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Abstract

As large language models (LLMs) continue to
advance, there is a growing urgency to enhance
the interpretability of their internal knowledge
mechanisms. Consequently, many interpreta-
tion methods have emerged, aiming to unravel
the knowledge mechanisms of LLMs from var-
ious perspectives. However, current interpreta-
tion methods differ in input data formats and
interpreting outputs. The tools integrating these
methods are only capable of supporting tasks
with specific inputs, significantly constrain-
ing their practical applications. To address
these challenges, we present an open-source
Knowledge Mechanisms Revealer&Interpreter
(Know-MRI) designed to analyze the knowl-
edge mechanisms within LLMs systematically.
Specifically, we have developed an extensi-
ble core module that can automatically match
different input data with interpretation meth-
ods and consolidate the interpreting outputs.
It enables users to freely choose appropriate
interpretation methods based on the inputs,
making it easier to comprehensively diagnose
the model’s internal knowledge mechanisms
from multiple perspectives. Our code is avail-
able at https://github.com/nlpkeg/Know-MRI.
We also provide a demonstration video on
https://youtu.be/NVWZABJ43Bs.

1 Introduction

Large language models (LLMs), accumulating
a vast amount of factual knowledge through ex-
tensive pre-training corpora, are often seen as
parameterized knowledge bases (Radford et al.,
2019; Wang and Komatsuzaki, 2021; Jiang et al.,
2023; Touvron et al., 2023; OpenAI, 2024a;
Qwen-Team, 2024; DeepSeek-AI et al., 2025).
However, the underlying knowledge mechanisms
of LLMs—including how they learn, store,
utilize, and evolve knowledge (Wang et al.,

*Equal contribution.
†Corresponding authors.

2024a)—remain poorly understood. This lack of
transparency poses significant challenges to the
safe and trustworthy deployment of LLMs across
sensitive domains such as healthcare, finance, and
the judiciary. Aiming to reveal the knowledge
mechanisms in LLMs, as shown in Figure 1, cur-
rent interpretation methods often generate different
kinds of interpretation results (such as figures with
tracing weights, unembedding tables, explanation
texts) according to the input (such as the targeted
knowledge) with different formats (such as textual
prompts, triples, mathematical operations) (Huang
et al., 2024; Chen et al., 2023, 2025a,b).

Figure 1: Illustration of LLMs interpretation.

To enhance the community’s understanding of
the knowledge mechanism of LLMs, a growing
number of interpretation tools have been developed
(Tenney et al., 2020; Alammar, 2021; Geva et al.,
2022; Katz and Belinkov, 2023; Sarti et al., 2023;
Tufanov et al., 2024). Although these tools have
propelled interpretation research forward, as sum-
marized in Table 1, they have four interconnected
limitations: 1) Single Input Format: Due to the
various forms of knowledge, existing tools mainly
support limited input data formats, such as a single
prompt, causing inconvenience to the users’ usage.
2) Biased Interpretation: The diversity of inter-
pretation methods causes existing tools to focus
narrowly on specific interpreting perspectives. 3)
Low Flexibility and Extensibility: Existing tools
cannot flexibly select interpretation methods based
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Toolkit
Feature

Input format
Perspective

Flexibility Extensibility User-friendly
Internal External

LIT Fair Embedding, Attention None Fair ✖ Good
Ecco Fair None Attribution Poor ✖ Fair

LM-Debugger Single MLP/Neuron None Poor ✖ Good

VISIT Single Hiddenstate, MLP/Neuron,
Attention

None Poor ✖ Fair

Inseq Single MLP/Neuron Attribution Fair ✖ Fair
LM-TT Single Attention, MLP/Neuron None Poor ✖ Good

Know-MRI Diverse All All Good ✔ Good

Table 1: Comparison of existing interpretation toolkits. Input format refers to the diversity of the input data format.
Perspective refers to the interpreting form of the methods (detailed categorization is listed in Section 2) involved in
the toolkit. Flexibility refers to how well the toolkit can select appropriate interpretation methods for specific inputs.
Extensibility refers to the capability to accommodate additional interpretation methods. User-friendly refers to the
ease of use of the toolkit.

on input. They also exhibit low extensibility on
new models, data, and interpretation methods. 4)
Less User-friendly: Current toolkits are primar-
ily designed for domain experts, making them less
user-friendly, particularly for beginners.

To address the aforementioned issue, the paper
proposes Know-MRI, a Knowledge Mechanisms
Revealer&Interpreter for LLMs. As shown in Fig-
ure 2, the characteristic of Know-MRI’s key feature
is its ability to select the appropriate interpreta-
tion method based on the input data by matching
the support_template_keys (Dataset) with the
requires_input_keys (Interpretation Method).
Additionally, Know-MRI provides an extensible
API that allows users to integrate their own in-
terpretation methods, and a UI demo is offered
to further enhance user-friendliness. In general,
Know-MRI has the following advantages: 1) Rich
Input Format Support: In contrast to previous
tools that mainly targeted a specific or a limited
kind of input, Know-MRI supports a variety of dif-
ferent data formats. Beyond factual knowledge, it
can also adapt to different task datasets (such as
mathematical reasoning, sentiment analysis, etc.),
totally covering 13 datasets with different input for-
mats. 2) Methods Diversity: Know-MRI analyzes
LLMs from both internal and external perspectives.
Specifically, it can jointly explore internal reason-
ing processes and external behavioral attributions,
supporting 8 classic interpretation methods. 3)
Flexibility: For an input, Know-MRI can auto-
matically match the required interpretation meth-
ods. 4) Extensibility: Integrating new methods
and models into Know-MRI requires only simple

encapsulation, making the addition of new meth-
ods straightforward. 4) User-friendly: Know-MRI
is meticulously designed to help users quickly un-
derstand existing interpretation methods through
its user interface, guidelines, and detailed results
descriptions.

Additionally, with the help of this toolkit, we
conduct a case study making comparisons between
similar methods that jointly confirm the significant
role of subject in LLMs’ handling of factual knowl-
edge. This further demonstrates the effectiveness
of Know-MRI.

2 Related Work

2.1 Interpretation Methods

As shown in Table 2, existing knowledge mecha-
nisms interpretation methods can be mainly divided
into the following two categories:

External Interpretation: These methods pri-
marily focus on analyzing the input-output rela-
tionships from an external perspective. A direct
approach involves eliciting Self-explanations
from LLMs. For instance, Huang et al. (2023)
propose a method that leverages LLMs to iden-
tify the contribution of input words to model pre-
dictions. In contrast, Attribution (Sundararajan
et al., 2017) utilizes gradients to calculate the con-
tribution, offering a mathematically grounded per-
spective on output attribution.

