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Abstract

Natural language processing (NLP) has signif-
icantly influenced scientific domains beyond
human language, including protein engineer-
ing, where pre-trained protein language models
(PLMs) have demonstrated remarkable success.
However, interdisciplinary adoption remains
limited due to challenges in data collection,
task benchmarking, and application. This work
presents VENUSFACTORY, a versatile engine
that integrates biological data retrieval, stan-
dardized task benchmarking, and modular fine-
tuning of PLMs. VENUSFACTORY supports
both computer science and biology commu-
nities with choices of both a command-line
execution and a Gradio-based no-code inter-
face, integrating 40+ protein-related datasets
and 40+ popular PLMs. All implementations
are open-sourced on https://github.com/a
i4protein/VenusFactory.

1 Introduction

Discrete tokens provide a natural representation of
data across various fields, such as human language,
amino acid sequences, and molecular structures
(Brown et al., 2020; Guo et al., 2025). The recent
success of natural language processing and large
language models has introduced novel solutions
to fundamental scientific and engineering chal-
lenges (Pan, 2023; Zhou et al., 2024a). In enzyme
engineering, pre-trained protein language models
(PLMs) have been developed to analyze and ex-
tract hidden amino acid interactions and evolution-
ary features from protein sequences (Meier et al.,
2021; Rives et al., 2021; Li et al., 2024, 2025; Tan
et al., 2024c, 2025; Liu et al., 2025). The growing
interest in AI-driven scientific research in protein
engineering has led to the development of many
open-source PLMs for both the computer science
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and computational biology communities. For ex-
ample, ESM2-650M (Lin et al., 2023), arguably the
most popular sequence-encoding PLM, has over
one million downloads per month from Hugging-
Face1. Meanwhile, by integrating task-specific la-
beled data and predictive modules, these models
facilitate downstream tasks such as sequence gener-
ation, catalytic activity enhancement, function pre-
diction, and properties assessment, thereby advanc-
ing enzyme production and application (Madani
et al., 2023; Zhou et al., 2024b,c; Kang et al., 2025).

Despite the availability of high-impact models
and successful applications in certain scenarios,
interdisciplinary collaboration between biologists
and computer scientists remains limited. Most al-
gorithm development and validation focus on a few
specific benchmarks for particular objectives, while
many other datasets and engineering challenges
lack readily available tools, even when compati-
ble with existing deep learning methodologies. We
attribute this gap to three key complexities: (1) Col-
lection: While some public databanks provide ac-
cess to protein sequences, structures, and functions,
they often lack efficient bulk download options and
standardized formatting, which are essential for
computer scientists to train PLMs. (2) Benchmark-
ing: AI-driven protein engineering lacks a system-
atic framework that consolidates benchmarks and
baselines. As a result, benchmark datasets from
experimental research are underutilized in model
development, and state-of-the-art models are rarely
integrated into daily research workflows as seam-
lessly as traditional computational biology tools.
(3) Application: Beyond the absence of multifunc-
tional integrated systems, existing PLM solutions
often require substantial coding expertise, making
them less accessible to non-programmers (e.g., bi-
ologists) compared to web-based tools.

1https://huggingface.co/facebook/esm2_t33_650
M_UR50D
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Figure 1: VENUSFACTORY supports high-throughput raw data download, structure sequencing, a wide range of
downstream task datasets, and interface or command-line protein language model fine-tuning and reasoning.

To address these challenges, we developed a
versatile engine for AI-based protein engineering,
namely VENUSFACTORY (Figure 1). It integrates
a full suite of tools from data acquisition to model
training, evaluation, and application. It is de-
signed for users from computer science and biol-
ogy, regardless of their expertise level in program-
ming. Specifically, VENUSFACTORY supports effi-
cient biological data retrieval with multithreaded
downloading and indexing from major biological
databases, e.g., RCSB PDB (Burley et al., 2019),
UniProt (Consortium, 2025), InterPro (Paysan-
Lafosse et al., 2023), and AlphaFold DB (Varadi
et al., 2022). It also includes implementations for
comprehensive biological prediction tasks and
evaluations covering solubility, localization, func-
tion, and mutation prediction, compiled from 40+
protein-related datasets in a unified format. More-
over, VENUSFACTORY provides effortless PLM
implementations for both pre-trained encoders
(e.g., ESM2 (Lin et al., 2023) and PROTTRANS

(Elnaggar et al., 2021)) and downstream task fine-
tuning (e.g., LoRA series (Hu et al., 2022a; Dettmers
et al., 2023; Liu et al., 2024), Freeze & Full fine-
tuning, and SES-Adapter (Tan et al., 2024a) for
protein-related tasks).

