
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 3: System Demonstrations), pages 189–198
July 27 - August 1, 2025 ©2025 Association for Computational Linguistics

AUTOALIGN: Get Your LLM Aligned with Minimal Annotations
§ https://github.com/icip-cas/AutoAlign

Xinyu Lu*, Dong Xu*, Chunkang Zhang*,
Xinyan Guan, Junxiang Wang, Qingyu Zhang, Pengbo Wang,

Yingzhi Mao, Hao Xiang, Xueru Wen, Zichao Li,
Yaojie Lu†, Hongyu Lin†, Le Sun, Xianpei Han

1Chinese Information Processing Laboratory,
Institute of Software, Chinese Academy of Sciences

2University of Chinese Academy of Sciences
{luxinyu2021,luyaojie,hongyu,sunle,xianpei}@iscas.ac.cn

Abstract

Automated Alignment (Cao et al., 2024) refers
to a set of algorithms designed to align Large
Language Models (LLMs) with human inten-
tions and values while minimizing manual in-
tervention. However, it faces challenges such
as algorithmic diversity and excessively con-
voluted workflows. We present AUTOALIGN,
an open-source toolkit that offers: (1) a uni-
fied framework integrating mainstream auto-
mated algorithms through a consistent inter-
face, and (2) an accessible workflow supporting
one-click execution for prompt synthesis, auto-
matic alignment signal construction, and itera-
tive model training. Our toolkit enables easy re-
production of existing results through extensive
benchmarks and facilitates the development of
novel approaches via modular components. It
includes implementations for both highly ef-
ficient inference and training, as well as low-
resource training. By standardizing automated
alignment methodologies and providing acces-
sible implementations, AUTOALIGN lowers the
barriers to building customized aligned models
and supports academic research.

1 Introduction

In recent years, the development of Large Lan-
guage Models (LLMs) has advanced rapidly. A
key technology that enables these models to be
applied in real-world scenarios is alignment, en-
suring that the model outputs meet human require-
ments and adhere to human intentions and values.
Alignment techniques, such as Supervised Fine-
tuning (SFT) (Wei et al., 2022), Reinforcement
Learning from Human Feedback (RLHF) (Ouyang
et al., 2022), and Direct Preference Optimization
(DPO) (Rafailov et al., 2023), typically involve
training models with demonstration or preference
data. However, constructing demonstration and
preference data requires significant manual labor,

*Equal Contribution.
†Corresponding author.

AUTO
ALIGN

Llama
Factory

Easy
Instruct

Auto
Train

Prompt
2Model

Data Syn. ✓ ✓ ✓
Data Manage. ✓ ✓ ✓ ✓

Training ✓ ✓ ✓ ✓
Evaluation ✓ ✓ ✓

Deployment ✓ ✓ ✓

Megatron ✓
Pipeline ✓

Min Anno. ✓ ✓ ✓

Table 1: Feature Comparison Between AUTOALIGN
and Related Frameworks. Syn. denotes synthesis. Anno.
denotes annotation.

leading to scalability challenges and high costs.
Consequently, developing alignment algorithms
that require less human intervention has received
increased attention (Cao et al., 2024).

Meanwhile, as shown in Table 1, researchers
have developed a fragmented ecosystem of spe-
cialized packages, each operating in isolation to
address specific aspects of LLM development such
as fine-tuning LLMs, instruction synthesis, and
management. For instance, LlamaFactory (Zheng
et al., 2024) focuses on supporting diverse fine-
tuning methods and efficient tuning for large lan-
guage models. EasyInstruct (Ou et al., 2024) spe-
cializes in prompt synthesis and filtering. Auto-
Train (Thakur, 2024) standardizes input-output for-
mats for different training tasks, providing a code-
free, unified training interface. The Prompt2Model
framework (Viswanathan et al., 2023) enables mod-
els to retrieve required data based on user specifi-
cations.

