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Abstract

A persistent challenge in AI is the effective in-
tegration of material and formal inference – the
former concerning the plausibility and contex-
tual relevance of arguments, while the latter
focusing on their logical and structural valid-
ity. Large Language Models (LLMs), by virtue
of their extensive pre-training on large textual
corpora, exhibit strong capabilities in material
inference. However, their reasoning often lacks
formal rigour and verifiability. At the same
time, LLMs’ linguistic competence positions
them as a promising bridge between natural
and formal languages, opening up new oppor-
tunities for combining these two modes of rea-
soning. In this paper, we introduce PEIRCE, a
neuro-symbolic framework designed to unify
material and formal inference through an it-
erative conjecture–criticism process. Within
this framework, LLMs play the central role of
generating candidate solutions in natural and
formal languages, which are then evaluated
and refined via interaction with external cri-
tique models. These critiques include symbolic
provers, which assess formal validity, as well
as soft evaluators that measure the quality of
the generated arguments along linguistic and
epistemic dimensions such as plausibility, co-
herence, and parsimony. While PEIRCE is a
general-purpose framework, we demonstrate
its capabilities in the domain of natural lan-
guage explanation generation – a setting that
inherently demands both material adequacy and
formal correctness.

1 Introduction

A core challenge in Artificial Intelligence (AI) is
the integration of material and formal inference
(Mahowald et al., 2024; Guo et al., 2025; Cheng
et al., 2025; Dasgupta et al., 2022; Valentino and
Freitas, 2024b; Hamilton et al., 2024; Kambham-
pati et al., 2024). Drawing from classical distinc-

*Equal contribution. For Marco Valentino, the work was
done at Idiap under the NeuMath project.

tions in logic and philosophy of science (Brandom,
1994; Haack, 1978), formal inference concerns the
structural validity of arguments – whether conclu-
sions follow necessarily from a set of premises
according to fixed syntactic rules – while mate-
rial inference is concerned with the plausibility of
those arguments and their grounding in background
knowledge, context, and domain-specific assump-
tions. Despite their complementary nature, these
forms of inference are typically handled by distinct
types of systems in AI: symbolic provers for for-
mal reasoning, and statistical or neural models for
material inference.

Recently, the advent of Large Language Mod-
els (LLMs) offers new opportunities for bridging
these two modalities (Xu et al., 2024; Gandarela
et al., 2024; Morishita et al., 2024; Ranaldi et al.,
2025). Their linguistic fluency and access to broad
world knowledge, in fact, enable them to gener-
ate candidate solutions that approximate material
reasoning. Simultaneously, emerging work has
shown that LLMs can support autoformalisation,
translating natural language content into structured
logical forms suitable for downstream symbolic
verification (Quan et al., 2024b; Pan et al., 2023;
Olausson et al., 2023; Jiang et al., 2024; Kirtania
et al., 2024). This creates an opportunity for hybrid
neuro-symbolic architectures that leverage the in-
terpretive strengths of LLMs alongside the rigour
of symbolic solvers.

This paper presents PEIRCE, a modular and ex-
tensible framework for modelling iterative reason-
ing workflows that unify material and formal infer-
ence. PEIRCE implements a conjecture–criticism
cycle, in which LLMs generate candidate solutions
in natural and formal languages, and a suite of ex-
ternal critique models – ranging from formal proof
assistants to linguistic and semantic evaluators –
assessing the quality of the generated solutions
according to multiple criteria, including logical va-
lidity, plausibility, coherence, and parsimony.
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Figure 1: Overall architecture of PEIRCE. The framework provides an extensible and modular environment for
unifying material and formal inference in natural language via a conjecture-criticism process. PEIRCE supports
controllability and formal error correction mechanisms for implementing a complete end-to-end iterative refinement
pipeline for explanatory arguments generated by LLMs.