Internal Interpretation: This category delves
into the decision processes of LLMs by exam-
ining their internal representations and mod-
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ular operations. From the representation per-
spective, researchers analyze features through
Hidden state (nostalgebraist, 2020; Ghandehar-
ioun et al., 2024) and Space probing (Subrama-
nian et al., 2018). The analysis of module further
dissects functional components along four axes:
1) Embedding (Tenney et al., 2020), 2) Attention
(Vaswani et al., 2017), 3) MLP/Neuron (Meng et al.,
2022; Dai et al., 2022; Pan et al., 2025), and 4)
Circuit (Yao et al., 2024), collectively revealing
the architectural foundations of model behavior.
The Interpretation Datasets are listed in the Ap-
pendix A.

2.2 Interpretation Toolkits

Recent years have witnessed several interpretation
toolkits aimed at enhancing community understand-
ing of LLMs’ knowledge mechanisms (Tenney
et al., 2020; Alammar, 2021; Geva et al., 2022;
Katz and Belinkov, 2023; Sarti et al., 2023; Tu-
fanov et al., 2024). However, existing methods
have differences in their required input and interpre-
tation output, making it difficult to use these meth-
ods in a single toolkit. For instance, the Knowledge
Neuron (KN) method (Dai et al., 2022) necessitates
annotated input data with ground truth and gen-
erates corresponding figures for knowledge attri-
bution. Conversely, Patchscopes (Ghandeharioun
et al., 2024) works without ground truth but man-
dates structured tabular for interpretation. Such
divergent specifications confine existing toolkits to
a few interpretation perspectives or limited input
formats, as shown in the “Perspective” and “In-
put data” columns of Table 1. Even the relatively
generic Inseq (Sarti et al., 2023) cannot flexibly
match every input with the interpretation methods
and consolidate the outputs. To address the afore-
mentioned issue, we propose a framework capable
of automatically pairing inputs with interpretation
methods.

3 Know-MRI Toolkit

Knowledge Mechanisms Revealer&Interpreter
(Know-MRI) is a unified framework designed
to systematically integrate existing interpretation
methods, enabling comprehensive analysis of
LLMs’ knowledge mechanisms. As shown in
Figure 2, Know-MRI primarily integrates model,
dataset, and interpretation method. For a given in-
put and model, Know-MRI can automatically select
the corresponding interpretation methods and gen-

erate interpreting results. Additionally, Know-MRI
also offers UI-based and Code-based usage. In the
following section, we will introduce the compo-
nents of Know-MRI and present the toolkit usage.

3.1 Toolkit Components

As outlined above, Know-MRI seamlessly inte-
grates three core components: model, dataset, and
interpretation methods. Our exposition of these
elements will be structured around two key dimen-
sions: supported types and extensibility.

3.1.1 Model
Supported Types Know-MRI can apply to 9 ar-
chitectures of models on Huggingface1, including
Bert (Devlin et al., 2018), GPT2 (Radford et al.,
2019), GPT-J (Wang and Komatsuzaki, 2021), T5
(Chung et al., 2022), Llama2 (Touvron et al., 2023),
Baichuan (Baichuan, 2023), Qwen (Qwen-Team,
2024), ChatGLM (GLM et al., 2024) and InternLM
(Zhang et al., 2024).

Extensibility Building upon the architectural in-
sights from Meng et al. (2022), we propose a
standardized encapsulation approach through the
ModelAndTokenizer class. This abstraction layer
systematically unifies model interfaces while pre-
serving their intrinsic computational characteris-
tics. To ensure adaptability in the rapidly evolving
model ecosystem, Know-MRI allows us to incorpo-
rate new types of LLMs. We will implement con-
tinuous maintenance for the ModelAndTokenizer
class.

3.1.2 Dataset
Supported Types Know-MRI has integrated
more than 13 datasets with different input formats.

These datasets embrace a rather broad scope.
Some involve structured-input, such as ZsRE (Levy
et al., 2017), PEP3k (Porada et al., 2021) and
Know-1000 (Meng et al., 2022), while others are
derived from direct prompts, such as GSM8K
(Cobbe et al., 2021), Imdb (Maas et al., 2011) and
Opus 100 (Zhang et al., 2020). More details are
listed in Appendix B.

Extensibility Users can incorporate their own
datasets by simply integrating the Dataset class
in Pytorch2. It is noteworthy that to facil-
itate the matching of the corresponding in-
terpretation methods, users need to add the

1https://huggingface.co
2https://pytorch.org
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Figure 2: The frame work of Know-MRI. Know-MRI primarily consists of three components: Model, Dataset, and
Interpretation Method. Know-MRI can be invoked through either UI or Code. The UI-based usage is designed
to assist users in quick learning and utilization. The Code-based usage, on the other hand, has greater extensibility.

field named support_template_keys to indi-
cate which keys the current dataset supports.
Specifically, support_template_keys is a list
that describes the format of inputs included in
the current dataset, such as prompt, subject,
and ground truth, etc. The introduction about
keys is in Appendix C. For instance, Known-
1000 (Meng et al., 2022) is a question-answering
dataset based on factual triplets, and each
question encompasses various forms of expres-
sions. Therefore, its support_template_keys
should be [“prompt”, “prompts”, “ground_truth”,
“triple_subject”, “triple_relation”, “triple_object”].

3.1.3 Interpretation Method

Supported Types In Table 2, we show that
Know-MRI employs eight distinct types of interpre-
tation methods, culminating in a total of eleven in-
terpretation techniques. These techniques fall into
two main categories: external and internal explana-
tions. External methods include Self-explanations
(Randl et al., 2025) and Attribution (Sundarara-
jan et al., 2017). Internal explanations are fur-
ther divided into Module and Representation ap-
proaches. From the perspective of Module, we
have integrated: 1) Embedding: Projection (Ten-
ney et al., 2020), 2) Attention: Attention Weights
(Vaswani et al., 2017), 3) MLP/Neuron: KN (Dai
et al., 2022), CausalTracing (Meng et al., 2022),
FINE (Pan et al., 2025), 4) Circuit: Knowledge
Circuit (Yao et al., 2024). Representation can be
categorized into: 1) Hiddenstate: Logit Lens (nos-

talgebraist, 2020), PatchScopes (Ghandeharioun
et al., 2024), 2) Space probing: SPINE (Subrama-
nian et al., 2018).