However, limited effort has been devoted to uni-
fying these steps and transforming existing meth-
ods into simple automated alignment pipelines
that developers and researchers can use end-to-end
for training and developing models. To this end,

189

https://github.com/icip-cas/AutoAlign

we develop AUTOALIGN, which provides a uni-
fied framework for different automated alignment
pipelines, automated evaluation modules, and de-
ployment. We apply necessary abstractions to the
various methods, enabling code and function reuse
across different pipelines. Additionally, we develop
a user interface that allows easy configuration of
pipeline, evaluation, and deployment processes in a
low-code manner. This intuitive interface and min-
imal annotation requirements significantly reduce
the barrier to entry for researchers and practitioners
without specialized machine learning expertise or
extensive annotation resources. Furthermore, the
unified pipeline architecture accelerates develop-
ment cycles by eliminating redundant implemen-
tation work across different alignment techniques
and facilitates easy implementation of new ones.

Overall, AUTOALIGN is built with Python and
PyTorch (Paszke et al., 2019). To support such an
all-in-one and end-to-end process, AUTOALIGN is
built upon and benefits from several high-quality
open-source libraries. To efficiently conduct large-
scale training and sampling, we select Megatron
(Shoeybi et al., 2019) and DeepSpeed (Rajbhan-
dari et al., 2019) as the training backends, with
vLLM (Kwon et al., 2023) as the inference en-
gine. We integrated OpenCompass (Contributors,
2023) into our evaluation process, and the basic
training classes are adapted from Hugging Face
Transformers and TRL (von Werra et al., 2020). UI
components are implemented using Streamlit1.

To validate the effectiveness of AUTOALIGN, we
provide examples of practical applications. First,
we reproduce several classical alignment algo-
rithms, including RLCD (Yang et al., 2023), CAI
(Bai et al., 2022), and Self-Rewarding (Yuan et al.,
2024)—three algorithms that enable users to align
their base models with minimal annotation require-
ments. These reproductions provide the academic
community with a series of empirical practices and
baselines. We also validate the effectiveness of ba-
sic training functions on classic alignment datasets
(Ding et al., 2023; Cui et al., 2023).

2 AUTOALIGN Framework

The core steps for developing LLMs with minimal
annotations can be divided into stages including:
instruction synthesis, policy improvement, itera-
tive training, evaluation, and deployment. In this
section, we first introduce the key features of AU-

1Project repository: https://github.com/streamlit/streamlit

TOALIGN in supporting these steps, then describe
how users can align a LLM from scratch using a
unified interface through a low-code manner.

2.1 Instruction Synthesis

Instructions define the capabilities targeted by users
in the alignment process. AUTOALIGN integrates
three instruction synthesis methods, enabling users
to obtain a large number of instructions with min-
imal human effort. Users can choose to provide
seed datasets, an existing instruction-tuned model,
or unsupervised data to generate abundant instruc-
tions.

Self-Instruct (Wang et al., 2023) leverages a
seed data pool and an instruction-following LLM to
generate new instructions, followed by automated
quality filtering and deduplication. We support var-
ious quality filters to eliminate instructions in spe-
cific languages, instructions starting with punctua-
tion, etc., and an n-gram-based similarity filter to
remove near-duplicate prompts. We implemented
the similarity filter based on torchmetrics for higher
speed.

Back-Translation (Li et al., 2024) uses an
instruction-following model to generate instruc-
tions from unlabeled pretraining data. This method
is particularly useful when the user wants to har-
vest domain-specific instructions based on domain
corpus.

MAGPIE (Xu et al., 2025) directly samples user
instructions by hacking the model template. For
instance, we can force the instruction following
model to generate responses based on input prompt
like <|start_header_id|>user<|end_header_id|>\n\n.
A key feature of this method is that the user is only
required to provide an existing aligned model for
this method, without inputting any data.

2.2 Policy Improvement

Policy improvement involves scaling test-time in-
ference based on the current policy to sample
higher quality outputs. For example, users can
apply the initial policy, reward model, and Best-
of-N (BoN) strategy to obtain better responses, or
using Context Distillation (Snell et al., 2022) by
prepending steering prefixes to LLMs to elicit bet-
ter or worse responses, creating contrastive signals
among others. Efficient large-batch sampling is
the core of policy improvement. AUTOALIGN’s
modular design makes it effortless to call inference

190

CAI-SFT RLCD SPIN Self-Rewarding

Megatron FSDP DeepSpeed vLLM

Algorithms

Infra Module

OpenCompass

Pipeline

Instruction Syn.