To the best of our knowledge, VENUSFAC-
TORY is the most comprehensive engine for AI-
driven protein engineering. It integrates exten-
sive biological data resources, essential processing
tools, state-of-the-art PLMs, and fine-tuning mod-
ules. It supports both Gradio-based web interface
(Abid et al., 2019) and command-line execution,
enabling researchers from both computer science
and biology backgrounds to access and utilize its
components effortlessly. Built on PyTorch (Paszke
et al., 2019) and released under the CC-BY-NC-
ND-4.0 license, VENUSFACTORY ensures broad

accessibility and reproducibility, with all datasets
and model checkpoints available on Hugging Face.

2 Data Collection

The first Collection module enables efficient data
retrieval from four major protein databanks. This
section outlines its core functionalities and imple-
mentation techniques, with additional details pro-
vided in Appendix E.

2.1 Databanks
VENUSFACTORY supports data collection from
four well-established sources for protein sequences,
structures, and functions. (1) RCSB PDB contains
over 200, 000 experimentally determined atom-
level protein 3D structures. (2) UniProt provides
comprehensive amino acid sequences and func-
tional annotations for over 250 million proteins cu-
rated literature and user submission. (3) InterPro
assigns accession numbers and functional descrip-
tions to ∼ 41, 000 proteins according to their fam-
ily, domain, and functional site annotations. (4)
AlphaFold DB hosts AlphaFold2-predicted 3D
structure of proteins from UniProt. It enables struc-
ture retrieval by UniProt ID.

2.2 Multithreaded Downloading
The Collection module facilitates multithreaded
data downloading by simulating HTTP requests
using the requests, fake_useragent, and
concurrent libraries. Data from UniProt (se-
quences) and AlphaFold DB (sequences and struc-
tures) can be accessed by UniProt IDs, e.g.,
“A0A0C5B5G6". RCSB PDB is available in mul-
tiple formats, including .cif, .pdb, and .xml. All
metadata are stored in .json format and indexed by
the RCSB ID (e.g., “1A00"). Queryable metadata
fields including “pubmed_id" and “assembly_ids".
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Essential

aa_seq Amino acid sequence, e.g., MASG...
label Target label, integer, float, or list, e.g., 0

Optional

name Unique Protein or Uniprot ID, e.g., P05798
ss3_seq 3-class of DSSP sequence, e.g., CHHHH...
ss8_seq 8-class of DSSP sequence, e.g., THLEH...
foldseek_seq Foldseek structure sequence, e.g., CVFLV...
esm3_structure_seq ESM3 structure sequence, e.g., [85, 3876, ...]
detail or other Auxiliary information or detailed description

Table 1: Benchmark dataset format example.

For InterPro family data, downloads can be per-
formed using individual InterPro IDs or by parsing
family .json files from the website. Retrieved
data includes family descriptions (e.g., “pfam" and
“go_terms") as well as detailed protein annotations
(e.g., sequence fragments and gene information).

2.3 Structure Serialization

Protein structures are crucial for describing protein
characteristics, yet structural information alone is
often challenging to directly use as input for mod-
els like PLMs. VENUSFACTORY supports con-
version tools that encode protein structures into
discrete tokens. Three popular serialization meth-
ods are considered, including DSSP (Kabsch and
Sander, 1983), FOLDSEEK (Van Kempen et al.,
2024), and the ESM3 encoder (Hayes et al., 2025).
DSSP converts structures into 3-class or 8-class
secondary structure representations. FOLDSEEK

employs VQ-VAE (van den Oord et al., 2017)
to transform continuous structural data into 20-
dimensional 3Di tokens. The ESM3 encoder con-
structs 4, 096-dimensional integer representations
for local subgraphs centered on each amino acid.

3 Task Benchmarking

Assessing the predictive accuracy of protein rep-
resentations extracted by PLMs is crucial for both
developing new models and guiding biological ap-
plications. VENUSFACTORY integrates over 40
benchmark datasets from the literature and cate-
gorizes them into five major bioengineering tasks
to help users gain a comprehensive understanding
of common tasks and access relevant datasets. To
enhance usability, we have standardized the data
formats for all datasets (Table 1). We introduce
the benchmark datasets for the five classes. Further
details are provided in Appendix C.

