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Abstract

DEEP is a bidirectional translation system for
the Italian Sign Language, tailored to two spe-
cific, common use cases: pharmacies and the
registry office of the municipality, for which
a custom corpus has been collected. Two in-
dependent pipelines permit to create a chat-
like interaction style, where the deaf subject
just signs in front of a camera, and sees a vir-
tual LIS interpreter, while the hearing subject
reads and writes messages into a chat UI. The
LIS-to-Italian pipeline leverages, in a novel
way, a customized Whisper model (a well-
known speech recognition system), by means
of “pseudo-spectrograms”. The Italian-to-LIS
pipeline leverages a virtual avatar created with
Viggle.ai. DEEP has been evaluated with LIS
signers, obtaining very promising results.

1 Introduction

Sign languages represent a particular challenge for
Machine Translation (MT) systems, for various rea-
sons. First of all, sign languages are true languages,
with their own lexicon, syntax, and grammar (they
are not a “gestural version” of another language);
moreover, the signs must be captured, usually by
means of a video camera, and the resulting data
stream is much more complex than speech or text
(usual input of MT systems); in addition, paral-
lel corpora are rare and quite small; finally, sign
languages, being oral languages (i.e., a standard
writing system is not defined), tend to vary a lot
among different groups. As a result, MT of sign
languages is still an open problem.

In this paper we introduce DEEP, a bidirectional
MT system between the Italian Sign Language
(LIS) and Italian, designed for two common use
cases that can be beneficial to deaf individuals in
their daily lives: pharmacies and the registry office
of the municipality. DEEP aims to help deaf per-
sons gain more independence when interacting in
such cases, without the need of an interpreter.

We collected an ad-hoc, parallel corpus, devel-
oped the two MT pipelines, and assembled a pre-
liminary test platform, which will then evolve to
a production-ready kiosk. We focused on simpli-
fying the interaction between the deaf user and
the system, as an intuitive UI is essential for the
system’s effectiveness. DEEP is designed for two
specific use cases, and aims to provide a pragmatic
answer to deaf persons. At the same time, how-
ever, the methodology is generic and could be used
for creating a full MT (given a proper corpus is
collected).

For implementing the two pipelines, we lever-
aged a couple of neural models and methodologies.
In particular, and we argue this is a novel approach,
for the LIS-to-Italian pipeline, we leveraged and
customized Whisper, an Automatic Speech Recog-
nition (ASR) system from OpenAI. Indeed, we con-
verted the signs in a “pseudo spectrogram”, used
for training a slightly modified version of Whisper.

The final system is still in an experimental phase,
and was built to work with specific webcam set-
tings (optics, frame rate, aperture, etc.). Given
the nature of the prototype which requires real-
time video streaming and substantial GPU power
in order to function, a live demo published on
the internet is not feasible to handle for our ex-
perimental setup. A demo video is available at
https://youtu.be/QWV6mPqhwmE.

2 Related work

Closing the communication gap between hearing
and hearing-impaired communities is essential.
Achieving seamless, two-way communication re-
lies on the creation of an advanced system capable
of performing two key functions: sign language
recognition and sign language production.

With the rise of deep learning, many researchers
have tried to use neural network methods to deal
with sign recognition and generation (Toshpulatov
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et al., 2025, Rai et al., 2024). In the following the
most interesting works are described.

2.1 Sign Language Recognition
Sign Language Recognition (SLR) systems can be
divided into three categories: Isolated Sign Lan-
guage Recognition (ISLR), Continuous Sign Lan-
guage Recognition (CSLR) based on glosses, and
gloss-free CSLR.

ISLR is too limited so we didn’t consider it.
Glosses serve as a method for depicting discrete
gestures in textual format. Exhibiting a one-to-
one correspondence with signs, they can function
as a valuable intermediary between manual and
oral communication systems. Nevertheless, gloss
notations are also regarded as a partial and impre-
cise portrayal of manual communication systems
(Müller et al., 2023). Moreover, the process of cre-
ating gloss annotations is a time-consuming and
labor-intensive endeavor. Thus, we focus on mod-
ern, gloss-free CSLRs.