Parameter Contrast

Policy Improvement
Evaluation &

Deployment
Iterative Training

AutoAlign Board

Data Management Data Visualization Process MonitorConfiguration

CAI-DPO

Figure 1: The overview of AUTOALIGN Framework.

engines in any pipeline. In AUTOALIGN, we im-
plement inference based on both HuggingFace and
vLLM backend.

Multinode Parallel Inference To accelerate the
inference process, we implemented multi-node in-
ference using vLLM based on Ray for multi-node
parallelism inferencing. By organizing the GPUs
using Ray, we achieved Data Parallelism (DP) on
top of vLLM.

2.3 Efficient Iterative Training

The iterative training step in the AUTOALIGN

pipeline is to steer the model towards selected
sampled responses through the learning process.
Besides providing most commonly used full-
parameter SFT and DPO training, we also sup-
port several training methods, including Megatron-
based training, Packing acceleration and PEFT
methods.

Megatron Megatron is a PyTorch-based frame-
work designed to overcome the computational chal-
lenges of training LLMs with billions of parame-
ters. Unlike traditional data parallelism, Megatron-
Core offers comprehensive support for advanced
parallelism strategies including tensor, sequence,
pipeline, context, and Mixture of Experts (MoE)
expert parallelism.

AUTOALIGN provides Megatron-based SFT and
DPO implementations. Compared to the pop-
ular Hugging Face Trainer, our implementation
achieves an approximately four-fold acceleration

Metric Megatron HuggingFace

Training config 72B DPO
Hardware config 8 nodes, 64 GPUs, 40GB per GPU
Processing speed 517 it/s 129 it/s
Time to process 5,000 samples 10 min 39 min

Table 2: Performance comparison between Megatron
and HuggingFace implementations for 72B DPO model
training.

(Table 2) in training speed for DPO on 70B param-
eter model, while maintaining comparable model
performance. This enhancement demonstrates the
practical benefits of integrating Megatron-Core’s
capabilities into the automated alignment process.

Packing We implement sequence packing (Bai
et al., 2024) in AUTOALIGN, concatenating mul-
tiple short sequences to maximize length utiliza-
tion, reducing padding and training steps. By
extending Flash Attention 2 (Dao, 2024; Kundu
et al., 2024) with integer-based sequence number-
ing masks rather than binary masks, we prevent
attention cross-contamination (Krell et al., 2022)
while maintaining efficiency. Experiments show a
56% training speedup without performance loss.

Parameter Efficient Tuning LoRA (Hu et al.,
2022) is a parameter efficient fine-tuning technique
whose core principle involves approximating pa-
rameter updates using the product of two low-rank
matrices. The AUTOALIGN package integrates
LoRA through the PEFT library (Mangrulkar et al.,
2022) by setting hyperparameters in LoraConfig and
generating adapted models via get_peft_model().

191

2.4 Evalulation and Deployment
AUTOALIGN integrates an easy configurable auto-
matic evaluation system, allowing users to config-
ure an evaluation task (as shown in Figure 2) with
a few parameters to conduct evaluations across
13 representative benchmarks covering four as-
pects: instruction following, mathematics, coding,
and knowledge. Furthermore, AUTOALIGN sup-
ports model deployment through a Web UI and
command-line interaction program, allowing devel-
opers to intuitively experience the model’s capabil-
ities.

1 # Name of the model to evaluate
2 model_name: qwen2.5-7b-ins
3 # The chat template used in evaluation
4 template_name: chatml
5 # The path of the model to evaluate
6 model_path: Qwen/Qwen2.5-7B-Instruct
7 # The type of eval data combination
8 eval_type: subjective
9 # GPUs occupied by a single model worker

10 per_model_gpu: 1
11 # The batch size of a single worker
12 batch_size: 8
13 # The inference backend
14 backend: vllm

Figure 2: Example configuration for automatic model
evaluation.