External
Internal

Module Representation
Self-explanations,

Attribution
Embedding, Attention,
MLP/Neuron, Circuit

Hiddenstate,
Space probing

Table 2: The classification of existing interpretation
methods.

Extensibility Users merely need to encapsulate
their interpretation methods into a diagnose func-
tion. Corresponding to Dataset, users are required
to provide a requires_input_keys to describe
the necessary input for this method. Correspond-
ing to support_template_keys in Section 3.1.2,
requires_input_keys is also a list. It is indica-
tive of the input format required by the interpreta-
tion method. For instance, the Knowledge Neuron
(KN) method (Dai et al., 2022) necessitates seman-
tically similar input prompts with ground truth. So
its requires_input_keys should be [“prompts”,
“ground_truth”].

3.2 Toolkit Usage

Know-MRI offers two operational modes: a user
interface (UI) and a code-based usage. The follow-
ing sections will explain how to use Know-MRI
through each mode in turn.
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Figure 3: User interface (UI) of Know-MRI.

3.2.1 UI-based Usage

Using a UI-based approach enables beginners to
get started more quickly and allows researchers to
rapidly invoke existing interpretation methods. As
shown in Figure 3, Know-MRI’s UI is meticulously
designed to be intuitive and user-friendly:

Know-MRI is easy to use. Users can compre-
hensively interpret models with simple click op-
erations. In the upper left corner, users can select
their preferred dataset or enter Custom Input. In the
lower left corner, they can choose the correspond-
ing model and the interpretation methods provided
by Know-MRI. In the top right corner, users can
utilize the “Search” button to select data and click
“Diagnose” to perform interpretation. Additionally,
Know-MRI integrates several interpretation meth-
ods with identical output forms (e.g. KN (Dai et al.,
2022) and FINE (Pan et al., 2025)) to assist users
in better comparison.

Know-MRI is easy to understand. For each in-
terpretation method, Know-MRI provides template-
based descriptions. As illustrated in Figure 3,
Know-MRI offers explanations of how to read the
results of the KN (Dai et al., 2022) and highlights
significant points.

Know-MRI is flexible in handling user input.
Recognizing that users may occasionally provide
imprecise or unconventional queries, Know-MRI
employs a dual technique: 1) GPT-4o (OpenAI,
2024b) rewrites users’ inputs into the anticipated

form. 2) BGE-base (Xiao et al., 2023) searches
for relevant knowledge within existing datasets.
As illustrated in Figure 3, Know-MRI effectively
handles atypical inputs like I’m curious about

“MacApp, a product created by Apple”.

3.2.2 Code-based Usage

To enable researchers to efficiently apply exist-
ing interpretation methods in experimental settings,
Know-MRI implements a code-based usage.

Figure 4: A code example of Know-MRI.

As shown in Figure 4, the framework demon-
strates remarkable operational efficiency by requir-
ing only concise code snippets (8 lines) to imple-
ment the KN method (Dai et al., 2022) on the
dataset Known 1000 (Meng et al., 2022). The same
applies to other interpretation methods as well.
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4 Case Study and Evaluation

In this section, we will utilize the Know-MRI to
evaluate LLMs from three axes: a use case, ex-
tended application and human evaluation.

4.1 Use Case

In this experiment, we employ the UI-based usage
of Know-MRI.

Experimental Setup Our experiment involves
the interpretation of Llama2-7B (Touvron et al.,
2023) using a random sample from the fundamental
knowledge dataset Know 1000.

Result With the help of Know-MRI, we can have
some interesting findings with comparison and thus
validate the correctness of Know-MRI.

Method Top neurons Top tokens

FINE

L18.U327 [“Apple”, “apple”, “Mac”]
L31.U3849 [“Harry”, “Dick”, “Frank”]
L29.U3216 [“Mac”, “mac”, “Mac”]
L29.U3893 [“Apple”, “Microsoft”, “Canadian”]

KN

L1.U6972 [“elin”, “符”, “argent”]
L1.U4503 [“ederb”, “curity”, “atos”]

L29.U3216 [“Mac”, “mac”, “Mac”]
L20.U7356 [“Warner”, “Sony”, “companies”]

Table 3: Comparison between top-4 neurons selected
by different methods.

Comparison between KN and FINE: By uti-
lizing the model’s unembedding parameters during
computation, FINE effectively incorporates richer
semantic representations. This integration enables
FINE’s localization results to exhibit stronger se-
mantic alignment with the input context. To il-
lustrate, consider the input example: MacApp, a
product created by (Apple). As shown in Table
3, FINE’s localization outputs demonstrate more
correlations with the ground truth. Our results are
aligned with Dai et al. (2022) and Pan et al. (2025).
Additionally, an intriguing discovery is that both
KN and FINE identify the neurons corresponding
to the subject in the prompt. The results in Ap-
pendix D.1 also support this finding. The mutual
corroboration seen in different methods further
demonstrates the effectiveness of Know-MRI.

We include the results of other interpretation
methods in Appendix D. Generally, user-friendly
UI-based usage allows users to comprehensively
analyze the knowledge mechanisms of LLMs.

4.2 Extended Application
To further verify the potential utility of Know-MRI,
we conduct capability localization experiments us-
ing Know-MRI. Specifically, code-based usage of
Know-MRI is used in the experiments.

Experimental Setup Our experiment involves
the interpretation of Llama2-7B (Touvron et al.,
2023) using the capability knowledge datasets
(GSM8K and Emotion). The contribution of jth

neuron ωl,j at layer l under the dataset D = {(x =
[x1, · · · , xX ], y = [y1, · · · , yY ])} is computed as:

Score(ωl,j) =

E(x,y)∈D


 1

Y

1

S

Y∑

m=1

ωl,j
Zm

[zm]
S∑

n=0

∂Pz,ym(n
S
ωl,j
Zm

[zm])

∂ωl,j
Zm

[zm]


 ,

zm = x⊕ y0:m−1

where x is the input prompt and y is the corre-
sponding ground truth. ωl,j

Zm
[zm] is the activation

value of neuron ωl,j and ⊕ means a splice of two
text. Other settings are aligned with Huang et al.
(2025). In the experiment, we employ the code-
based usage methodology of Know-MRI. We use
the overlap and IOU as location consistency ratio.
Specifically, for two sets of neurons a, b located
under different subset from the same dataset D:

overlap =

|a∩b|
|a| + |a∩b|

|b|
2

, IoU =
|a ∩ b|
|a ∪ b| .