3.1 Localization
Protein function is closely linked to its cellular com-
partment or organelle, where specific physiologi-
cal conditions enable distinct activities. VENUS-
FACTORY curates and refines protein localiza-
tion datasets from Almagro Armenteros et al.
(2017) and Thumuluri et al. (2022), including
(1) DeepLocBinary: a binary classification of
membrane association, (2) DeepLocMulti: a
multi-class classification for precise localization,
and (3) DeepLoc2Multi: a multi-label, multi-
class classification for complex localization sce-
narios. All three benchmarks include sequence
data and AlphaFold2-predicted structures, with ad-
ditional ESMFold-predicted structures available for
DeepLocBinary and DeepLocMulti.

3.2 Solubility
Solubility is a prerequisite for proteins to func-
tion in vitro. However, many proteins, especially
those engineered manually, often face solubility
challenges. Therefore, it is crucial to predict the
solubility of a protein of interest in terms of reduc-
ing experimental costs. VENUSFACTORY includes
three binary classification benchmarks – DeepSol
(Khurana et al., 2018), DeepSoluE (Wang and Zou,
2023), and ProtSolM (Tan et al., 2024d) – as well
as one regression benchmark, eSol (Chen et al.,
2021). All datasets include protein structures pre-
dicted by ESMFold, with eSol additionally provid-
ing AlphaFold2-predicted structures.

3.3 Annotation
Accurately predicting protein function is essential
for understanding enzymatic activity, molecular in-
teractions, and cellular roles in metabolism, signal-
ing, and regulation (Zhou et al., 2024a). VENUS-
FACTORY includes four multi-class, multi-label
prediction benchmarks from Su et al. (2024a):
EC, which uses Enzyme Commission numbers
(Bairoch, 2000) as function annotation labels;
and GO-CC, GO-BP, and GO-MF, which em-
ploy Gene Ontology annotations (Ashburner et al.,
2000). For all four benchmarks, protein structures
are generated using AlphaFold2 and ESMFold.

3.4 Mutation
Mutating amino acids is a key approach in protein
engineering for modifying protein function and
properties, such as enzymatic activity, stability, se-
lectivity, and molecular interactions. VENUSFAC-
TORY includes a total of 19 benchmark datasets
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Model Fine-tuning Localization Solubility Annotation

DL2M DLB DLM DS DSE PSM ES EC BP CC MF

ESM2-650M
Freeze 81.22 90.97 80.63 66.52 54.58 64.63 73.16 84.32 48.36 57.74 63.99
LoRA 81.74 93.40 83.04 74.41 54.23 64.30 74.15 85.15 48.31 46.09 66.42
SES-Adapter 80.00 93.50 82.90 75.51 54.23 65.88 72.47 84.80 46.63 52.59 63.38

Ankh-Large
Freeze 79.51 90.34 80.53 64.82 55.52 64.40 71.49 85.14 45.90 54.70 61.29
LoRA 76.39 93.69 83.04 74.06 55.19 66.71 76.16 75.58 28.68 38.15 48.62
SES-Adapter 81.11 92.71 82.93 73.16 55.13 66.59 69.12 86.03 47.54 49.64 64.48

ProtBert
Freeze 77.85 87.85 74.54 66.32 53.55 61.79 69.59 70.08 42.04 54.55 52.31
LoRA 43.25 92.30 78.59 75.81 55.32 62.34 66.22 76.41 24.52 31.61 16.09
SES-Adapter 78.85 92.71 77.57 74.76 54.94 62.34 67.07 76.56 41.47 49.52 54.58

ProtT5-XL-U50
Freeze 82.50 91.78 81.18 69.22 55.13 66.08 73.22 82.57 48.84 59.07 64.39
LoRA 81.94 93.11 84.06 74.86 54.03 65.17 72.77 87.35 46.40 56.55 67.35
SES-Adapter 82.89 92.71 85.19 75.26 54.94 67.59 73.11 84.56 49.49 56.86 65.11

Table 2: Performance comparison with highlighted best results of each model and each task. The detail and
evaluation metrics of the dataset can be found in Appendix C.

with numeric labels, making them suitable for re-
gression tasks. Specifically, we incorporate three
enzyme solubility benchmarks from Tan et al.
(2024b) (PETA_TEM_Sol, PETA_CHS_Sol, and
PETA_LGK_Sol), fluorescence intensity and
stability benchmark from Rao et al. (2019)
(TAPE_Fluorescence and TAPE_Stability), as
well as seven adeno-associated virus fitness bench-
marks (FLIP_AAV) and five nucleotide-binding
protein benchmarks (FLIP_GB1) from Dallago
et al. (2021) with clearly defined splitting rules,
such as one-vs-rest training and random sampling.

