstrate significant improvements with
ADEPT-SQL on mes_db. While DeepSeek-V3
struggles with hard and extra-hard tasks, DIN-
SQL+DeepSeek-V3 performs well on hard tasks
but fails on half of the extra-hard tasks. ADEPT-
SQL maintains high performance even with the
smaller Qwen2.5-7b LLM, highlighting its abil-
ity to overcome computational limitations in real-
world scenarios.

4.2 Benchmark Databases

We used two Spider databases: ’cre_db’ (Sec-
tion 3) and ’products_gen_characteristics.sqlite’

Database Hardness ADEPT-SQL + ADEPT-SQL +
(No. SQL) Qwen2.5-7b DeepSeek-V3
Easy (20) 0.85 0.94
Medium (18) 0.83 0.90

cre_db Hard (24) 0.91 0.96
Extra (24) 0.91 1.00
Average 0.88 0.95
Easy (22) 0.90 0.95
Medium (40) 0.83 0.90

prod_db Hard (18) 0.94 0.94
Extra (2) 1.00 1.00
Average 0.92 0.95

Table 2: The Execution Match of ADEPT-SQL on
benchmark databases.

(Cprod_db’). ’cre_db’ contains 18 tables and 82
QS pairs, while "prod_db’ has 6 tables and 86 QS
pairs. Detailed analysis is provided in A.

These values reflect ADEPT-SQL’s robustness
and its ability to adapt to different types of
databases, as evidenced by the varying SQL hard-
ness levels. In comparison to other top-performing
models in the Spider Leaderboard, ADEPT-SQL’s
EM results are competitive, aligning closely with
the other SOTA models. These results underscore
the potential of ADEPT-SQL in handling diverse
real-world Text2SQL tasks effectively.

5 Conclusion

In this paper, we introduced ADEPT-SQL, a Text-
to-SQL framework designed for real-world enter-
prise databases. ADEPT-SQL addresses the chal-
lenges like domain-specific terminology, semantic
mismatches, and redundant metadata in real-world
with a novel architecture combining dynamic ter-
minology expansion, contextual schema alignment,
and historical SQL retrieval, along with hybrid
prompting for efficient SQL generation.

The system balances accuracy, interpretability,
and computational efficiency, making it ideal for en-
terprise applications. Our experiments on industrial
and benchmark datasets show high performance,
even with smaller open-source LLMs, proving its
competitive accuracy.

Limitations
The limitations of ADEPT-SQL are:

* Better performance can be achieved by better
assistant design, include narrowing the target
of the assistant, making the comments fo ta-
bles and fields more clear and adding more

280

QS pairs. This situation adds burdens on the
user side. Therefore, we recommend the spe-
cialists of the target application field to do the
assistant settings.

» Based on our experiments on three databases,
we recommend users set the threshold in CSR
as 0.85 to balance the semantical similarity of
user queries and high-frequency queries in QS
repository. The threshold is set as default in
demo version, users can adjust it in the formal
version.

* The current experiments are based on a rela-
tively small number of datasets, and the evalu-
ation of ADEPT-SQL’s performance across a
broader range of real-world scenarios remains
limited. Future work should include testing on
more diverse and larger-scale datasets to fur-
ther validate the system’s effectiveness. Also,
the use of more novel methods in future iter-
ations could potentially lead to even greater
performance gains.

References

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774.

Sebahattin Bektag and Yasemin Sigsman. 2010. The
comparison of 11 and 12-norm minimization meth-

ods. International Journal of the Physical Sciences,
5(11):1721-1727.

Jianlv Chen, Shitao Xiao, Peitian Zhang, Kun Luo, Defu
Lian, and Zheng Liu. 2024a. Bge m3-embedding:
Multi-lingual, multi-functionality, multi-granularity
text embeddings through self-knowledge distillation.
Preprint, arXiv:2402.03216.

Yongnan Chen, Shijia Gu, and Zixiang He. 2024b.
FATO-SQL: a comprehensive framework for high-
performance Text-to-SQL task. In International Con-
ference on Optics, Electronics, and Communication
Engineering (OECE 2024), page 166, Wuhan, China.
SPIE.