2.5 AutoAlign-Board
AUTOALIGN-BOARD is a user interface based on
Streamlit that allows users to customize the au-
toalign process of LLMs without writing any code.
It provides an unified Browser-based interface in-
cluding instruction synthesis, policy improvement,
iterative training and evaluation, assisting users to
develop aligned LLMs almost from scratch.

Streamlined Configuration The interface offers
multiple configuration options for data synthesis,
inference, training, and evaluation with sensible
defaults for most parameters, simplifying the align-
ment process while maintaining flexibility.

Data Management and Visualization Users can
monitor data quality through visualizations of to-
ken distributions, sources, and domains. The inter-
face supports previewing generated instances and
filtering synthesized data by various criteria, al-
lowing for customized dataset creation tailored to
specific requirements.

Real-time Alignment Monitoring All align-
ment processes feature live progress tracking. In-
struction synthesis and inference logs are displayed

mistr
al_

v0
.1

mistr
al_

sft
_v0

.1

mistr
al_

sft
_dp

o_v
0.1

mistr
al_

v0
.2

mistr
al_

sft
_v0

.2

mistr
al_

sft
_dp

o_v
0.2

Models

0.0

0.2

0.4

0.6

0.8

1.0

Sa
fe

ty
 % 0.54

0.75

0.86
0.81

0.91 0.92
saladbench (MD-Judge-v0.1)

Figure 3: Safety evaluation scores in SaladBench before
and after CAI pipeline.

directly in the interface, while training shows real-
time loss and gradient curves. Evaluation results
appear as they become available, providing imme-
diate insights into model performance.

Automated Workflow Navigation The interface
intelligently navigates between different stages
based on alignment progress, eliminating manual
intervention. When processes complete, the in-
terface automatically switches to the appropriate
view, ensuring users can monitor the most relevant
metrics without manually toggling between pages.

3 Use Practice: Reproduction of
Automated Alignment Algorithms

In this section, we demonstrate several attempts to
rapidly reproduce representative baseline methods
from the alignment research community. These at-
tempts showcase the use of the AUTOALIGN toolkit
for weakly supervised alignment. While validating
the effectiveness of the toolkit, we believe these
attempts will provide valuable references for repro-
duction by the community.

3.1 Constitutional AI

Constitutional AI (CAI) (Bai et al., 2022) is an
approach to train safe, transparent LLMs by defin-
ing a set of explicit "constitutions" to guide their
behavior. This methodology reduces reliance on
manually labeled data and addresses the limitations
of traditional supervisory methods. CAI establishes
a constitution by defining a set of principles (e.g.,
"Choose the most helpful, honest, and harmless
response.") to guide the model’s behavior. The
model then self-evaluates and refines its responses
based on these principles, instead of relying solely
on human feedback, as in traditional RLHF (Askell
et al., 2021). The synthesized correction data is
used to train the model, enhancing its safety. This

192

self-improvement requires only a set of queries de-
signed to elicit harmful outputs from the model and
a predefined set of human-crafted principles.

In the AUTOALIGN repository, we slightly ad-
justed some of the CAI settings to better match
the capabilities of current language models, while
preserving its original concept.

CAI-SFT begins by generating an initial harmful
response to queries designed to elicit problematic
content. The model then self-critiques its output
based on predefined constitutional principles and
revises its response accordingly. To ensure consis-
tent generation patterns, we employ few-shot exam-
ples at each step. During harmful response genera-
tion, we set temperature to 0.7 without the template
to encourage exploration, while using templates
with temperature 0 for the critique and revision
steps. We filter revision responses using quality
heuristics—removing those that are too short (<10
characters), too long (>3000 characters), identical
to the harmful response, or containing template-
specific terms from few-shot examples. The filtered
query-revision pairs are then combined with help-
ful data at a 1:2.5 ratio for supervised fine-tuning
to produce the SFT model.