3.5 Other Properties

Beyond the commonly explored tasks and open
benchmarks, we have curated five additional
datasets that characterize other protein proper-
ties. One dataset focuses on stability prediction
Thermostability (Su et al., 2024a). The second
DeepET_Topt (Li et al., 2022) provides optimal
temperature predictions for enzymes. Additionally,
we include two binary classification tasks: Met-
alIonBinding (Hu et al., 2022b), which identifies
metal ion-protein binding, and SortingSignal (Thu-
muluri et al., 2022), which detects sorting signals
involved in protein localization. All datasets in-
corporate AlphaFold2-predicted structures. Fur-
thermore, Thermostability, DeepET_Topt, and
SortingSignal also include structures by ESMFold.

4 Model Application

While many PLMs have been developed, bridg-
ing them to biological applications requires ap-
plying them to downstream tasks. This involves

seamlessly accessing pre-trained PLMs and inte-
grating them with appropriate fine-tuning modules
for task-specific training and inference. To facil-
itate this, VENUSFACTORY provides a dedicated
Application module with specific architectures
and optimization strategies to improve performance
across diverse tasks.

4.1 Pre-trained PLMs
VENUSFACTORY supports fine-tuning across two
primary categories of over 40 Transformer-based
PLMs: Encoder-Only and Encoder-Decoder mod-
els. The Encoder-Only category includes both clas-
sic and state-of-the-art models, including ESM2
(ranging from 8M to 15B parameters) (Lin et al.,
2023), ESM-1B (Rives et al., 2021), ESM-1V

(Meier et al., 2021), PROTBERT (Elnaggar et al.,
2021), IGBERT (Kenlay et al., 2024), PROSST
(Li et al., 2024), PETA (Tan et al., 2024b),40+
and PROPRIME (Jiang et al., 2024). For Encoder-
Decoder architectures, VENUSFACTORY incorpo-
rates models including the ANKH series (Elnaggar
et al., 2023), PROTT5 (Elnaggar et al., 2021), and
IGT5 (Kenlay et al., 2024). Further details can be
found in Appendix A.

Collate Function When training a PLM, protein
sequences are typically truncated based on batch
size, similar to operations in NLP. However, pro-
teins are complex systems where subtle token re-
placements can lead to significant functional and
structural changes. Additionally, their intrinsic
spatial characteristics introduce long-range depen-
dencies between tokens. To address these factors,
VENUSFACTORY supports not only conventional
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Model Fine-tuning Mutation Other

CHS LGK TEM AAV GB1 STA FLU SIG MIB DET TMO

ESM2-650M
Freeze 26.68 27.74 13.93 70.58 71.48 68.33 45.32 88.72 67.82 67.15 68.85
LoRA 35.66 30.17 30.37 93.75 93.96 78.16 50.69 90.09 73.38 60.59 70.80
SES-Adapter - - - - - - - 90.83 68.87 68.22 66.32

Ankh-Large
Freeze 32.33 41.23 20.33 69.23 76.32 67.54 52.50 84.41 75.49 64.31 66.52
LoRA 37.48 36.27 20.52 93.89 94.60 62.95 68.13 87.63 74.07 64.84 69.68
SES-Adapter - - - - - - - 91.35 78.35 63.71 69.21

ProtBert
Freeze 13.49 20.50 15.51 65.96 67.26 65.35 43.73 84.83 66.77 64.83 65.58
LoRA 19.22 10.56 14.09 94.05 94.41 75.11 42.85 87.22 68.42 64.82 67.05
SES-Adapter - - - - - - - 90.94 67.97 64.84 66.68

ProtT5-XL-U50
Freeze 37.58 38.78 31.10 63.62 75.52 74.50 48.46 88.17 75.79 69.15 69.15
LoRA 43.84 27.06 34.68 94.09 95.13 83.50 66.00 89.13 76.69 67.42 68.46
SES-Adapter - - - - - - - 91.35 74.14 70.70 69.71

Table 3: Performance comparison with highlighted best results of each model and each task. The detail and
evaluation metrics of the dataset can be found in Appendix C.

sequence truncation but also a non-truncating ap-
proach, which statistically determines an optimal
token limit per batch to maintain sequence integrity
during training.

Normalization We provide multiple normaliza-
tion methods to enhance training stability and con-
vergence. Supported options include Min-Max nor-
malization, Z-score standardization, Robust nor-
malization, Log transformation, and Quantile nor-
malization.