To demonstrate the capabilities of PEIRCE, we
focus on the task of natural language explanation
generation as a representative case study. Expla-
nations constitute a particularly useful testbed for
reasoning, as they must simultaneously satisfy for-
mal and material constraints (Valentino and Freitas,
2024a). We evaluated the framework across sev-
eral domains and datasets spanning from textual
entailment (Camburu et al., 2018), scientific ques-
tion answering (Jansen and Ustalov, 2020; Dalvi
et al., 2021), and clinical hypothesis verification,
showing how PEIRCE effectively enables the gen-
eration, evaluation and refinement of high-quality
explanatory arguments.

2 PEIRCE: Unifying Material and
Formal Reasoning

PEIRCE provides an extensible and modular envi-
ronment for modelling and unifying material and
formal reasoning via a conjecture-criticism cycle.
The overall architecture of PEIRCE is illustrated
in Figure 1. The core functionality offered by the
framework is the automation of an iterative refine-
ment pipeline for natural language inference tasks
in different domains. This pipeline is typically
organised into three distinct stages implemented
through the orchestration of customisable compo-

nents – i.e., (1) retrieval-augmentation, (2) mate-
rial inference, and (3) verification and critique.

Given an NLI problem as input (e.g., answer-
ing a question, predicting an entailment relation,
verifying a scientific claim or a hypothesis, etc.),
the first stage in the process involves querying ex-
ternal knowledge bases (Section 2.1) via retrieval
models (Section 2.2) to select relevant premises
to support reasoning. Subsequently, the retrieved
knowledge can be provided in context to a genera-
tive model to generate an approximate solution in
natural language (Section 2.3). The solution pro-
posed by the generative model is then criticised
by a suite of hard and soft critique models, which
might use an internal formalisation stage (Section
2.4). The critiques’ feedback can then be fed back
to the generative model to refine the solution in the
next iteration and improve its quality (Section 2.5).

PEIRCE provides abstract interfaces to instanti-
ate and customise the iterative refinement pipeline,
facilitating modularity and extensibility.

2.1 Data Model
PEIRCE integrates a data model interface designed
for storing and retrieving knowledge from corpora
of annotated premises. The data model is designed
to be general, efficient, and extensible in order to
cover a diverse set of knowledge bases supporting
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explanatory reasoning in different domains.
A knowledge base consists of a sequence of

statements that can be loaded and navigated as a
collection. A statement is a single fact, a sentence,
or a claim (e.g., “The ‘(set) difference’ between
two sets S and T is written S \ T , and means...”),
which may refer to concrete entities, and may
be linked to a set of premises (other statements)
which together constitute an explanation of why
the statement holds (see Figure 4).

This recursive structure facilitates access to mul-
tiple datasets in a unified format oriented towards
explanatory reasoning. It is implemented in the
form of the Simple Statement Knowledge Bases
(SSKB) python package1, illustrated in Figure 4.
SSKB includes loaders for a few popular NLI
datasets, such as e-SNLI (Camburu et al., 2018),
WorldTree (Jansen et al., 2018), ProofWiki (Fer-
reira and Freitas, 2020), EntailmentBank (Dalvi
et al., 2021), and NLI4CT (Jullien et al., 2023a,b,
2024) and also facilitates linguistic annotations
through its compatibility with the Simple Anno-
tation Framework (SAF)2 NLP package.

2.2 Retrieval Models

In order to support the retrieval of relevant premises
for reasoning from the knowledge base, PEIRCE
provides an interface for implementing a suite
of retrieval models, including sparse (i.e., BM25
(Robertson et al., 1995)), dense (i.e., Sentence-
Transformers (Reimers and Gurevych, 2019)) and
hybrid models specialised for explanatory infer-
ence (i.e., Unification and SCAR (Valentino et al.,
2021b, 2022b)). The retrieval models are fully in-
tegrated with the data model to enable a dialogue
with external corpora. Moreover, PEIRCE supports
the creation of hybrid ensembles between retrieval
models, allowing for a weighted ranking function
(see Appendix B.2 for a concrete example).