The location consistency ratio refers to the fidelity
of a localization method to a dataset.

1 2 3 4 5 6 7

per 100 data

84

86

88

90

92

94

96

98

ra
tio

IoU-GSM8K
overlap-GSM8K
IoU-Emotion
overlap-Emotion

Figure 5: The relationship between location consistency
ratio and the number of data.

Result Figure 5 demonstrates that the location
consistency ratio will gradually converge with in-
creasing data. This result is the same as Huang
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et al. (2025). On the GSM8K dataset, the overlap
and IOU scores are 98% and 96%, respectively.
Meanwhile, on the Emotion dataset, these metrics
reach 94% and 90%. We also provide the visu-
alization of capability neurons in the Appendix
E. Additionally, we conduct the neuron enhance-
ment experiments in Table 4, which are similar
with Huang et al. (2025). Specifically, we fine-tune
the neurons whose contribution scores lie outside
the range of 3 and 6 standard deviations σ. After
10 epochs, the located performance surpasses that
of fine-tuning an equivalent quantity of random
neurons and all the neurons excluding the localized
ones (w/o located). Generally, the code-based us-
age of Know-MRI can effectively support users
in customized experiments.

Model Method
epoch = 10

GSM8K Emotion Code25K Avg.

Llama2-7B (σ = 6)
random 5.25 14.99 53.05 24.43

w/o located 25.06 49.99 46.48 40.51
located 25.56 44.13 55.66 41.78

Llama2-7B (σ = 3)
random 23.75 26.79 53.47 34.67

w/o located 25.19 19.29 42.77 29.08
located 26.31 51.63 56.02 44.65

Table 4: Enhancement experiment on different sets of
neurons with 10 epochs. In the table, located neurons
with different standard deviations σ, equivalent random
neurons and all the neurons excluding the localized ones
(w/o located) are enhanced. The best results are in bold
and underline means the suboptimal.

4.3 Human Evaluation
To comprehensively evaluate the effectiveness of
Know-MRI, we invite ten independent researchers
from the interpretation community who are not
involved in this project.

Experimental Setup The researchers are al-
lowed to use each toolkit freely. The evaluation
framework consisted of four key dimensions: input
diversity (ID), input flexibility (IF), method diver-
sity (MD), and user-friendliness (UF). The max
score is 5. The questionnaire can be found at our
Google Forms.

Result From Figure 6, results indicate that
Know-MRI is highly evaluated in terms of user
experience.

5 Conclusion

Know-MRI is a comprehensive toolkit for analyz-
ing knowledge mechanisms in LLMs. It is or-
ganized around three core components—models,

ID IF MD UF

evaluation dimensions

3.0

3.5

4.0

4.5

5.0

sc
or

es

LIT
Ecco
LM-Debugger
Inseq
LM-TT
Know-MRI

Figure 6: Human evaluation on existing toolkits.

datasets, and interpretation methods—with exten-
sible interfaces for community development. We
also provide dual interaction modes: a UI-based
interface and code-based usage. Case studies and
human evaluations demonstrate Know-MRI’s holis-
tic design and usability advantages.

Acknowledgments

This work was supported by the National Key R&D
Program of China (No. 2022ZD0160503) and Bei-
jing Natural Science Foundation (L243006) and
the National Natural Science Foundation of China
(No. 62406321).

References
J Alammar. 2021. Ecco: An open source library for the

explainability of transformer language models. In
Proceedings of the 59th Annual Meeting of the Asso-
ciation for Computational Linguistics and the 11th
International Joint Conference on Natural Language
Processing: System Demonstrations, pages 249–257,
Online. Association for Computational Linguistics.

Baichuan. 2023. Baichuan 2: Open large-scale lan-
guage models. arXiv preprint arXiv:2309.10305.

Ruizhe Chen, Yichen Li, Zikai Xiao, and Zuozhu Liu.
2024. Large language model bias mitigation from
the perspective of knowledge editing. Preprint,
arXiv:2405.09341.

Yuheng Chen, Pengfei Cao, Yubo Chen, Kang Liu, and
Jun Zhao. 2023. Journey to the center of the knowl-
edge neurons: Discoveries of language-independent
knowledge neurons and degenerate knowledge neu-
rons. Preprint, arXiv:2308.13198.

Yuheng Chen, Pengfei Cao, Yubo Chen, Kang Liu, and
Jun Zhao. 2025a. Knowledge localization: Mis-
sion not accomplished? enter query localization!
Preprint, arXiv:2405.14117.

205

https://docs.google.com/forms/d/e/1FAIpQLSepRhQXfVYklQHWUzu5IbQRLH0d8--BdNJHVK9SXzmDnUKOaA/viewform?usp=sharing&ouid=103993125125082753123
https://doi.org/10.18653/v1/2021.acl-demo.30
https://doi.org/10.18653/v1/2021.acl-demo.30
https://arxiv.org/abs/2309.10305
https://arxiv.org/abs/2309.10305
https://arxiv.org/abs/2405.09341
https://arxiv.org/abs/2405.09341
https://arxiv.org/abs/2308.13198
https://arxiv.org/abs/2308.13198
https://arxiv.org/abs/2308.13198
https://arxiv.org/abs/2308.13198
https://arxiv.org/abs/2405.14117
https://arxiv.org/abs/2405.14117


Yuheng Chen, Pengfei Cao, Kang Liu, and Jun Zhao.
2025b. The knowledge microscope: Features as
better analytical lenses than neurons. Preprint,
arXiv:2502.12483.

Hyung Won Chung, Le Hou, Shayne Longpre, Barret
Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi Wang,
Mostafa Dehghani, Siddhartha Brahma, Albert Web-
son, Shixiang Shane Gu, Zhuyun Dai, Mirac Suz-
gun, Xinyun Chen, Aakanksha Chowdhery, Sharan
Narang, Gaurav Mishra, Adams Yu, Vincent Zhao,
Yanping Huang, Andrew Dai, Hongkun Yu, Slav
Petrov, Ed H. Chi, Jeff Dean, Jacob Devlin, Adam
Roberts, Denny Zhou, Quoc V. Le, and Jason Wei.
2022. Scaling instruction-finetuned language models.
arXiv preprint.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, Christopher Hesse, and John Schulman.
2021. Training verifiers to solve math word prob-
lems. arXiv preprint arXiv:2110.14168.