Hamidullah et al. (2024) introduced a new gloss-
free model, sign2(sem+text), that utilizes sentence
embeddings for supervision of target sentences
during training, effectively replacing the need for
glosses. This method significantly narrows the
performance gap between gloss-free and gloss-
dependent systems, particularly when no addi-
tional SLR datasets are used for pretraining. Zhou
et al. (2023) achieved notable results by incor-
porating visual-language pretraining inspired by
Contrastive Language-Image Pre-training (Radford
et al., 2021). Their two-stage approach integrate
this technique with masked self-supervised learn-
ing to bridge the semantic gap between visual and
text representations.

Lin et al. (2023) introduced the Gloss-Free End-
to-end sign language framework (GloFE). This
method improves SLR performance by exploit-
ing shared semantics between signs and corre-
sponding spoken translations. Key concepts from
text are used as weak intermediate representations.
Most recently, Rust et al. (2024) developed a self-
supervised model, pretrained on the large-scale
YouTube-ASL dataset. This approach led to state-
of-the-art performance on the How2Sign dataset,
demonstrating the potential of leveraging extensive
pretraining data.

Finally, a study by Arib et al. (2025) presented
SignFormer-GCN, which utilizes both keypoint
and RGB features to capture the pose and configura-
tion of body parts involved in sign language actions.

This approach combines transformer and spatio-
temporal graph convolutional network (STGCN) ar-
chitectures to better capture the context and spatial-
temporal dependencies of sign language expres-
sions. The method showed competitive perfor-
mance across multiple datasets.

2.2 Sign Language Production
The field of Sign Language Production (SLP) re-
mains a complex challenge. Nevertheless, the field
has witnessed significant advancements in recent
years, with studies focusing on developing sophis-
ticated end-to-end models for translating spoken
language into continuous sign language sequences.

One of the most notable breakthroughs in this
domain has been the development of Progressive
Transformers (Saunders et al., 2020). Their model
offers a solution for converting spoken language
sentences into sign language gestures. The same
authors in 2021 introduced a two-stage deep learn-
ing method for sign language production: the first
stage converts spoken language sentences into a
latent sign language representation, while the sec-
ond stage employs a Mixture of Motion Primitives
(MOMP) framework to create expressive sign lan-
guage sequences from this representation.

Stoll et al. (2020) introduce an innovative
method for generating realistic sign language
videos from spoken language sentences. The deep
learning approach combines neural machine trans-
lation with Motion Graph, generative adversarial
networks, and motion generation techniques to pro-
duce sign video sequences. It achieves this result
with minimal reliance on annotated data. Never-
theless, this system relies on gloss representation
as an intermediary representation, which can over-
simplify sign language. Glosses do not fully cap-
ture the richness of sign language, especially non-
manual features like facial expressions and body
posture, which are crucial for context and meaning.

2.3 Focusing on Italian Sign Language
Most of the works on LIS concerns SLP. Colonna et
al. (2024) introduce a model designed to generate
accurate LIS gestures from speech. The model uses
an iterative framework that integrates textual, audio,
and visual data to progressively refine generated
gestures, ensuring realism and contextual relevance.
Preliminary results show the model effectiveness
in producing realistic LIS poses.

About SLR, the LIS2Speech application (Mer-
curio, 2021) employs advanced technologies such
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as neural networks, deep learning, and computer
vision to translate isolated LIS signs into Italian
text and speech. This approach relies on skeletal
features of the hands, body, and face, extracted
from videos. However, the application currently
translates only one isolated sign at a time, which
limits its real-life practicality.

Furthermore, we identified Algho1, a virtual as-
sistant reported to offer bidirectional translation
between spoken language and LIS. However, the
commercial availability of this product is uncertain.
The interactive demo appears to be limited to SLP.
As far as we know, no other recent literature exists
for SLR of LIS.

2.4 Comparison against mentioned systems

The SLR works we presented cannot be deployed
as actual SLR systems due to the limited corpus
they adopt. Our approach is different: we aim at
releasing a SLR that can be used in the field. About
SLP, our approach is pragmatic, as we depend on
pre-signed LIS sentences for the two use cases we
focus on: we trade off some flexibility in exchange
for highly effective LIS generation.