2.3 Generative Models

PEIRCE implements a suite of classes to efficiently
prompt and manage the adoption of different fam-
ilies of LLMs. In particular, PEIRCE supports
full compatibility with OpenAI3 and Huggingface4

models. Different specialised classes following the
same abstract interface facilitate reusability and
extensibility for prompting LLMs for iterative re-

1https://github.com/neuro-symbolic-ai/SSKB
2https://github.com/dscarvalho/saf
3https://openai.com/index/openai-api/
4https://huggingface.co/models

finement. The generative models internally use
a class for dynamic prompting management that
allows for the runtime instantiation of specific vari-
ables. This mechanism allows for the definition
of a single prompt template that can be adapted
at execution time to run experiments on different
NLI problems (see Appendix B.3 for a concrete
example).

2.4 Critique Models

The critique models are at the core of the itera-
tive refinement process implemented in PEIRCE,
representing the mechanism adopted to identify er-
rors, inconsistencies and to determine the quality
of the solutions generated by the LLMs. To fa-
cilitate their implementation and reuse, PEIRCE
provides a suite of critique models, which can be in-
stantiated and invoked through a common interface.
In particular, PEIRCE provides the possibility of
implementing both hard and soft critiques (Kamb-
hampati et al., 2024; Dalal et al., 2024).

A hard critique model is responsible for verify-
ing formal aspects of the reasoning, such as logical
validity, and typically returns a discrete value (i.e.,
1 or 0) that characterises the correctness of a spe-
cific aspect. Because of their formal nature, hard
critique models may use an internal formalisation
process to convert natural language into machine-
verifiable languages (e.g., first-order logic). A soft
critique model, on the other hand, is responsible for
analysing linguistic and stylistic aspects of the gen-
erated solution (e.g., simplicity, uncertainty) and
returns a normalised continuous score that quanti-
fies the presence of a particular feature. Contrary
to hard critique models, soft critiques do not typi-
cally require formalisation and operate directly on
generated arguments in natural language.

A series of information can be returned within
a critique model’s output depending on its nature,
including a quality score in the case of a soft cri-
tique or the results of a formal verification (e.g.,
a logical proof) in the case of a hard critique. A
concrete example of implementation is available in
Appendix B.4.

2.4.1 Hard Critiques

Following recent work on the integration of LLMs
and proof assistants for the verification and re-
finement of explanations (Quan et al., 2024b,a),
PEIRCE provides a built-in implementation of hard
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Science QA Premise Selection

BM25 22.84 10.18
Unification 30.40 24.45
BM25 + Unification 38.72 27.09

Table 1: Explanation retrieval results (i.e., MAP) for
science question answering (i.e., WorldTree) and natural
language premise selection (i.e., ProofWiki).

critique models based on Isabelle5 and Prolog6.
These models use an internal formalisation pro-

cess (through LLMs) to convert the NLI problem
and the generated explanatory argument into a for-
mal theory (through axioms and theorems) and
verify, using a proof assistant or a symbolic solver,
whether the generated solution logically entails the
problem. If this is the case, the critique models
will judge the solution as logically valid and will
return the proof tactics found by the solver. If a
proof cannot be found, the critique models return
a detailed feedback describing the steps in which
the proof construction has failed, allowing for error
correction in a subsequent iteration.

The following is an example of proof tactics
returned by the IsabelleSolver after successful
verification:

1 'proof tactics ': ['Sledgehammering
...', 'cvc4 found a proof...', '
cvc4: Try this: using assms
explanation_1 explanation_2 by
blast (1 ms)', 'vampire found a
proof...', 'vampire: Found
duplicate proof ', 'spass found a
proof...', 'spass: Found
duplicate proof ', 'zipperposition
found a proof...', '

zipperposition: Found duplicate
proof ', 'Done ']

2.4.2 Soft Critiques
Soft critiques are inspired by argumentation theory
(van Eemeren et al., 2014) and philosophical ac-
counts of inference to best explanation (Thagard,
1978; Lipton, 2017). Such methods can be adopted
to qualify explanatory arguments and provide com-
parable selection criteria to identify the best solu-
tion amongst competing hypotheses. PEIRCE pro-
vides a built-in implementation of the parsimony,
coherence, and uncertainty critique models intro-
duced by Dalal et al. (2024).