4.2 Fine-tuning Modules

For fine-tuning pre-trained PLMs, VENUSFAC-
TORY supports two classic approaches: freeze
fine-tuning and full fine-tuning, along with var-
ious LoRA-based efficient training methods (Hu
et al., 2022a; Dettmers et al., 2023; Liu et al., 2024)
and a protein-specific SES-ADAPTER method (Tan
et al., 2024a) (see Table 6 for a complete list).
Specifically, freeze fine-tuning keeps PLM pa-
rameters fixed while updating only the readout lay-
ers, whereas full fine-tuning updates the entire
model. LoRA and its variants enable parameter-
efficient fine-tuning to reduce computational costs,
and SES-ADAPTER employs cross-attention be-
tween PLM representations and sequence-structure
embeddings (e.g., from FOLDSEEK) to enhance
protein-specific fine-tuning.

Classification Head VENUSFACTORY supports
three classification heads: a two-layer fully con-
nected network with average pooling, dropout,
and GeLU activation; a lightweight head (Stärk
et al., 2021) that combines 1D convolutional fea-

ture extraction with attention-weighted pooling
for efficient sequence aggregation; and ATTEN-
TION1D (Tan et al., 2024a) that employs masked
1D convolution-based attention pooling and a non-
linear projection layer for multi-class classification.

4.3 Performance Assessment

Loss Function For model training and validation,
various loss functions are selected based on the pre-
diction task. MSELoss is used for regression tasks,
BCEWithLogitsLoss is applied to multi-class and
multi-label tasks, and CrossEntropyLoss is em-
ployed for the rest classification tasks.

Evaluation Metrics VENUSFACTORY supports
a diverse set of evaluation metrics for robust as-
sessment. For numeric labels, Spearman’s ρ and
MSE are used to evaluate ranking consistency and
quantify prediction differences from the ground
truth. For classification tasks, standard metrics
such as accuracy, precision, recall, F1-score,
MCC, and AUROC are included. Specifically, multi-
label classification is assessed using the F1-max
score. Further details are in Appendix D.

5 Experiments

We evaluate a range of models across various
downstream tasks to demonstrate the practicality
of VENUSFACTORY in integrating diverse mod-
els, benchmarks, and fine-tuning strategies. Ap-
pendix C provides additional information on the
selected evaluation datasets, partitioning strategies,
and monitored metrics.
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5.1 Experimental Setup

All fine-tuning methods follow a standardized
setup: Each batch is constrained to a maximum
of 12, 000 tokens to accommodate long protein
sequences, with gradient accumulation set to 8, ef-
fectively yielding a batch size of approximately
200. The ADAMW optimizer (Loshchilov et al.,
2017) is used with a learning rate of 0.0005. Train-
ing runs for a maximum of 100 epochs, with early
stopping applied if no improvement is observed
for 10 consecutive epochs. To ensure reproducibil-
ity, the random seed is set to 3407. For the SES-
ADAPTER method, input structural sequences are
derived from FOLDSEEK and DSSP 8-class rep-
resentations. All experiments are conducted on a
cluster of 20 RTX 3090 GPUs over two months.

5.2 Results

We evaluate different PLMs across multiple tasks
using three fine-tuning strategies: Freeze, LoRA
(vanilla), and SES-ADAPTER (Tables 2-3). SES-
ADAPTER consistently outperforms other methods,
particularly in solubility prediction (DSE, PSM)
and mutation effect prediction (AAV, GB1). LoRA
demonstrates strong performance in localization
tasks and achieves the highest scores for DLB, but
exhibits less consistency across solubility and an-
notation tasks. Freeze generally yields the lowest
performance, especially in annotation tasks (BP,
MF), but remains competitive in EC classification.

From a within-model perspective, PROTT5-XL-
U50 achieves the highest overall performance, par-
ticularly excelling in annotation and mutation pre-
diction, while ANKH-LARGE and ESM2-650M
perform comparably but show task-dependent vari-
ations. In contrast, PROTBERT underperforms in
mutation prediction and certain annotation tasks,
suggesting potential limitations in capturing func-
tional variations. From a within-fine-tuning per-
spective, SES-ADAPTER consistently provides the
best results across different models, demonstrating
its robustness for protein-related tasks. LoRA ex-
hibits strong performance in specific tasks, such
as localization, but lacks stability across broader
benchmarks. The Freeze method exhibits the
largest performance gap across tasks, indicating
that full fine-tuning or lightweight adaptation is
essential for optimal PLM performance in protein
engineering. These results highlight the importance
of both model selection and fine-tuning strategies,
emphasizing that the optimal configuration should

Feature / Module PROTEUSAI SAPROTHUB VENUSFACTORY

≥ 10 Built-in PLMs ✗ ✗ ✓

≥ 30 Benchmark Datasets ✗ ✗ ✓

Data Retrieval Module ✗ ✗ ✓

No-code Web UI ✓ ✓ ✓

Structure-Sequence Integration ✗ ✓ ✓

Fine-tuning Method Diversity ✗ ✗ ✓

Model & Data Sharing ✗ ✓ ✓

Table 4: Comparison of features in VENUSFAC-
TORY with existing popular systems.

be task-specific to maximize predictive accuracy
and generalization.