Moreover, our prototype stands out from exist-
ing systems due to its ability to operate in realtime
and bidirectionally, without requiring to respect
turns. It focuses on two specific scenarios to ensure
robustness, non-invasiveness, and usability. Finally,
to the best of our knowledge, it is the only system
capable of translating complete sentences between
LIS and Italian, whereas other systems are limited
to individual signs. These features make it a sig-
nificant step forward, enhancing accessibility and
social inclusion for the deaf community.

3 The DEEP Corpus

The DEEP dataset comprises 36 818 samples of
LIS video recordings, totaling approximately 62
hours of footage. Such recordings, captured at
1920×1080 resolution and 60 FPS, with carefully
calibrated shutter speeds to minimize motion blur,
were annotated with corresponding Italian sen-
tences. The dataset was developed to support the
DEEP system in two specific scenarios: pharma-
cies and municipality office interactions. Starting
from 3075 commonly used sentences in these con-
texts, 17 subjects (13 native LIS speakers and 4
LIS interpreters) were asked to sign as many as

1https://www.alghoncloud.com/funzionalita/
artificial-human-lis/

possible of such sentences. To further enhance
the corpus, 56 322 synthetic samples were created
by combining recorded sentences with individual
words signed in dactylology (person names and
surnames, drug names, toponyms, numbers, etc.),
adding roughly 128 hours of content. This com-
prehensive approach resulted in a robust dataset
designed to facilitate sign language communica-
tion in the two target real-world settings. In total,
we had 93 140 samples, corresponding to 190 hours
of video. The dataset will be released subsequent
to securing consent from all participants.

4 System Design

The DEEP system facilitates bidirectional transla-
tion between LIS and Italian. The DEEP system ar-
chitecture encompasses both translation pipelines:
from LIS to Italian and from Italian to LIS. This
comprehensive approach enables seamless commu-
nication between LIS and Italian speakers, bridging
the linguistic gap between these two languages.

Although the current focus is on LIS, the tech-
niques developed in this research could be adapted
to other sign languages, broadening the scope and
impact of this work.

4.1 LIS-to-Italian Translation Pipeline

This pipeline implements a gloss-free SLR (see
Figure 1), where a high-resolution video cam-
era (1920×1080, 60 FPS) continuously captures
frames. The Subject Detection module monitors
these frames, waiting for a human body to appear in
front of the camera. Once detected, a motion detec-
tion trigger initiates video recording, which contin-
ues until a resting pose is identified. The recorded
video then undergoes analysis using Google Medi-
aPipe’s Holistic model2, generating a 3D skeleton
for each frame. In this module, we also perform
time interpolation to fill in any missing nodes (for
frames where MediaPipe lost tracking). Then, for
each frame, we reduce the set of 3D nodes into mea-
sures representing in a compact way the subject’s
pose of her/his face, torso, arms, and hands.

We utilize three measure typologies: 3D points
(e.g., the position of wrists), polar angles (e.g.,
the direction hands are pointing), and distances
(e.g., the distance between lips), which are nor-
malized against invariant body features, like torso
height, and further adjusted to fall within a sub-

2https://github.com/google-ai-edge/mediapipe/
blob/master/docs/solutions/holistic.md
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Figure 1: LIS to Italian Translation Pipeline

Figure 2: Italian to LIS Translation Pipeline.

set of the (-1, 1) range. The result is a vector of
110 numbers, for each frame; placing these vec-
tors side by side we create a “measuregram”, in
analogy with the spectrogram often used by ASRs
(see Appendix A). This measuregram is then pro-
cessed by a customized version of OpenAI’s Whis-
per model, adapted from HuggingFace, to generate
Italian transcriptions. An autoencoder, built using
the Whisper’s encoder and an ad-hoc decoder, was
trained on DEEP videos; the autoencoder was fed
with measuregram and its goal was to reconstruct
them. Then, the autoencoder’s encoder was copied
to the Whisper’s encoder, and the whole Whisper
was refined on the DEEP parallel corpus (see Ap-
pendix C).