Damai Dai, Li Dong, Yaru Hao, Zhifang Sui, Baobao
Chang, and Furu Wei. 2022. Knowledge neurons in
pretrained transformers. In Proceedings of the 60th
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 8493–
8502, Dublin, Ireland. Association for Computational
Linguistics.

DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang,
Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang,
Xingkai Yu, Yu Wu, Z. F. Wu, Zhibin Gou, Zhihong
Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue,
Bingxuan Wang, Bochao Wu, Bei Feng, Chengda Lu,
Chenggang Zhao, Chengqi Deng, Chenyu Zhang,
Chong Ruan, Damai Dai, Deli Chen, Dongjie Ji,
Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo,
Guangbo Hao, Guanting Chen, Guowei Li, H. Zhang,
Han Bao, Hanwei Xu, Haocheng Wang, Honghui
Ding, Huajian Xin, Huazuo Gao, Hui Qu, Hui Li,
Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang
Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L.
Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai Dong, Kai
Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai
Yu, Lean Wang, Lecong Zhang, Liang Zhao, Litong
Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan
Zhang, Minghua Zhang, Minghui Tang, Meng Li,
Miaojun Wang, Mingming Li, Ning Tian, Panpan
Huang, Peng Zhang, Qiancheng Wang, Qinyu Chen,
Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan,
Runji Wang, R. J. Chen, R. L. Jin, Ruyi Chen,
Shanghao Lu, Shangyan Zhou, Shanhuang Chen,
Shengfeng Ye, Shiyu Wang, Shuiping Yu, Shunfeng
Zhou, Shuting Pan, S. S. Li, Shuang Zhou, Shaoqing
Wu, Shengfeng Ye, Tao Yun, Tian Pei, Tianyu Sun,
T. Wang, Wangding Zeng, Wanjia Zhao, Wen Liu,
Wenfeng Liang, Wenjun Gao, Wenqin Yu, Wentao
Zhang, W. L. Xiao, Wei An, Xiaodong Liu, Xiaohan
Wang, Xiaokang Chen, Xiaotao Nie, Xin Cheng, Xin
Liu, Xin Xie, Xingchao Liu, Xinyu Yang, Xinyuan Li,
Xuecheng Su, Xuheng Lin, X. Q. Li, Xiangyue Jin,

Xiaojin Shen, Xiaosha Chen, Xiaowen Sun, Xiaoxi-
ang Wang, Xinnan Song, Xinyi Zhou, Xianzu Wang,
Xinxia Shan, Y. K. Li, Y. Q. Wang, Y. X. Wei, Yang
Zhang, Yanhong Xu, Yao Li, Yao Zhao, Yaofeng
Sun, Yaohui Wang, Yi Yu, Yichao Zhang, Yifan Shi,
Yiliang Xiong, Ying He, Yishi Piao, Yisong Wang,
Yixuan Tan, Yiyang Ma, Yiyuan Liu, Yongqiang Guo,
Yuan Ou, Yuduan Wang, Yue Gong, Yuheng Zou, Yu-
jia He, Yunfan Xiong, Yuxiang Luo, Yuxiang You,
Yuxuan Liu, Yuyang Zhou, Y. X. Zhu, Yanhong Xu,
Yanping Huang, Yaohui Li, Yi Zheng, Yuchen Zhu,
Yunxian Ma, Ying Tang, Yukun Zha, Yuting Yan,
Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean
Xu, Zhenda Xie, Zhengyan Zhang, Zhewen Hao,
Zhicheng Ma, Zhigang Yan, Zhiyu Wu, Zihui Gu, Zi-
jia Zhu, Zijun Liu, Zilin Li, Ziwei Xie, Ziyang Song,
Zizheng Pan, Zhen Huang, Zhipeng Xu, Zhongyu
Zhang, and Zhen Zhang. 2025. Deepseek-r1: Incen-
tivizing reasoning capability in llms via reinforce-
ment learning. Preprint, arXiv:2501.12948.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. BERT: pre-training of
deep bidirectional transformers for language under-
standing. CoRR, abs/1810.04805.

Mor Geva, Avi Caciularu, Guy Dar, Paul Roit, Shoval
Sadde, Micah Shlain, Bar Tamir, and Yoav Goldberg.
2022. Lm-debugger: An interactive tool for inspec-
tion and intervention in transformer-based language
models. arXiv preprint arXiv:2204.12130.

Asma Ghandeharioun, Avi Caciularu, Adam Pearce, Lu-
cas Dixon, and Mor Geva. 2024. Patchscopes: A
unifying framework for inspecting hidden representa-
tions of language models. In Forty-first International
Conference on Machine Learning.

Team GLM, Aohan Zeng, Bin Xu, Bowen Wang, Chen-
hui Zhang, Da Yin, Diego Rojas, Guanyu Feng, Han-
lin Zhao, Hanyu Lai, Hao Yu, Hongning Wang, Ji-
adai Sun, Jiajie Zhang, Jiale Cheng, Jiayi Gui, Jie
Tang, Jing Zhang, Juanzi Li, Lei Zhao, Lindong Wu,
Lucen Zhong, Mingdao Liu, Minlie Huang, Peng
Zhang, Qinkai Zheng, Rui Lu, Shuaiqi Duan, Shu-
dan Zhang, Shulin Cao, Shuxun Yang, Weng Lam
Tam, Wenyi Zhao, Xiao Liu, Xiao Xia, Xiaohan
Zhang, Xiaotao Gu, Xin Lv, Xinghan Liu, Xinyi Liu,
Xinyue Yang, Xixuan Song, Xunkai Zhang, Yifan
An, Yifan Xu, Yilin Niu, Yuantao Yang, Yueyan Li,
Yushi Bai, Yuxiao Dong, Zehan Qi, Zhaoyu Wang,
Zhen Yang, Zhengxiao Du, Zhenyu Hou, and Zihan
Wang. 2024. Chatglm: A family of large language
models from glm-130b to glm-4 all tools. Preprint,
arXiv:2406.12793.

Anshita Gupta, Debanjan Mondal, Akshay Sheshadri,
Wenlong Zhao, Xiang Li, Sarah Wiegreffe, and Niket
Tandon. 2023. Editing common sense in transform-
ers. In Proceedings of the 2023 Conference on Em-
pirical Methods in Natural Language Processing,
pages 8214–8232, Singapore. Association for Com-
putational Linguistics.