Xuemei Dong, Chao Zhang, Yuhang Ge, Yuren Mao,
Yunjun Gao, Jinshu Lin, Dongfang Lou, et al. 2023.
C3: Zero-shot text-to-sql with chatgpt. arXiv
preprint arXiv:2307.07306.

Yuankai Fan, Zhenying He, Tonghui Ren, Can Huang,
Yinan Jing, Kai Zhang, and X. Sean Wang. 2024.
Metasql: A Generate-then-Rank Framework for Nat-
ural Language to SQL Translation. arXiv preprint.
ArXiv:2402.17144 [cs].

Catherine Finegan-Dollak, Jonathan K. Kummerfeld,
Li Zhang, Karthik Ramanathan, Sesh Sadasivam, Rui
Zhang, and Dragomir Radev. 2018. Improving text-
to-SQL evaluation methodology. In Proceedings
of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 351-360, Melbourne, Australia. Association
for Computational Linguistics.

Dawei Gao, Haibin Wang, Yaliang Li, Xiuyu Sun,
Yichen Qian, Bolin Ding, and Jingren Zhou. 2023.
Text-to-SQL Empowered by Large Language Mod-
els: A Benchmark Evaluation. arXiv preprint.
ArXiv:2308.15363 [cs].

Dawei Gao, Haibin Wang, Yaliang Li, Xiuyu Sun,
Yichen Qian, Bolin Ding, and Jingren Zhou. 2024.
Text-to-sql empowered by large language models: A
benchmark evaluation. Proceedings of the VLDB
Endowment, 17(5):1132-1145.

Satya Krishna Gorti, Ilan Gofman, Zhaoyan Liu, Ji-
apeng Wu, Noél Vouitsis, Guangwei Yu, Jesse C.
Cresswell, and Rasa Hosseinzadeh. 2025. MSc-
SQL: Multi-Sample Critiquing Small Language Mod-
els For Text-To-SQL Translation. arXiv preprint.
ArXiv:2410.12916 [cs].

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song,
Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma,
Peiyi Wang, Xiao Bi, et al. 2025. Deepseek-rl: In-
centivizing reasoning capability in llms via reinforce-
ment learning. arXiv preprint arXiv:2501.12948.

Jiaqi Guo, Zecheng Zhan, Yan Gao, Yan Xiao, Jian-
Guang Lou, Ting Liu, and Dongmei Zhang. 2019. To-
wards complex text-to-SQL in cross-domain database
with intermediate representation. In Proceedings of
the 57th Annual Meeting of the Association for Com-
putational Linguistics, pages 4524-4535, Florence,
Italy. Association for Computational Linguistics.

Haoyang Li, Jing Zhang, Cuiping Li, and Hong Chen.
2023a. RESDSQL: Decoupling Schema Linking and
Skeleton Parsing for Text-to-SQL. arXiv preprint.
ArXiv:2302.05965 [cs].

Jinyang Li, Binyuan Hui, Ge Qu, Jiaxi Yang, Binhua Li,
Bowen Li, Bailin Wang, Bowen Qin, Ruiying Geng,
Nan Huo, Xuanhe Zhou, Chenhao Ma, Guoliang
Li, Kevin Chen-Chuan Chang, Fei Huang, Reynold
Cheng, and Yongbin Li. 2023b. Can LLM already
serve as A database interface? A big bench for large-
scale database grounded text-to-sqls. In NeurlPS.

Xi Victoria Lin, Richard Socher, and Caiming Xiong.
2020. Bridging textual and tabular data for cross-
domain text-to-SQL semantic parsing. In Findings
of the Association for Computational Linguistics:
EMNLP 2020, pages 4870—4888, Online. Association
for Computational Linguistics.

Shuai Lyu, Haoran Luo, Zhonghong Ou, Yifan
Zhu, Xiaoran Shang, Yang Qin, and Meina Song.
2025. SQL-ol: A Self-Reward Heuristic Dynamic
Search Method for Text-to-SQL. arXiv preprint.
ArXiv:2502.11741 [cs].