4.2 Italian-to-LIS Translation Pipeline
This pipeline permits to translate Italian into LIS
(see Figure 2). The Italian user inserts a sentence,
which is converted into an embedding using the
stsb-xlm-r-multilingual model from HuggingFace3.
This embedding is then compared against a set of
Italian sentences pre-calculated embeddings (from
the DEEP dataset). If a sufficiently similar sen-
tence is found (i.e., the Euclidean distance is below
a given threshold), it serves as a key to retrieve
the corresponding pre-generated synthetic video.
Such videos are created using the DEEP collec-
tion of recorded LIS sentences, a photo of one of

3https://huggingface.co/sentence-transformers/
stsb-xlm-r-multilingual

the researchers, and the Viggle.ia4 online service.
This method ensures privacy protection for indi-
viduals in the DEEP dataset while still producing
high-quality synthetic sign language videos.

Figure 3: LIS-2-ITA page for deaf subject’s UI.

Figure 4: “In Pose” and “Recording” triggers.

4https://viggle.ai/
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Figure 5: ITA-2-LIS page for hearing subject’s UI.

5 The Web Application

The DEEP experimental system is structured
around two web applications, LIS-to-Italian and
Italian-to-LIS, which implement a chat-like user
experience. For the sake of simplicity the demo
version shown in the pictures merges the two web
applications into two pages of a single web app.

The two translation pages show the deaf subject
and the hearing subject UIs. Note that the two
communication “channels” between the two parties
are independent: any of the two subjects can insert
a sentence at any moment, thus ensuring a natural
interaction between the two parties.

5.1 The LIS-2-ITA page

The LIS-2-ITA page is dedicated to the deaf sub-
ject, and its layout is straightforward, featuring a
single section that prominently displays an avatar.
When communication commences, a chat overlay
appears in the top-left corner of the avatar section.
This overlay has a transparent background, allow-
ing for unobstructed viewing of the avatar while
maintaining visibility of the conversation. The de-
sign, as illustrated in Figure 3, ensures a seamless
and intuitive user experience for the deaf subject.

When a LIS speaker approaches the system, it
activates an “In Pose” trigger; as a second trigger
detects the start of a sign the system goes to the
“Recording” mode, until a final “Resting” trigger
detects a resting pose. During this phase, the sys-
tem interprets the subject’s LIS signing (Figure 4).
Once the LIS phrase is completed, the system stops
capturing the video and goes back to the “In Pose”
mode until the subject moves out of the trigger zone.
The LIS-to-Italian pipeline translates the recorded
video, and the text is sent to the hearing person,
who will see it on its ITA-2-LIS page, and to the
chat overlay in the top-left corner of the avatar.

Figure 6: LIS-to-Italian response time experiment re-
sults; linear relationship between video duration and
system response time. The dotted line shows the best-fit
linear regression (R² = 0.99).

5.2 The ITA-2-LIS page

The ITA-2-LIS page is designed for hearing indi-
viduals. This interface consists of four primary sec-
tions (see Figure 5): A collection of predefined text
messages featuring frequently used expressions,
situated on the left side of the page, a textual con-
versation display on the right side of the page, a
text entry field positioned at the lower edge of the
chat display, and microphone activation button for
speech input functionality.

All communication modalities transmit a textual
message to both the LIS-to-Italian and Italian-to-
LIS chat interfaces, which show it. Furthermore,
the Italian-to-LIS translation pipeline generates the
video of the avatar signing the Italian sentence, in
LIS; such video is then sent to the LIS-2-ITA page.

6 Experiments and results

We conducted two experiments, to evaluate the ef-
fectiveness of our prototype, on a system equipped
with an Intel Core i9-11900K, 64 GB DDR4 RAM,
NVIDIA RTX 4090 (see Appendix B for the exper-
imental setting).

6.1 Response time

For the SLR pipeline, the average translation time
(measured from the moment the signer begins sign-
ing) was 2.9× the duration of the LIS sentences.

Although our customized Whisper model suc-
cessfully utilized GPU acceleration, we faced chal-
lenges in adapting and recompiling MediaPipe to
run on GPU; on our system MediaPipe ran exclu-
sively on CPU.