Shiyuan Huang, Siddarth Mamidanna, Shreedhar
Jangam, Yilun Zhou, and Leilani H. Gilpin. 2023.

206

https://arxiv.org/abs/2502.12483
https://arxiv.org/abs/2502.12483
https://doi.org/10.48550/ARXIV.2210.11416
https://doi.org/10.18653/v1/2022.acl-long.581
https://doi.org/10.18653/v1/2022.acl-long.581
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/2401.06102
https://arxiv.org/abs/2401.06102
https://arxiv.org/abs/2401.06102
https://arxiv.org/abs/2406.12793
https://arxiv.org/abs/2406.12793
https://doi.org/10.18653/v1/2023.emnlp-main.511
https://doi.org/10.18653/v1/2023.emnlp-main.511


Can large language models explain themselves? a
study of llm-generated self-explanations. Preprint,
arXiv:2310.11207.

Xiusheng Huang, Jiaxiang Liu, Yequan Wang, and Kang
Liu. 2024. Reasons and solutions for the decline in
model performance after editing. In Advances in
Neural Information Processing Systems, volume 37,
pages 68833–68853. Curran Associates, Inc.

Xiusheng Huang, Jiaxiang Liu, Yequan Wang, Jun Zhao,
and Kang Liu. 2025. Capability localization: Capa-
bilities can be localized rather than individual knowl-
edge. In The Thirteenth International Conference on
Learning Representations.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guil-
laume Lample, Lucile Saulnier, Lélio Renard Lavaud,
Marie-Anne Lachaux, Pierre Stock, Teven Le Scao,
Thibaut Lavril, Thomas Wang, Timothée Lacroix,
and William El Sayed. 2023. Mistral 7b. Preprint,
arXiv:2310.06825.

Shahar Katz and Yonatan Belinkov. 2023. VISIT: Vi-
sualizing and interpreting the semantic information
flow of transformers. In Findings of the Association
for Computational Linguistics: EMNLP 2023, pages
14094–14113, Singapore. Association for Computa-
tional Linguistics.

Omer Levy, Minjoon Seo, Eunsol Choi, and Luke
Zettlemoyer. 2017. Zero-shot relation extraction via
reading comprehension. In Proceedings of the 21st
Conference on Computational Natural Language
Learning (CoNLL 2017), pages 333–342, Vancouver,
Canada. Association for Computational Linguistics.

Andrew L. Maas, Raymond E. Daly, Peter T. Pham,
Dan Huang, Andrew Y. Ng, and Christopher Potts.
2011. Learning word vectors for sentiment analysis.
In Proceedings of the 49th Annual Meeting of the
Association for Computational Linguistics: Human
Language Technologies, pages 142–150, Portland,
Oregon, USA. Association for Computational Lin-
guistics.

Kevin Meng, David Bau, Alex Andonian, and Yonatan
Belinkov. 2022. Locating and editing factual asso-
ciations in GPT. Advances in Neural Information
Processing Systems, 36. ArXiv:2202.05262.

nostalgebraist. 2020. interpreting gpt: the logit lens. In
LESSWRONG.

OpenAI. 2024a. Gpt-4 technical report. Preprint,
arXiv:2303.08774.

OpenAI. 2024b. Gpt-4o system card. Preprint,
arXiv:2410.21276.

Haowen Pan, Xiaozhi Wang, Yixin Cao, Zenglin Shi,
Xun Yang, Juanzi Li, and Meng Wang. 2025. Pre-
cise localization of memories: A fine-grained neuron-
level knowledge editing technique for LLMs. In

The Thirteenth International Conference on Learn-
ing Representations.

Ian Porada, Kaheer Suleman, Adam Trischler, and
Jackie Chi Kit Cheung. 2021. Modeling event plau-
sibility with consistent conceptual abstraction. In
Proceedings of the 2021 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 1732–1743, Online. Association for Computa-
tional Linguistics.

Qwen-Team. 2024. Qwen2.5: A party of foundation
models.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. 2019. Language
models are unsupervised multitask learners. OpenAI
blog, 1(8):9.

Korbinian Randl, John Pavlopoulos, Aron Henriksson,
and Tony Lindgren. 2025. Evaluating the reliabil-
ity of self-explanations in large language models.
In Discovery Science: 27th International Confer-
ence, DS 2024, Pisa, Italy, October 14–16, 2024,
Proceedings, Part I, page 36–51, Berlin, Heidelberg.
Springer-Verlag.

Elvis Saravia, Hsien-Chi Toby Liu, Yen-Hao Huang,
Junlin Wu, and Yi-Shin Chen. 2018. CARER: Con-
textualized affect representations for emotion recog-
nition. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing,
pages 3687–3697, Brussels, Belgium. Association
for Computational Linguistics.

Gabriele Sarti, Nils Feldhus, Ludwig Sickert, and Os-
kar van der Wal. 2023. Inseq: An interpretability
toolkit for sequence generation models. In Proceed-
ings of the 61st Annual Meeting of the Association
for Computational Linguistics (Volume 3: System
Demonstrations), pages 421–435, Toronto, Canada.
Association for Computational Linguistics.

Anant Subramanian, Danish Pruthi, Harsh Jhamtani,
Taylor Berg-Kirkpatrick, and Eduard Hovy. 2018.
Spine: Sparse interpretable neural embeddings. Pro-
ceedings of the Thirty Second AAAI Conference on
Artificial Intelligence (AAAI).

Mukund Sundararajan, Ankur Taly, and Qiqi Yan. 2017.
Axiomatic attribution for deep networks. In Pro-
ceedings of the 34th International Conference on
Machine Learning, volume 70 of Proceedings of Ma-
chine Learning Research, pages 3319–3328. PMLR.

Ian Tenney, James Wexler, Jasmijn Bastings, Tolga
Bolukbasi, Andy Coenen, Sebastian Gehrmann,
Ellen Jiang, Mahima Pushkarna, Carey Radebaugh,
Emily Reif, and Ann Yuan. 2020. The language inter-
pretability tool: Extensible, interactive visualizations
and analysis for NLP models. In Proceedings of
the 2020 Conference on Empirical Methods in Nat-
ural Language Processing: System Demonstrations,
pages 107–118, Online. Association for Computa-
tional Linguistics.