Parsimony. Also known as Ockam’s razor, parsi-
mony favours arguments with the fewest assump-

5https://isabelle.in.tum.de/
6https://www.swi-prolog.org/

tions and premises. This soft critique model is
implemented computing the concept drift, which
measures the number of new concepts and entities
not present in the original NLI problem that are
introduced in the generated solution.

Coherence Coherence evaluates the intermedi-
ate entailment relationships between the generated
premises, favouring arguments that introduce con-
ditional clauses that are more plausible. Specifi-
cally, this critique model adopts a pre-trained tex-
tual entailment model to measure the average en-
tailment strength (through the predicted entailment
score) over generated if-then clauses in an explana-
tory argument.

Uncertainty Uncertainty evaluates the plausibil-
ity of a generated argument via explicit linguistic
signalling expressions. In particular, this critique
models analyses hedging words such as probably,
might be, and could be that typically signal ambi-
guity and are often used when the truth condition
of a statement is unknown or probabilistic. This
critique model adopts a fine-tuned model which
analyses hedging language to establish the degree
of uncertainty in the generated statements (Pei and
Jurgens, 2021).

2.5 Iterative Refinement
Finally, PEIRCE provides a customisable class for
iterative refinement that flexibly combines the com-
ponents responsible for each intermediate stage.

In particular, a class named RefinementModel
is responsible for orchestrating retrieval models,
LLMs, and critique models to perform solution re-
finement for a fixed number of iterations. If the cri-
tique model performs a hard critique (e.g., Isabelle),
the refinement process ends when the generated ar-
gument can be formally verified (e.g., a proof is
found). After the refinement, the output of the cri-
tique models, as well as the solution produced at
each iteration step, will be returned. An example
of implementation can be found in Appendix B.5.

3 Empirical Evaluation

We performed experiments to showcase PEIRCE’s
applicability to explanation-based NLI problems in
different domains. In particular, we adopt PEIRCE
to reproduce relevant models for natural language
explanation generation, focusing on explanation re-
trieval, neuro-symbolic refinement of explanations
for NLI, and inference to the best explanation with
LLMs.
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Figure 2: Explanation refinement results via hard critique using GPT-4o and Isabelle (i.e., number of successfully
verified explanations after a maximum of 10 iterations).

Dataset Problem Explanation Iteration Validity

e-SNLI Premise: An infant is in a crib and crying.
Hypothesis: A baby is unhappy.

if the infant is crying, it can be assumed that
they are unhappy.

0 Invalid

if the infant is crying, it can be assumed that
they are unhappy. An infant is a type of
baby.

1 Valid

Table 2: An example of how the explanations in e-SNLI can be refined via hard critique (i.e., GPT-4o and Isabelle).

3.1 Explanation Retrieval

For explanation retrieval, we measure the per-
formance of BM25 (Robertson et al., 2009), the
Unification-based retrieval model (Valentino et al.,
2021b, 2022b), and an ensemble between the two
on Science Question Answering (QA) and Nat-
ural Language Premise Selection. To this end,
we measure the Mean Average Precision (MAP)
of the retrieved explanatory premises on 50 ran-
domly selected examples from the WorldTree cor-
pus (for Science QA) (Jansen et al., 2018; Jansen
and Ustalov, 2020; Thayaparan et al., 2021) and
ProofWiki (for Premise Selection) (Ferreira and
Freitas, 2020; Valentino et al., 2022a). The re-
sults, reported in Table 1, confirm the impact of
the Unification-based retrieval model reported in
previous work (Valentino et al., 2021a, 2022c,b),
also demonstrating the benefit of performing an
ensemble between the models.