CAI-DPO Building upon CAI-SFT, for prefer-
ence optimization, we use the SFT model to gener-
ate two alternative responses for each query—one
with temperature 0 and another with temperature
1. The model is then prompted to evaluate which
response better adheres to safety principles. To mit-
igate position bias, the system swaps response or-
der and performs dual evaluations, with each judg-
ment awarding one point to the response deemed
safer. The response accumulating more points is
designated as "chosen," while the other becomes
"rejected." In cases of tied scores, the system dis-
cards the data point to ensure clear preference
signals. During the evaluation phase, the system
employs few-shot examples and consistent tem-
plates to guide the judgment process. The resulting
triplets of <query, chosen, rejected> are used to
fine-tune the model through DPO, reinforcing con-
stitutional principles through preferences.

As shown in Figure 3, applying the CAI ap-
proach boosts the Mistral v0.1 model’s safety per-
formance on SALAD-Bench from 0.54 to 0.86, an
improvement of over 30 percentage points. The
newer Mistral v0.2 model sees a more modest in-
crease, from 0.81 to 0.92, a gain of about 11 per-
centage points. These results demonstrate how AU-

TOALIGN significantly improves a model’s ability
to avoid harmful outputs with only annotated guide-
lines and self-steering.

3.2 RLCDsys

Model MT-Bench Ability Sources

Base 5.03 Instructions in Annealing
Instruct 8.15 Complex Post-training Process
UltraChat 7.34 Teacher Distillation

RLCDsys 7.29 Self-Steering with System Prompt

Table 3: The RLCDsys variant implemented in AU-
TOALIGN shows promising results with minimum su-
pervision. All experiments are conducted on the Qwen-
2-7B series model.

In the reproduction of RLCD (Reinforcement
Learning from Contrastive Distillation) (Yang et al.,
2023) algorithm in AUTOALIGN. We use the sys-
tem prompt region in instruction following model
and denote this variant as the RLCDsys. In con-
trast to the standard RLCD approach that relies
on explicit "harmful" and "harmless" assistant des-
ignations, this variant employs system messages
to create diverse contrastive response pairs, offer-
ing a more generalizable approach to in-context
model steering. The method generates contrastive
pairs by presenting the same instruction with two
different system messages—one positive and one
negative—controlling dimensions such as helpful-
ness and harmfulness.

The implementation process involves three key
stages: data preparation, model steering, and learn-
ing. During the steering process, a base instruction-
following model (e.g., Qwen2-7B-Base) generates
responses conditioned on both positive and neg-
ative system messages. For example, a positive
system message can be "You should generate an
intuitive, user-friendly response," and a negative
one can be "You should generate a confusing, user-
unfriendly response." To ensure data quality, iden-
tical responses between the positive and negative
conditions are filtered out to prevent model col-
lapse. The resulting contrastive pairs are then used
to train the model using DPO, effectively teaching
the model to align with positive system instructions
while avoiding behaviors encouraged by negative
ones.

Our experimental results (Table 3) demonstrate
that RLCDsys achieves general performance com-
parable to models trained on UltraChat (Ding et al.,
2023) data, as measured by the MT-Bench bench-

193

Model MT-Bench IF-Eval
(Pr.L) ARC-e ARC-c Hellaswag GSM8K MMLU OpenBookQA NQ Exact Acc

(%)

Base (M0) 1.86 26.43 69.84 45.42 74.68 55.95 66.62 50.60 16.09 -
IFT (SFT-baseline) 5.46 41.59 74.43 47.46 76.99 57.24 66.36 52.60 29.58 5.08
EFT (M1) 5.48 40.85 70.90 47.80 75.40 57.77 66.27 52.00 29.94 28.44
Self-Rewarding-iter1 (M2) 5.54 41.77 70.90 47.80 75.41 57.62 66.22 52.20 29.86 29.19
Self-Rewarding-iter2 (M3) 5.58 41.96 71.08 48.14 75.41 57.62 66.27 52.20 29.81 27.87

Table 4: Performance of Self-Rewarding models on instruction following, knowledge, reasoning and reward
modeling benchmarks. Following the setting of Yuan et al. (2024), all the experiments are conducted with the
Llama-3 family of models.

mark (7.29 vs. 7.34). Therefore, RLCDsys show-
cases the great potential that LLMs can be self-
aligned without any demonstration annotation.