207

https://arxiv.org/abs/2310.11207
https://arxiv.org/abs/2310.11207
https://proceedings.neurips.cc/paper_files/paper/2024/file/7f588e59e9ae6138d3ea9e4fdaa7e040-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/7f588e59e9ae6138d3ea9e4fdaa7e040-Paper-Conference.pdf
https://openreview.net/forum?id=f6r1mYwM1g
https://openreview.net/forum?id=f6r1mYwM1g
https://openreview.net/forum?id=f6r1mYwM1g
https://arxiv.org/abs/2310.06825
https://doi.org/10.18653/v1/2023.findings-emnlp.939
https://doi.org/10.18653/v1/2023.findings-emnlp.939
https://doi.org/10.18653/v1/2023.findings-emnlp.939
https://doi.org/10.18653/v1/K17-1034
https://doi.org/10.18653/v1/K17-1034
http://www.aclweb.org/anthology/P11-1015
https://www.lesswrong.com/posts/AcKRB8wDpdaN6v6ru/interpreting-gpt-the-logit-lens
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2410.21276
https://openreview.net/forum?id=5xP1HDvpXI
https://openreview.net/forum?id=5xP1HDvpXI
https://openreview.net/forum?id=5xP1HDvpXI
https://doi.org/10.18653/v1/2021.naacl-main.138
https://doi.org/10.18653/v1/2021.naacl-main.138
https://qwenlm.github.io/blog/qwen2.5/
https://qwenlm.github.io/blog/qwen2.5/
https://doi.org/10.1007/978-3-031-78977-9_3
https://doi.org/10.1007/978-3-031-78977-9_3
https://doi.org/10.18653/v1/D18-1404
https://doi.org/10.18653/v1/D18-1404
https://doi.org/10.18653/v1/D18-1404
https://doi.org/10.18653/v1/2023.acl-demo.40
https://doi.org/10.18653/v1/2023.acl-demo.40
https://proceedings.mlr.press/v70/sundararajan17a.html
https://doi.org/10.18653/v1/2020.emnlp-demos.15
https://doi.org/10.18653/v1/2020.emnlp-demos.15
https://doi.org/10.18653/v1/2020.emnlp-demos.15


Jörg Tiedemann. 2012. Parallel data, tools and inter-
faces in OPUS. In Proceedings of the Eighth In-
ternational Conference on Language Resources and
Evaluation (LREC’12), pages 2214–2218, Istanbul,
Turkey. European Language Resources Association
(ELRA).

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu,
Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller,
Cynthia Gao, Vedanuj Goswami, Naman Goyal, An-
thony Hartshorn, Saghar Hosseini, Rui Hou, Hakan
Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa,
Isabel Kloumann, Artem Korenev, Punit Singh Koura,
Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Di-
ana Liskovich, Yinghai Lu, Yuning Mao, Xavier Mar-
tinet, Todor Mihaylov, Pushkar Mishra, Igor Moly-
bog, Yixin Nie, Andrew Poulton, Jeremy Reizen-
stein, Rashi Rungta, Kalyan Saladi, Alan Schelten,
Ruan Silva, Eric Michael Smith, Ranjan Subrama-
nian, Xiaoqing Ellen Tan, Binh Tang, Ross Tay-
lor, Adina Williams, Jian Xiang Kuan, Puxin Xu,
Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan,
Melanie Kambadur, Sharan Narang, Aurelien Ro-
driguez, Robert Stojnic, Sergey Edunov, and Thomas
Scialom. 2023. Llama 2: Open foundation and fine-
tuned chat models. Preprint, arXiv:2307.09288.

Igor Tufanov, Karen Hambardzumyan, Javier Ferrando,
and Elena Voita. 2024. LM transparency tool: In-
teractive tool for analyzing transformer language
models. In Proceedings of the 62nd Annual Meet-
ing of the Association for Computational Linguistics
(Volume 3: System Demonstrations), pages 51–60,
Bangkok, Thailand. Association for Computational
Linguistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, volume 30. Curran Associates, Inc.

Ben Wang and Aran Komatsuzaki. 2021. GPT-J-
6B: A 6 Billion Parameter Autoregressive Lan-
guage Model. https://github.com/kingoflolz/
mesh-transformer-jax.

Mengru Wang, Yunzhi Yao, Ziwen Xu, Shuofei Qiao,
Shumin Deng, Peng Wang, Xiang Chen, Jia-Chen Gu,
Yong Jiang, Pengjun Xie, Fei Huang, Huajun Chen,
and Ningyu Zhang. 2024a. Knowledge mechanisms
in large language models: A survey and perspective.
In Findings of the Association for Computational
Linguistics: EMNLP 2024, pages 7097–7135, Mi-
ami, Florida, USA. Association for Computational
Linguistics.

Xiaohan Wang, Shengyu Mao, Shumin Deng, Yun-
zhi Yao, Yue Shen, Lei Liang, Jinjie Gu, Huajun
Chen, and Ningyu Zhang. 2024b. Editing concep-
tual knowledge for large language models. In Find-
ings of the Association for Computational Linguistics:

EMNLP 2024, pages 706–724, Miami, Florida, USA.
Association for Computational Linguistics.

Shitao Xiao, Zheng Liu, Peitian Zhang, and Niklas
Muennighoff. 2023. C-pack: Packaged resources
to advance general chinese embedding. Preprint,
arXiv:2309.07597.

Yunzhi Yao, Ningyu Zhang, Zekun Xi, Mengru Wang,
Ziwen Xu, Shumin Deng, and Huajun Chen. 2024.
Knowledge circuits in pretrained transformers. In
The Thirty-eighth Annual Conference on Neural In-
formation Processing Systems.

Longhui Yu, Weisen Jiang, Han Shi, Jincheng Yu,
Zhengying Liu, Yu Zhang, James T Kwok, Zhen-
guo Li, Adrian Weller, and Weiyang Liu. 2023.
Metamath: Bootstrap your own mathematical ques-
tions for large language models. arXiv preprint
arXiv:2309.12284.

Biao Zhang, Philip Williams, Ivan Titov, and Rico Sen-
nrich. 2020. Improving massively multilingual neu-
ral machine translation and zero-shot translation. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 1628–
1639, Online. Association for Computational Linguis-
tics.

Pan Zhang, Xiaoyi Dong, Yuhang Cao, Yuhang Zang,
Rui Qian, Xilin Wei, Lin Chen, Yifei Li, Junbo Niu,
Shuangrui Ding, Qipeng Guo, Haodong Duan, Xin
Chen, Han Lv, Zheng Nie, Min Zhang, Bin Wang,
Wenwei Zhang, Xinyue Zhang, Jiaye Ge, Wei Li,
Jingwen Li, Zhongying Tu, Conghui He, Xingcheng
Zhang, Kai Chen, Yu Qiao, Dahua Lin, and Ji-
aqi Wang. 2024. Internlm-xcomposer2.5-omnilive:
A comprehensive multimodal system for long-term
streaming video and audio interactions.