281

https://arxiv.org/abs/2402.03216
https://arxiv.org/abs/2402.03216
https://arxiv.org/abs/2402.03216
https://doi.org/10.1117/12.3049621
https://doi.org/10.1117/12.3049621
https://doi.org/10.48550/arXiv.2402.17144
https://doi.org/10.48550/arXiv.2402.17144
https://doi.org/10.18653/v1/P18-1033
https://doi.org/10.18653/v1/P18-1033
https://doi.org/10.48550/arXiv.2308.15363
https://doi.org/10.48550/arXiv.2308.15363
https://doi.org/10.48550/arXiv.2410.12916
https://doi.org/10.48550/arXiv.2410.12916
https://doi.org/10.48550/arXiv.2410.12916
https://doi.org/10.18653/v1/P19-1444
https://doi.org/10.18653/v1/P19-1444
https://doi.org/10.18653/v1/P19-1444
https://doi.org/10.48550/arXiv.2302.05965
https://doi.org/10.48550/arXiv.2302.05965
https://doi.org/10.18653/v1/2020.findings-emnlp.438
https://doi.org/10.18653/v1/2020.findings-emnlp.438
https://doi.org/10.48550/arXiv.2502.11741
https://doi.org/10.48550/arXiv.2502.11741

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll L. Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray,
John Schulman, Jacob Hilton, Fraser Kelton, Luke
Miller, Maddie Simens, Amanda Askell, Peter Welin-
der, Paul F. Christiano, Jan Leike, and Ryan Lowe.
2022. Training language models to follow instruc-
tions with human feedback. In NeurIPS.

Xinyu Pi, Bing Wang, Yan Gao, Jiaqi Guo, Zhoujun
Li, and Jian-Guang Lou. 2022. Towards robustness
of text-to-SQL models against natural and realistic
adversarial table perturbation. In Proceedings of the
60th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
2007-2022, Dublin, Ireland. Association for Compu-
tational Linguistics.

Mohammadreza Pourreza and Davood Rafiei. 2023.
Din-sql: Decomposed in-context learning of text-
to-sql with self-correction. Advances in Neural Infor-
mation Processing Systems, 36:36339-36348.

Liang Shi, Zhengju Tang, Nan Zhang, Xiaotong Zhang,
and Zhi Yang. 2024. A Survey on Employing Large
Language Models for Text-to-SQL Tasks. arXiv
preprint. ArXiv:2407.15186 [cs].

Chang-Yu Tai, Ziru Chen, Tianshu Zhang, Xiang Deng,
and Huan Sun. 2023. Exploring chain of thought
style prompting for text-to-SQL. In Proceedings of
the 2023 Conference on Empirical Methods in Natu-
ral Language Processing, pages 5376-5393, Singa-
pore. Association for Computational Linguistics.

Zhao Tan, Xiping Liu, Qing Shu, Xi Li, Changxuan
Wan, Dexi Liu, Qizhi Wan, and Guoqiong Liao. 2024.
Enhancing text-to-SQL capabilities of large language
models through tailored promptings. In Proceedings
of the 2024 Joint International Conference on Compu-
tational Linguistics, Language Resources and Eval-
uation (LREC-COLING 2024), pages 6091-6109,
Torino, Italia. ELRA and ICCL.

Qwen Team. 2024. Qwen2.5: A party of foundation
models.

Bailin Wang, Richard Shin, Xiaodong Liu, Oleksandr
Polozov, and Matthew Richardson. 2020. RAT-SQL.:
Relation-aware schema encoding and linking for text-
to-SQL parsers. In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics, pages 7567-7578, Online. Association for
Computational Linguistics.

Bing Wang, Changyu Ren, Jian Yang, Xinnian Liang, Ji-
aqi Bai, Linzheng Chai, Zhao Yan, Qian-Wen Zhang,
Di Yin, Xing Sun, and Zhoujun Li. 2024. MAC-SQL:
A Multi-Agent Collaborative Framework for Text-to-
SQL. arXiv preprint. ArXiv:2312.11242 [cs].