3.2 Iterative Refinement via Hard Critique

Using the built-in implementation of the refinement
model and the hard critique based on Isabelle, we
reproduced the iterative refinement pipeline intro-
duced by (Quan et al., 2024b) on different domains
(i.e., general textual entailment on e-SNLI (Cam-
buru et al., 2018), science questions on Worldtree
(Jansen et al., 2018), and clinical explanations an-
notated by domain experts). In particular, Figure
2 shows the number of natural language explana-
tions that can be successfully verified and refined

through the interaction of GPT-4o(Achiam et al.,
2023) and Isabelle (Nipkow et al., 2002) after a
maximum of 10 iterations. Qualitative examples of
the results of the refinement process are provided
in Tables 2 and 4.

3.3 Inference to the Best Explanation via Soft
Critique

Finally, we demonstrate how soft critique models
can be used to perform inference to the best expla-
nation with LLMs (Dalal et al., 2024). Here, we
consider the task of cause and effect prediction in
a multiple-choice setting, where given a question
and two competing candidates, the LLM must de-
cide which is the most plausible answer. To this
end, 20 causal questions were sourced from COPA
(Gordon et al., 2012). GPT-4o and GPT-3.5 are
then tasked with generating causal explanations for
each candidate, which are then evaluated using the
soft-critique criteria (Section 2.4.2). The best ex-
planation is selected via a majority vote through the
soft-critique scores (see example in Table 3). For
comparison, LLM-as-judge baselines are provided
in Figure 3a, with the results of the soft critique
metrics reported provided in Figure 3b.

3.4 Related Work
Neuro-symbolic reasoning models integrate neural
networks with symbolic solvers to provide a reli-
able and verifiable reasoning process for complex
downstream tasks (e.g., multi-hop reasoning, scien-
tific question-answering) involving large datasets
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(a) (b)

Figure 3: Accuracy in identifying the explanation associated with the correct answer via different soft critique
models (i.e., parsimony, coherence and uncertainty in IBE vs. GPT-as-judge).

The cat chased the bird? What was the effect?
A) The bird flew away. B) The bird caught a worm

Explanation 1 Scores Explanation 2 Scores

GPT-4o

If a cat chases a bird, then the bird may perceive a threat.
If the bird perceives a threat, then it is likely to take
evasive action to escape.
If the bird takes evasive action to escape, then it may
fly away from the area.
If the bird flies away from the area, then it will no longer
be in the vicinity of the cat.
Therefore, since the cat chased the bird, the bird perceived
a threat and took evasive action by flying away to escape
from the cat.

Coherence: 0.25
Parsimony: 6
Uncertainty: 1.03

If a cat chases a bird, then the bird may become
startled or distracted.
If the bird is startled or distracted, then it may stop
focusing on its current activity, such as foraging for food.
If the bird stops focusing on foraging, then it may
inadvertently come across other food sources, such as worms.
If the bird comes across a worm, then it may catch the worm
as a food source.
Therefore, since the cat chased the bird, causing it to become
startled and stop foraging, the bird may have inadvertently caught
a worm as a result of this distraction.

Coherence: 0.09
Parsimony: 9
Uncertainty: 2.33

GPT-3.5

If a cat chases a bird, then the bird may feel threatened.
If the bird feels threatened, then it may try to escape.
If the bird tries to escape, then it may fly away.
Therefore, since the cat chased the bird, causing it to
feel threatened, the bird likely flew away as a natural
response to escape from the perceived danger.

Coherence: 0.06
Parsimony: 1
Uncertainty: 1.39

If the cat chased the bird, then the bird may have been alerted
and flown away.
If the bird flew away, then it may have landed on the ground to
search for food.
If the bird landed on the ground to search for food, then it may
have caught a worm.
Therefore, if the cat chased the bird, causing it to fly away and land
on the ground to search for food, it is plausible that the bird caught a
worm during its search.