208

http://www.lrec-conf.org/proceedings/lrec2012/pdf/463_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2012/pdf/463_Paper.pdf
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2307.09288
https://doi.org/10.18653/v1/2024.acl-demos.6
https://doi.org/10.18653/v1/2024.acl-demos.6
https://doi.org/10.18653/v1/2024.acl-demos.6
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://github.com/kingoflolz/mesh-transformer-jax
https://github.com/kingoflolz/mesh-transformer-jax
https://doi.org/10.18653/v1/2024.findings-emnlp.416
https://doi.org/10.18653/v1/2024.findings-emnlp.416
https://doi.org/10.18653/v1/2024.findings-emnlp.40
https://doi.org/10.18653/v1/2024.findings-emnlp.40
https://arxiv.org/abs/2309.07597
https://arxiv.org/abs/2309.07597
https://openreview.net/forum?id=YVXzZNxcag
https://doi.org/10.18653/v1/2020.acl-main.148
https://doi.org/10.18653/v1/2020.acl-main.148
https://arxiv.org/abs/2412.09596
https://arxiv.org/abs/2412.09596
https://arxiv.org/abs/2412.09596


A Appendix / Interpretation Datasets

To systematically investigate the knowledge mecha-
nisms in LLMs, researchers have developed diverse
datasets across multiple categories. The founda-
tional datasets primarily focus on knowledge repre-
sentation types, including: 1) commonsense knowl-
edge (Levy et al., 2017; Porada et al., 2021; Meng
et al., 2022; Gupta et al., 2023), 2) biased knowl-
edge (Chen et al., 2024), 3) counterfactual knowl-
edge (Meng et al., 2022), 4) conceptual knowledge
(Wang et al., 2024b), etc. In addition, substantial
efforts have been devoted to developing capability-
oriented datasets for assessing specific LLM’s ca-
pabilities, such as mathematical reasoning (Cobbe
et al., 2021; Yu et al., 2023), sentiment understand-
ing (Maas et al., 2011; Saravia et al., 2018), and
multilingual translation (Tiedemann, 2012; Zhang
et al., 2020).

B Appendix / Datasets Involved

Here are datasets involved in Know-MRI:

ZsRE ZsRE (Levy et al., 2017) is prepared for
zero-shot relation extraction task.

PEP3k PEP3K (Porada et al., 2021) is a physical
plausibility commonsense dataset with positive and
negative labels.

Known-1000 Known-1000 (Meng et al., 2022)
includes a large amount of question pairs based on
common sense, facts, and background knowledge,
as well as the knowledge triples.

20Q 20Q is a collection of 20 Questions style
games, crowdsourced by expert.

Concept edit Concept edit (Wang et al., 2024b)
dataset is prepared for editing concept knowledge.

CounterFact CounterFact (Meng et al., 2022)
dataset consists of counterfactual information
based on Wikidata.

Bias neuron data Bias neuron data (Chen et al.,
2024) contains bias quiz pairs to detect biased neu-
rons in the LLM.

GSM8K GSM8K (Cobbe et al., 2021) contains
approximately 8,000 elementary math problems
with detailed solutions, designed to train mathemat-
ical reasoning models.

Meta Math Meta Math (Yu et al., 2023) focused
on meta-learning for math problems, aimed at en-
hancing the model’s adaptive learning and reason-
ing capabilities.

Imdb Imdb (Maas et al., 2011) contains movie
reviews and ratings, widely used for sentiment anal-
ysis and recommendation system research.

Emotion Emotion (Saravia et al., 2018) with text
data labeled with various emotions, suitable for
sentiment analysis tasks, including social media
posts and comments.

Opus Books Opus Books (Tiedemann, 2012) is
a collection of copyright free books containing 16
languages.

Opus 100 Opus 100 (Zhang et al., 2020) is an
English-centric multilingual corpus covering 100
languages.

C Appendix / Template Keys

Through extensive research on diverse datasets, we
have identified several key inputs supported by ex-
isting interpretation methods. As demonstrated
in Figure 7, these keys provide a foundational
framework for dataset construction. Meanwhile,
researchers are encouraged to extend this taxon-
omy by incorporating domain-specific parameters
that align with their particular experimental require-
ments.

Figure 7: The supportive template keys and their mean-
ing of Know-MRI. Users can also add corresponding
keys as needed.

D Appendix / Additional Results on the
Sample of Know 1000

D.1 Comparison between Causal Tracing and
Integrated Gradients

Despite the differences in calculation methods, the
results obtained by Causal Tracing (Meng et al.,
2022) and Integrated Gradients (Sundararajan et al.,
2017) exhibit a certain degree of similarity. The
results from Figure 8 and Figure 9 collectively indi-
cate: the impact of APP token on the output is the
most significant. Combining the results of neuron
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localization, we can find that for a factual input,
the subject has a significant impact on the model’s
prediction.

(a) Impact of restoring state.

(b) Impact of restoring attention layer.

(c) Impact of restoring MLP layer.

Figure 8: Causal Traceing’s outputs.

From the Figure 8, the result of MLP demon-
strates that the impact of the last subject token on
the output is the most significant, which also aligns
with Meng et al. (2022).

As shown in the figure 9, the APP token demon-
strates the most significant influence on model out-
puts, which corroborates our conclusion from the
previous section. This alignment between exper-
imental observation proves the effectiveness of
Know-MRI.

D.2 Comparison between Logit Lens and
PatchScopes

Enabling LLMs to analyze their own hidden states
via in-context learning, PatchScopes demonstrates
the capability to predict the model’s output at ear-
lier layers. In the previously mentioned example,

Figure 9: Attribution score computed by Integrated Gra-
dients method.

while Logit Lens requires processing through the
final (32nd) layer to arrive at the prediction “Ap-
ple”, PatchScopes successfully interprets hidden
states as early as the 27th layer to reach the same
correct prediction. This result is corresponding
with Ghandeharioun et al. (2024).

E Appendix / Visualisation of Capacity
Neurons
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(a) GSM8K
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(b) Emotion

Figure 10: We visualize the contribution score of the
capacity neurons.
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