6 Related Work

The use of platforms for LLM fine-tuning and
benchmarking has become a widely adopted rou-
tine in NLP to accommodate users with diverse
domain expertise and programming backgrounds.
LLAMAFACTORY (Zheng et al., 2024), JANUS

(Chen et al., 2024) integrate multiple efficient fine-
tuning methods with a no-code interface, while
LLAMA-ADAPTER (Zhang et al., 2024b), FAST-
CHAT (Zheng et al., 2023), and LMFLOW (Diao
et al., 2024) enable lightweight adaptation for
instruction-following and multi-modal tasks.

In biology, existing systems primarily focus on
protein data integration (Szklarczyk et al., 2019;
Burley et al., 2019; Paysan-Lafosse et al., 2023;
Consortium, 2025) and visualization (Humphrey
et al., 1996; DeLano, 2002; Pettersen et al., 2004;
Bobrov et al., 2024). For AI-driven protein en-
gineering, only a few platforms offer specialized
functionality. PROTEUSAI (Funk et al., 2024)
streamlines the protein engineering pipeline by es-
tablishing an iterative cycle from mutant design to
experimental feedback. SAPROTHUB (Su et al.,
2024b), built upon SAPROT (Su et al., 2024a), pro-
vides a Colab-based interface for model training
and sharing. As shown in Table 4, VENUSFAC-
TORY is the first platform to support a broader
range of PLMs and fine-tuning strategies while also
incorporating database scraping and standardized
benchmark construction, making it a comprehen-
sive tool for protein-related AI applications.

7 Conclusion and Discussion

This work introduces VENUSFACTORY, a versatile
engine for unveiling biological systems, offering
the most comprehensive resources to date for AI-
driven protein engineering. By integrating data col-
lection, benchmarking, and application modules for
both pre-trained PLMs and fine-tuning strategies,
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VENUSFACTORY enables researchers in computer
science and computational biology to efficiently ac-
cess open-source datasets and develop models for
diverse protein-related tasks. Future iterations will
expand its capabilities with generative modeling
for de novo protein design, improved fine-tuning
efficiency through advanced adaptation techniques,
and broader protein function prediction tasks. We
aim to provide a more accessible and powerful tool
for researchers at the intersection of AI and biol-
ogy, fostering innovation and discovery even with
minimal computational expertise.

Limitations

While VENUSFACTORY provides a robust foun-
dation, we acknowledge its current limitations.
Presently, its primary focus is on predictive tasks
such as classification and regression, with genera-
tive modeling and more specialized user-requested
tasks (e.g., interaction site prediction) planned for
future development. It is also helpful to enhance
UI/UX features, such as experiment configuration
management and user guidance, particularly for
those less familiar with PLM hyperparameters. Fur-
thermore, the platform’s scalability on extremely
large models or datasets warrants further investiga-
tion and optimization. Addressing these points will
be central to our future development efforts.

Ethics Statement

VENUSFACTORY aims to foster significantly
broader impact by democratizing access to pow-
erful PLMs, enabling researchers to accelerate dis-
covery in beneficial areas like drug design and en-
zyme engineering. However, we acknowledge the
inherent dual-use risks associated with technolo-
gies that simplify biological engineering. While not
its intent, the platform’s accessibility could poten-
tially lower the threshold for misuse, such as in the
modification of pathogens. Therefore, we empha-
size the critical importance of responsible use. We
release VENUSFACTORY as an open-source tool to
encourage transparency and community oversight,
and we urge all users to strictly adhere to all appli-
cable ethical guidelines and biosecurity protocols
in their research.
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Model # Params. Num. Type Implement