Coherence: -0.05
Parsimony: 2
Uncertainty: 1.65

Table 3: An example of evaluating competing explanations via IBE using different soft critiques.

(Minervini et al., 2020; Kalyanpur et al., 2020; Shi
et al., 2021; Wang and Pan, 2022; Weir et al., 2024).

Several studies have proposed differentiable
solvers that enhance both the robustness of rule-
based models and the interpretability of neural mod-
els (Rocktäschel and Riedel, 2017; Manhaeve et al.,
2018; Weber et al., 2019; Thayaparan et al., 2022).
More recently, integrating LLMs with logical rea-
soners has demonstrated significant effectiveness
on natural language datasets (de Souza et al., 2025;
Dalal et al., 2024; Lyu et al., 2023).

Research efforts have applied LLMs for aut-
oformalisation, converting natural language into
first-order logic forms, and subsequently employ-
ing symbolic provers on logical reasoning datasets
(Pan et al., 2023; Olausson et al., 2023; Jiang et al.,
2024). Quan et al. (2024b) integrated LLMs with
external theorem provers for open-world natural
language inference tasks to verify and refine natu-
ral language explanations.

Our research incorporates soft and hard critique
models that uses various symbolic solvers and
LLMs to evaluate logical and linguistic features,
ensuring delivering logically valid, sound, and con-
sistent explanations.

3.5 Conclusion & Future Work

This paper introduced PEIRCE, a framework that
provides an extensible and modular environment
for unifying material and formal inference in natu-
ral language via a conjecture-criticism process.

PEIRCE supports controllability and formal er-
ror correction mechanisms for implementing a com-
plete iterative refinement pipeline for explanatory
arguments generated by LLMs. We hope the re-
lease of PEIRCE will facilitate new research on
neuro-symbolic applications driven by LLMs.

In future work, we plan to extend the suite
of ready-to-use knowledge resources and critique
models in the framework as well as integrate
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PEIRCE with a supervised fine-tuning and rein-
forcement learning pipeline to leverage the feed-
back generated by the critique models and the re-
fined solution for training.
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Figure 4: UML diagram of the Simple Statement Knowl-
edge Bases (SSKB) package. The classes at the bottom
implement loading facilities for popular NLI datasets.
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A Explanation Refinement Examples

Table 4 shows additional examples of iterative re-
finement via hard critique (i.e. GPT-4o and Is-
abelle) on Worldtree and clinical explanations.

B Implementation Details

B.1 Data Model

The following code snippet shows an example of
how to use SSKB to load data from external expla-
nation corpora (i.e., WordlTree):

1 from sskb import WorldTreeKB
2

3 kb = WorldTreeKB ()
4

5 # Retrieve the individual facts in
the corpus

6 facts_kb = [stt for stt in kb if (
stt.annotations["type"] == "fact"
)]

7

8 # Retrieve the questions in the test
set

9 test_questions = [stt for stt in kb
if (stt.annotations["type"] == "
question" and stt.annotations["
split"] == "test")]

10

11 # Retrieve a complete explanation
12 explanation = [p.surface for p in

test_questions [42]. premises]

B.2 Retrieval Models

An example of how to instantiate and query the
data model via BM25 is presented below:

1 from retrieval.bm25 import BM25Model
2

3 # Initialize BM25 model
4 bm25 = BM25Model(facts_kb)
5

6 # Construct the list of queries
7 queries = [q.surface for q in

test_questions]
8

9 # Compute BM25 ranking and scores
10 res_bm25 = bm25.query(queries)

An example of how to instantiate and query the
data model using an ensemble model is presented
below:

1 from retrieval.ensemble import
EnsembleModel

2

3 # Initialise the ensemble model
4 ensemble_model = EnsembleModel(
5 [bm25 , unification],
6 weights = [0.8, 0.2]
7 )

B.3 Generative Models

An example of how to prompt GPT-4o for explana-
tion generation is provided below:

1 from generation.generative_model
import GPT

2

3 # Parameters for prompting
4 api_key = "personal key"
5 prompt_file = "explanation_prompt.

txt"
6

7 # Input problem
8 hypothesis = "I pricked the baloon."
9 conclusion = "The balloon expanded."