3.3 Self-Rewarding

Self-Rewarding Language Model (Yuan et al.,
2024) enables a model to autonomously refine its
instruction-following capability by using itself as
a reward function. This approach generates pref-
erence data through self-judgments, reducing re-
liance on human annotations while unifying re-
ward and generation models for joint optimization
through reinforcement learning.

Initialization Our reproduction is based on the
LLaMA-3-8B model. We use 3200 examples
of high-quality English dialogues from OASST1
(Köpf et al., 2023) for instruction fine-tuning (IFT)
to equip the base model with basic instruction-
following capability. Additional 1500 examples
dialogues with human ratings are used for evalua-
tion fine-tuning (EFT), with a lower learning rate
to prevent overfitting as Table 7 shows.

Preference Data Generation We apply self-
instruct (Section 2.1) to synthesize prompts. For
each prompt, 4 responses are sampled, and the
model evaluates each response 3 times, assigning
the average score as the reward, following the LLM-
as-a-Judge paradigm.

Model Optimization Then we optimize the
model with DPO over two iterations, using a de-
creasing learning rate as Table 7 shows. We found
that high weight decay during DPO is crucial for
maintaining instruction-following improvements,
which may help prevent overfitting when training
with limited data (Zhou et al., 2023). Thus, it is
set to 0.1 for all Self-Rewarding training stages,
including IFT, EFT, and both DPO iterations.

Experimental Results Table 4 presents the per-
formance across different self-rewarding iterations

(M0 → M1 → M2 → M3). The results demonstrate
incremental gains in instruction-following metrics
(MT-Bench and IF-Eval) while maintaining perfor-
mance on general knowledge and reasoning tasks,
confirming the effectiveness of the self-rewarding
approach. In addition, we show results on the re-
served reward modeling evaluation dataset. Corre-
lation coefficients improved after self-rewarding,
indicating that the model aligns more closely with
human judgment during the process.

4 Conclusion and Future Work

We presented AUTOALIGN, an open-source toolkit
unifying diverse automated alignment techniques
under a consistent framework with minimal an-
notation requirements. Through successful repro-
ductions of RLCD, CAI, and Self-Rewarding, we
demonstrated the toolkit’s effectiveness in imple-
menting advanced methods with reduced human
intervention. AUTOALIGN’s standardized abstrac-
tions and modular design simplify implementation
while facilitating development of novel algorithms,
and optimizations like Megatron-based training ad-
dress key computational challenges. Future work
will focus on incorporating emerging automated
alignment techniques (Xiang et al., 2024), enhanc-
ing multilingual support, and expanding evaluation
benchmarks to accelerate progress toward safer,
more helpful language models that better serve hu-
man needs.

Limitations

Although this demonstration showcases the poten-
tial for automated alignment using minimal sam-
ples, it still requires human-in-the-loop supervi-
sion during the alignment process (e.g., monitoring
learning rates, validating output examples, etc.).
In future work, we plan to develop an agent sys-
tem for training models autonomously. Addition-
ally, given the inherent lack of interpretability in
training-based alignment methods, we will explore

194

the use of interpretability techniques for model
steering in subsequent development.

Acknowledgments

Many thanks to Boxi Cao for his insightful sug-
gestions and Kaiqi Zhang for his recent contribu-
tions to the code repo. We sincerely thank the re-
viewers for their insightful comments and valuable
suggestions. This work was supported by Beijing
Natural Science Foundation (L243006), Beijing
Municipal Science and Technology Project (Nos.
Z231100010323002), the Natural Science Foun-
dation of China (No. 62306303, 62476265). The
authors would like to thank Huawei Ascend Cloud
Ecological Development Project for the support of
Ascend 910 processors.

References
Amanda Askell, Yuntao Bai, Anna Chen, Dawn Drain,

Deep Ganguli, Tom Henighan, Andy Jones, Nicholas
Joseph, Ben Mann, Nova DasSarma, et al. 2021. A
general language assistant as a laboratory for align-
ment. arXiv preprint arXiv:2112.00861.