Silei Xu, Giovanni Campagna, Jian Li, and Monica S
Lam. 2020. Schema2qa: High-quality and low-cost
q&a agents for the structured web. In Proceedings of
the 29th ACM International Conference on Informa-
tion & Knowledge Management, pages 1685-1694.

Navid Yaghmazadeh, Yuepeng Wang, Isil Dillig, and
Thomas Dillig. 2017. Sqlizer: query synthesis from
natural language. Proceedings of the ACM on Pro-
gramming Languages, 1(OOPSLA):1-26.

Tao Yu, Michihiro Yasunaga, Kai Yang, Rui Zhang,
Dongxu Wang, Zifan Li, and Dragomir Radev. 2018a.
SyntaxSQLNet: Syntax tree networks for complex
and cross-domain text-to-SQL task. In Proceedings
of the 2018 Conference on Empirical Methods in Nat-
ural Language Processing, pages 1653—1663, Brus-
sels, Belgium. Association for Computational Lin-
guistics.

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga,
Dongxu Wang, Zifan Li, James Ma, Irene Li, Qingn-
ing Yao, Shanelle Roman, et al. 2018b. Spider: A
large-scale human-labeled dataset for complex and
cross-domain semantic parsing and text-to-sql task.
In Proceedings of the 2018 Conference on Empiri-
cal Methods in Natural Language Processing, pages
3911-3921.

Chen Zhao, Yu Su, Adam Pauls, and Emmanouil An-
tonios Platanios. 2022. Bridging the generalization
gap in text-to-SQL parsing with schema expansion.
In Proceedings of the 60th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 5568-5578, Dublin, Ireland.
Association for Computational Linguistics.

A Details of Experiments Setting

A.1 Metadata and Terminology Groundings

For the two well-annotated databases of Spider,
cre_db and prod_db, we loaded all the tables
and fields into the backend database. The infor-
mation provided by the fable.json is used as table
and fields comments. Then, the fields that store
nominal values are selected for terminology fields,
e.g. City_Town, Product_Name, etc.

For the industry database mes_db, we design the
metadata and terminology groundings according to
the topics covered by the collected QS pairs, and
try the best to make the repositories covers all the
QS pairs. In total, metadata repository contains
19 tables and 87 fields, with 6 fields are set true
in "As Terminology". Table 3 shows the settings
for question "What’s the total planned production
amount of CDU-I on Feb. 2024?"

Note that the comments plays an important role
in interpreting the original field names, e.g. in-
out_type -> "binary indicator of material feeding:0
and discharging:1", for the real-world databases.
The original comments of "inout_type" is "type
of in and out", which is nearly helpless for values
binding in SQL generation.

282

https://doi.org/10.18653/v1/2022.acl-long.142
https://doi.org/10.18653/v1/2022.acl-long.142
https://doi.org/10.18653/v1/2022.acl-long.142
https://doi.org/10.48550/arXiv.2407.15186
https://doi.org/10.48550/arXiv.2407.15186
https://doi.org/10.18653/v1/2023.emnlp-main.327
https://doi.org/10.18653/v1/2023.emnlp-main.327
https://aclanthology.org/2024.lrec-main.539/
https://aclanthology.org/2024.lrec-main.539/
https://qwenlm.github.io/blog/qwen2.5/
https://qwenlm.github.io/blog/qwen2.5/
https://doi.org/10.18653/v1/2020.acl-main.677
https://doi.org/10.18653/v1/2020.acl-main.677
https://doi.org/10.18653/v1/2020.acl-main.677
https://doi.org/10.48550/arXiv.2312.11242
https://doi.org/10.48550/arXiv.2312.11242
https://doi.org/10.48550/arXiv.2312.11242
https://doi.org/10.18653/v1/D18-1193
https://doi.org/10.18653/v1/D18-1193
https://doi.org/10.18653/v1/2022.acl-long.381
https://doi.org/10.18653/v1/2022.acl-long.381