Figure 6 shows a clear linear relationship be-
tween the duration of the videos and the system’s
response time. In this experiment, we used 10

225



Subject LIS sentences Dactylology signs Class
Identical Clear enough Obscure Identical Clear enough Obscure

Subject 1 17 13 1 9 7 0 LIS L1
Subject 2 22 8 1 4 12 0 LIS L1
Subject 3 17 14 0 0 16 0 LIS L2
Subject 4 19 11 1 14 0 2 LIS L1
Subject 5 22 8 1 13 3 0 LIS L2
Subject 6 28 3 0 14 2 0 LIS L2
Subject 7 21 8 2 2 9 5 Interpret.

Table 1: Italian-to-LIS experiment results.

videos of LIS sentence signed, with durations rang-
ing from 2.48 to 14.95 seconds. The system’s re-
sponse time increased proportionally, from 7.13
seconds for the shortest video to 42.75 seconds for
the longest.

The majority of the processing time, approxi-
mately 99%, is consumed within the MediaPipe
model, taking between 7.03 and 42.24 seconds de-
pending on the video length. The inference pro-
cessing time was much shorter, ranging from 0.10
to 0.51 seconds, which is only about 1% of the total
response time.

Both the Mediapipe processing and inference
processing times showed a linear increase with
video duration, indicating consistent performance
scaling as video length grows.

For the SLP pipeline, the translation time was
nearly instantaneous.

6.2 Italian-to-LIS Experimental Setting

We conducted a study with 7 LIS signers: 6 deaf
individuals and 1 interpreter. The participants were
asked to evaluate 31 LIS sentences from the DEEP
corpus, signed by our avatar. Out of such sentences,
16 included dactylology signs, while 15 did not.

Each participant watched the LIS sentences and
completed a form in which they assessed the align-
ment between the correct Italian sentences and the
meaning conveyed by the avatar, answering two
questions: “Do the signs of the avatar convey the
same meaning as the Italian sentence?” and “If the
LIS sentence contains a dactylology sign, is this
sign comprehensible?”.

For the first question the options were: the mean-
ings in LIS and Italian are identical; the overall
meaning is clear enough; and the meaning is ob-
scure. For the question about dactylology signs, we
used similar options.

Each participant was classified based on their
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Figure 7: LIS-to-Italian experiment results. Partially
correct means that the semantic was mostly conveyed.

Uncut Cut at Cut at No sign
the beginning the end

154 16 4 0

Table 2: Errors “Recording“ & “Resting” triggers.

LIS fluency: Individuals who learned LIS during
early childhood as their first language (“LIS L1”),
individuals who learned LIS later in life (after child-
hood; “LIS L2”), and interpreters.

We summed the values for each answer option
across all participants (Table 1; the most selected
option is highlighted in bold). Based on results,
the meaning conveyed by the virtual avatar was
identical or clear enough to the Italian sentences
(98.2%). About dactylology signs, the meaning
was identical or clear enough (93.8%). The quality
of the virtual avatar was thus quite satisfying.

6.3 LIS-to-Italian Experimental Setting

For this experiment, 6 deaf subjects performed 29
LIS sentences. Our goal here was twofold: calcu-
lating the accuracy of the LIS-to-Italian pipeline
and testing the effectiveness of the triggers (which
could result in truncated videos, if not working
properly). The video of LIS signs was then passed
to the LIS-to-Italian pipeline. The results are shown
in Figure 7: 66.7% of correct or partially correct
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sentences (69.7% not considering Subject 6).
We also examined the impact of the “In Pose”

trigger and found only one false positive (unneces-
sary activation) out of the 174 sentences. Moreover,
Table 2 highlights the errors where the LIS sentence
may be cut at the beginning if the “Recording” trig-
ger activates too late, at the end if the “Resting”
trigger activates too early, or the entire LIS sen-
tence may not be saved if the “Recording” trigger
does not activate at all. We found 88.5% of LIS sen-
tences were correctly treated, while 9.2% were cut
at the beginning (all of which belonging to Subject
6, who obtained the worst results in Figure 7).