ESM2 (Lin et al., 2023) 8M-15B 6 Encoder facebook/esm2_t33_650M_UR50D
ESM-1b (Rives et al., 2021) 650M 1 Encoder facebook/esm1b_t33_650M_UR50S
ESM-1v (Meier et al., 2021) 650M 5 Encoder facebook/esm1v_t33_650M_UR90S_1
ProtBert-Uniref100 (Elnaggar et al., 2021) 420M 1 Encoder Rostlab/prot_bert_Uniref100
ProtBert-BFD100 (Elnaggar et al., 2021) 420M 1 Encoder Rostlab/prot_bert_bfd
IgBert (Kenlay et al., 2024) 420M 1 Encoder Exscientia/IgBert
IgBert_unpaired (Kenlay et al., 2024) 420M 1 Encoder Exscientia/IgBert_unpaired
ProtT5-Uniref50 (Elnaggar et al., 2021) 3B/11B 2 Encoder-Decoder Rostlab/prot_t5_xl_uniref50
ProtT5-BFD100 (Elnaggar et al., 2021) 3B/11B 2 Encoder-Decoder Rostlab/prot_t5_xl_bfd
Ankh (Elnaggar et al., 2023) 450M/1.2B 2 Encoder-Decoder ElnaggarLab/ankh-base
ProSST (Li et al., 2024) 110M 7 Encoder AI4Protein/ProSST-2048
ProPrime (Jiang et al., 2024) 690M 1 Encoder AI4Protein/Prime_690M
PETA (Tan et al., 2024b) 80M 15 Encoder AI4Protein/deep_base

Table 5: Detail of PLMs in terms of parameters, architecture, and implementation sources.

Fine-tunning Method Type

Freeze Sequence
Full Sequence
LoRA (Hu et al., 2022a) Sequence
DoRA (Liu et al., 2024) Sequence
AdaLoRA (Zhang et al., 2024a) Sequence
IA3 (Liu et al., 2022) Sequence
QLoRA (Dettmers et al., 2023) Sequence
SES-Adapter (Tan et al., 2024a) Sequence & Structure

Table 6: Supported fine-tuning methods with data
modality compatibility.

A Models

Table 5 presents an overview of popular PLMs used
in computational biology and protein engineering.

B Training Methods

B.1 Supported Methods

Table 6 provides an overview of fine-tuning meth-
ods used for PLMs, categorized by their adaptation
approach.

B.2 Training Parameters

Table 7 compares the number of trainable parame-
ters and their relative proportion in different PLMs
when applying various fine-tuning methods.

C Evaluated Benchmark Datasets

Table 8 summarizes datasets used for training and
evaluating PLMs. The columns provide details
on training, validation, and test splits, evaluation
metrics (e.g., accuracy, F1-score, Spearman’s corre-
lation), and implementation sources. Additionally,
the mean and standard deviation of AlphaFold2

Model Fine-tuning Params. (M) Ratio (%)

ESM2-650M
Freeze 1.66 0.25
LoRA 3.67 0.56
SES-Adapter 14.86 2.23

Ankh-Large
Freeze 2.38 0.21
LoRA 5.31 0.46
SES-Adapter 21.71 1.85

ProtBert
Freeze 1.06 0.25
LoRA 2.53 0.60
SES-Adapter 9.52 2.22

ProtT5-XL-U50
Freeze 1.05 0.09
LoRA 4.00 0.33
SES-Adapter 9.71 0.80

Table 7: The trainable parameters of different models
using different fine-tuning methods and their proportion
in the total model.

(AF2) and ESMFold (EF) predicted confidence
scores (pLDDT) are reported. For FLIP_AAV and
FLIP_GF1, we only selected the sampled parti-
tioning method for testing.

D Metrics

Table 9 lists the supported evaluation metrics, ab-
breviations, and corresponding problem types.

E Collection

E.1 Introduction
Collection is designed for automated extraction
of protein-related data from InterPro, RCSB PDB,
UniProt, and AlphaFold DB. It supports struc-
tured metadata, sequence information, and 3D
structural data retrieval, streamlining large-scale
protein engineering research2.

2https://github.com/AI4Protein/VenusFactory/b
lob/main/download/README.md
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Dataset AF2_pLDDT EF_pLDDT Train Valid Test Metrics Implement

Localization

DeepLoc2Multi (DL2M) 77.46(12.51) - 21, 948 2, 744 2, 744 f1_max AI4Protein/DeepLoc2Multi
DeepLocBinary (DLB) 79.57(12.06) 77.10(14.62) 5, 735 1, 009 1, 728 accuracy AI4Protein/DeepLocBinary
DeepLocMulti (DLM) 77.34(12.77) 74.88(15.23) 9, 324 1, 658 2, 742 accuracy AI4Protein/DeepLocMulti