Field Comment As Terminology

Table: rpt_t_daily_refinery_unit

node_code refinery unit code Yes

. binary indicator of material
inout_type o . . No

feeding:"0" or discharging:"1"
r_date production date No
plan_total_amount monthly planned production (T) No
mtrl_alias_show material alias Yes
daily_amount daily production (T) No
Table: pm_unit_t

UNIT_CODE refinery unit code Yes
UNIT_ALIAS refinery unit alias Yes

Table 3: A part of metadata and terminology groundings
for mes_db. Bold field names indicate not matched
semantic meanings to the real meanings.

SQL Type No. in Dataset No. in Repository
Database: cre_db

Multiple aggregations 16 8
Sub-query 4 2

Table JOIN 16 8
Database: prod_db

Sub-query 2 1

Table JOIN 8 4

Table 4: Medium-level SQL Summary of cre_db and
prod_db.

A.2 Question-SQL Pairs Grounding

For cre_db and prod_db, Easy level QS pairs are
left for the system to use Zero-shot prompts; all the
QS pairs that are belong to Hard and Extra Hard
levels are stored into the QS repository; and for
Medium level pairs, the decision is made by the
SQL structure complexity. To avoid putting the
answer in the prompt, we made modifications on
the QS pairs by replacing the value binding parts in
the SQL queries, i.e. values on the right hand side
of "=", and changed the Questions correspondingly.
Table 4 summaries the medium level SQLs that are
put into the repository.

Note that all the three datasets have repetitive
SQL queries. For instance, in "cre_db," there are
questions like "Count the total number of bookings
made" and "How many bookings do we have?"
with the same SQL answer. For such cases, only
one QS pair is uploaded to the repository.

This mirrors real-world database interactions,
where queries asking for the same information may
vary in phrasing. In the "mes_db" database, such
repentance also exist, leading to further pruning of
the repository. Although there are 66 QS pairs in to-
tal, only 29 unique pairs are stored in the repository
after eliminating the duplicates.

283

Also, the repository has a mechanism to avoid
duplicates. This refined selection ensures that the
system maintains efficiency without sacrificing the
diversity of SQL queries that might arise in actual
application scenarios.

B Prompt Templates

Here we exhibit the prompt templates that were
used in ADPET-SQL Demo version. Note the
places closed with {} should be filled with proper
contents extracted form databases and repositories.

B.1 Few-Shot Prompt

#Character#

You are an expert of SQL language and the best
skill of you is mimic similar SQL statements to
write new SQL statements. Also, you can replace
the special terminologies and time points in SQL
according to the user question.

#Task#
Write a SQL statement to answer the user
question, modeled after the following Examples.

#limitations#

1. Your SQL must use the terminologies given
by "HINTS", DO NOT change the terminologies
themselves.

Your SQL must imitate the Examples to be
grammarly correct.

3. Your SQL should be careful on the dependency
of fields you use.

4. Make sure that the your SQL can be executed
by pd.read_sql_query().

#Examples#
{examples?}

#Now Write SQL#
Question: {user_question}

HINTS: {hints}

B.2 Zero-Shot Prompt

#Character#

You are an expert of SQL language and you serve
in a world-class company. You are familiar with
the tables and fields in the company’s database.
Therefore your job is answer the data retrieval
queries from the staff using SQL.

#Task#

Now, you have a question to solve, the staff
also told you the terminologies in this question
are related to which tables and fields. You need
to utilize the following table schema information
to write a correct SQL.

#limitations#

1. Your SQL must use the terminologies given
by "HINTS", DO NOT change the terminologies
themselves.

2. Your SQL need to be readable, so enter line
breaks where appropriate.

3. Your SQL must be grammarly correct, so be
careful on the dependency of fields you use.

4. You can only write one SQL statement, NO ONE
need extra explanations.

5. Make sure that the your SQL can be executed
by pd.read_sql_query().

#Schema#
{schema}

#Now Write SQL#
Question: {user_question}

HINTS: {hints}