10

11 # Initialise the model
12 llm = GPT('gpt -4o', api_key)
13

14 # Generate an explanation
15 explanation = llm.generate(
16 prompt_file ,
17 hypothesis ,
18 conclusion
19 )

An example of a dynamic prompt is provided
below, with hypothesis and conclusion acting
as variables that can be specified at runtime

1 You are an expert on causal
reasoning

2 and explanation. You will use causal
3 knowledge and commonsense to provide
4 logical explanations for the

provided
5 causal reasoning scenarios.
6

20



Dataset Problem Explanation Iteration Validity

WorldTree Hypothesis: Being able to read is an example
of a learned trait.

Usually people learn how to read and write in school. trait is synonymous with
characteristic. inherited characteristics are the opposite of learned characteristics;
acquired characteristics. inheriting is when a inherited characteristic is copied; is
passed from parent to offspring by genetics;DNA.

0 Invalid

Usually, people learn how to read and write in school, and activities learned in
school are considered learned characteristics. Trait is synonymous with character-
istic. Inherited characteristics are the opposite of learned characteristics. Learned
characteristics are also known as acquired characteristics. Inheriting is when an
inherited characteristic is copied or passed from parent to offspring by genetics or
DNA. Learned characteristics are synonymous with learned traits.

2 Valid

Clinical Hypothesis: BRCA2 is a human protein in-
volved in double strand break DNA break repair
via homologous recombination repair.

BRCA2 is a human protein involved in homologous recombination repair. Homol-
ogous recombination repair is a double strand break DNA repair process wherein
damaged DNA is replaced by undamaged homologous molecules from sister chro-
matids or paternal/maternal copies of chromosomes.

0 Invalid

BRCA2 is a human protein involved in homologous recombination repair. Homol-
ogous recombination repair is a method used in double strand break DNA repair,
wherein damaged DNA is replaced by undamaged homologous molecules from sister
chromatids or paternal/maternal copies of chromosomes. BRCA2’s involvement in
homologous recombination repair directly contributes to double strand break DNA
repair.

2 Valid

Table 4: Examples of iterative explanation refinement for WorldTree and clinical explanations using GPT-4o and
Isabelle.

7 For the hypothesis and conclusion
8 provided in the test example , let 's
9 think step -by-step and generate an

10 explanation ...
11

12 Test Example:
13

14 Hypothesis: {hypothesis}
15 Conclusion: {conclusion}

B.4 Critique Models

An example of how to instantiate a hard critique
model via an external Isabelle solver and GPT-4o
as formaliser is provided below:

1 from critique.isabelle import
IsabelleSolver

2

3 # Example from e-SNLI
4 premise = "A couple playing with a

little boy on the beach."
5 hypothesis = "A couple are playing

with a young child outside."
6 explanation = "little boy is a young

child."
7

8 # Initialise the model
9 llm = GPT('gpt -4o', api_key)

10

11 # Initialise the critique model
12 isabelle = IsabelleSolver(
13 generative_model = llm ,
14 isabelle_session = 'HOL'
15 )
16

17 # Perform the critique
18 res = critique_model.critique(
19 hypothesis ,
20 premise ,
21 explanation
22 )

B.5 Iterative Refinement
An example of how to instantiate a complete refine-
ment process for 10 iterations is provided below:

1 from refinement.refinement_model
import RefinementModel

2

3 # Initialise the refinement process
4 refinement_model = RefinementModel(
5 generative_model = llm ,
6 critique_model = isabelle
7 )
8

9 # Perform refinement for 10
iterations

10 res = refinement_model.refine(
11 hypothesis = hypothesis ,
12 premise = premise ,
13 explanation = explanation ,
14 iterations = 10
15 )
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