Solubility

DeepSol (DS) - 79.5913.36 62, 478 6, 942 2, 001 accuracy AI4Protein/DeepSol
DeepSoluE (DSE) - 80.68(12.79) 10, 290 1, 143 3, 100 accuracy AI4Protein/DeepSoluE
ProtSolM (PSM) - 73.80(15.51) 57, 725 3, 210 3, 208 accuracy AI4Protein/ProtSolM
eSOL (ES) 90.79(7.07) 83.45(10.39) 2, 481 310 310 Spearman’s ρ AI4Protein/eSOL

Annoation

EC 92.78(6.42) 85.08(8.48) 13, 090 1, 465 1, 604 f1_max AI4Protein/EC
GO_MF (MF) 91.77(6.68) 82.84(9.68) 22, 081 2, 432 3, 350 f1_max AI4Protein/GO_MF
GO_BP (BP) 91.35(7.06) 82.00(10.65) 20, 947 2, 334 3, 350 f1_max AI4Protein/GO_BP
GO_CC (CC) 90.07(8.05) 79.57(11.61) 9, 552 1, 092 3, 350 f1_max AI4Protein/GO_CC

Mutation

PETA_CHS_Sol (CHS) - - 3, 872 484 484 Spearman’s ρ AI4Protein/PETA_CHS_Sol
PETA_LGK_Sol (LGK) - - 15, 308 1, 914 1, 914 Spearman’s ρ AI4Protein/PETA_LGK_Sol
PETA_TEM_Sol (TEM) - - 6, 445 808 808 Spearman’s ρ AI4Protein/PETA_TEM_Sol
FLIP_AAV_sampled (AAV) - - 66, 066 16, 517 16, 517 Spearman’s ρ AI4Protein/FLIP_AAV_sampled
FLIP_GB1_sampled (GB1) - - 6, 988 1, 745 1, 745 Spearman’s ρ AI4Protein/FLIP_GB1_sampled
TAPE_Stablity (STA) - - 53, 614 2, 512 12, 851 Spearman’s ρ AI4Protein/TAPE_Stability
TAPE_Fluorescence (FLU) - - 21, 446 5, 362 27, 217 Spearman’s ρ AI4Protein/TAPE_Fluorescence

Other

MetalIonBinding (MIB) 92.36(6.43) 83.66(8.73) 5, 068 662 665 accuracy AI4Protein/MetalIonBinding
Thermostability (TMO) 79.02(12.26) 74.60(13.82) 5, 054 639 1, 336 Spearman’s ρ AI4Protein/Thermostability
DeepET_Topt (DET) 92.98(5.32) 85.18(8.74) 1, 478 185 185 Spearman’s ρ AI4Protein/DeepET_Topt
SortingSignal (SIG) 81.09(11.66) - 1, 484 185 186 f1_max AI4Protein/SortingSignal

Table 8: Overview of the selected datasets for evaluating, including localization, solubility, annotation, mutation
effects, and other properties. The table lists dataset sizes, evaluation metrics, and pLDDT from AlphaFold2 and
ESMFold, with standard deviations in parentheses.

Short Name Metrics Name Problem Type

accuracy Accuracy single/multi-label cls
recall Recall single/multi-label cls
precision Precision single/multi-label cls
f1 F1Score single/multi-label cls
mcc MatthewsCorrCoef single/multi-label cls
auc AUROC single/multi-label cls
f1_max F1ScoreMax multi-label cls
spearman_corr SpearmanCorrCoef regression
mse MeanSquaredError regression

Table 9: Supported metrics with abbreviations. "Single-
label cls" refers to single-label classification tasks, while
"multi-label cls" refers to classification tasks where mul-
tiple labels can be assigned to each instance.

E.2 Implementation and Workflow

Implemented in Python, Collection leverages
requests for API interactions and multiprocessing
for parallel processing. It supports both single and
batch retrieval via .txt or .json input. The work-
flow consists of input parsing, data fetching, data
processing, and file storage, with structured out-
put in .fasta, .json, .pdb, and .mmCIF formats.

API requests include error handling with automatic
retries to manage rate limits and network failures.

E.3 Data Organization
Output is stored hierarchically, with metadata, se-
quences, and structures categorized for easy ac-
cess. For instance, InterPro metadata includes
domain details (detail.json), accession meta-
data (meta.json), and associated UniProt IDs
(uids.txt). UniProt sequences are saved in
.fasta format, with an option to merge entries,
while AlphaFold structures are organized by ID
prefix for optimized storage.

E.4 Error Handling and Logging
Collection logs failed downloads in "failed.txt",
recording network timeouts, missing IDs, and API
errors for debugging and reattempts. Parallel down-
loading, caching, and adaptive rate limiting en-
hance retrieval efficiency, reducing redundant API
calls and optimizing request frequency.
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