7 Discussion and Conclusions

This paper introduced DEEP, a bidirectional trans-
lator for LIS. The system, tailored on two common
use cases, aims to help deaf persons gain more inde-
pendence when interacting in such cases, without
the need of an interpreter.

The system UI is particularly easy to use and
permits a fluid interaction between deaf person and
hearing person. The LIS-to-Italian pipeline is based
on a customized, well-known ASR, demonstrating
the feasibility of such models for sign language
translation.

The recognition accuracy is still not optimal but
we obtained very promising results. The sign gen-
eration was highly appreciated by the testers.

8 Limitations

Currently, the use cases are limited to pharmacies
and municipality’s registry office; this is due to
the difficulties (and costs) of collecting corpora
for sign languages. Moreover, the Italian-to-LIS
pipeline (which selects a LIS video among a list of
pre-recorded videos), although effective in vertical
use cases, is less scalable than the LIS-to-Italian
pipeline (which implements a true translation sys-
tem). Finally, the recognition accuracy of the LIS-
to-Italian pipeline should be further improved.

9 Ethical Considerations

For the corpus creation, LIS signers were compen-
sated fairly. All LIS signers involved in the experi-
ments were voluntary. All LIS signers were trained
and informed about the task before participating.
We guaranteed privacy of personal information, for
all LIS signers. In particular, the experimental
web application implemented strict data protection

principles, refraining from storing any personal in-
formation.

Special thanks to Daniele Raffa of Handy Sys-
tems for making this project possible. This research
was funded by Innosuisse, the Swiss Innovation
Agency (grant5 100.656 IP-ICT). DEEP would not
have been possible without the experience, feed-
back, and active contributions to data collection
from members of the deaf community.
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A Measuregram

A spectrogram is a visual representation of how the
frequency content of a signal changes over time.
The x axis shows the time while the y axis reports
frequency bins; color is used to indicate the ampli-
tude (loudness) of each frequency at each time in-
stant. It’s commonly used in audio analysis, speech
recognition, and music visualization to show which
frequencies are present in a signal and how they
vary.

Figure 8 shows our measuregram, a representa-
tion inspired by spectrograms, where the 110 mea-
sures are shown on the y axis, the frame number
on the x axis and the color indicates the measure
value in the (-1,1) range. Notice that, differently
from spectrograms, values in measuregrams can
be negative; thus, in our customized Whisper the
GeLU function has been substituted with the tanh
function.

Figure 8: An example of a measuregram

Figure 9: Experimental setting for deaf subject interact-
ing with hearing subject.

Figure 10: Experimental setting for hearing subject
interacting with deaf subject.

B Experimental Settings

In Figure 9 is depicted a deaf subject signing in
front of the camera, while the monitor shows the
avatar. Figure 10 shows the hearing subject using
the chat.
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Hyperparam. Autoencoder Whisper phase 1 Whisper phase 2
per_device_train_batch_size 4 16 16
gradient_accumulation_steps 4 4 4
learning_rate 1e-5 1e-4 1e-4
warmup_steps 100 500 500
max_steps 100000 100000 100000
gradient_checkpointing false true true
fp16 true true true
eval_accumulation_steps 4 4 4
evaluation_strategy steps steps steps
per_device_eval_batch_size 4 16 16
predict_with_generate true true true
eval_steps 100 500 500

Table 3: Hyperparameters.

C Hyperparameters

Table 3 shows the most relevant hyperparameters
used by the HuggingFace framework, which we
adopted for defining and training our models. In
particular: the autoencoder, the Whisper model dur-
ing phase 1 (frozen encoder weights), and the Whis-
per model during phase 2 (all weights unfrozen).

All trains were split across four 4090 GPUs. The
autoencoder train was stopped when the train loss
ceased to improve (no overfitting was detected).
All other trains were stopped when the evaluation
BLEU index started decreasing.

D Kiosk

Figure 11 shows the envisioned kiosk setup we
are going to build for field testing. The deaf sub-
ject will use this kiosk to interact with the hearing
subject.

Figure 11: Kiosk for deaf subject for on-the-field test.
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