Yuntao Bai, Saurav Kadavath, Sandipan Kundu,
Amanda Askell, Jackson Kernion, Andy Jones,
Anna Chen, Anna Goldie, Azalia Mirhoseini,
Cameron McKinnon, et al. 2022. Constitutional
ai: Harmlessness from ai feedback. arXiv preprint
arXiv:2212.08073.

Yushi Bai, Xin Lv, Jiajie Zhang, Yuze He, Ji Qi, Lei
Hou, Jie Tang, Yuxiao Dong, and Juanzi Li. 2024.
Longalign: A recipe for long context alignment of
large language models. Preprint, arXiv:2401.18058.

Boxi Cao, Keming Lu, Xinyu Lu, Jiawei Chen, Mengjie
Ren, Hao Xiang, Peilin Liu, Yaojie Lu, Ben He,
Xianpei Han, et al. 2024. Towards scalable auto-
mated alignment of llms: A survey. arXiv preprint
arXiv:2406.01252.

OpenCompass Contributors. 2023. Opencompass:
A universal evaluation platform for foundation
models. https://github.com/open-compass/
opencompass.

Ganqu Cui, Lifan Yuan, Ning Ding, Guanming Yao,
Bingxiang He, Wei Zhu, Yuan Ni, Guotong Xie,
Ruobing Xie, Yankai Lin, et al. 2023. Ultrafeedback:
Boosting language models with scaled ai feedback.
arXiv preprint arXiv:2310.01377.

Tri Dao. 2024. FlashAttention-2: Faster attention with
better parallelism and work partitioning. In Inter-
national Conference on Learning Representations
(ICLR).

Ning Ding, Yulin Chen, Bokai Xu, Yujia Qin, Zhi
Zheng, Shengding Hu, Zhiyuan Liu, Maosong Sun,
and Bowen Zhou. 2023. Enhancing chat language
models by scaling high-quality instructional conver-
sations. arXiv preprint arXiv:2305.14233.

Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen-
Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu
Chen. 2022. LoRA: Low-rank adaptation of large
language models. In International Conference on
Learning Representations.

Mario Michael Krell, Matej Kosec, Sergio P. Perez, and
Andrew Fitzgibbon. 2022. Efficient sequence pack-
ing without cross-contamination: Accelerating large
language models without impacting performance.
Preprint, arXiv:2107.02027.

Achintya Kundu, Rhui Dih Lee, Laura Wynter,
Raghu Kiran Ganti, and Mayank Mishra. 2024. En-
hancing training efficiency using packing with flash
attention. Preprint, arXiv:2407.09105.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying
Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
Gonzalez, Hao Zhang, and Ion Stoica. 2023. Effi-
cient memory management for large language model
serving with pagedattention. In Proceedings of the
ACM SIGOPS 29th Symposium on Operating Systems
Principles.

Andreas Köpf, Yannic Kilcher, Dimitri von Rütte,
Sotiris Anagnostidis, Zhi-Rui Tam, Keith Stevens,
Abdullah Barhoum, Nguyen Minh Duc, Oliver
Stanley, Richárd Nagyfi, Shahul ES, Sameer Suri,
David Glushkov, Arnav Dantuluri, Andrew Maguire,
Christoph Schuhmann, Huu Nguyen, and Alexander
Mattick. 2023. Openassistant conversations – democ-
ratizing large language model alignment. Preprint,
arXiv:2304.07327.

Xian Li, Ping Yu, Chunting Zhou, Timo Schick, Omer
Levy, Luke Zettlemoyer, Jason E Weston, and Mike
Lewis. 2024. Self-alignment with instruction back-
translation. In The Twelfth International Conference
on Learning Representations.

Sourab Mangrulkar, Sylvain Gugger, Lysandre De-
but, Younes Belkada, Sayak Paul, and Benjamin
Bossan. 2022. Peft: State-of-the-art parameter-
efficient fine-tuning methods. https://github.
com/huggingface/peft.

Yixin Ou, Ningyu Zhang, Honghao Gui, Ziwen Xu,
Shuofei Qiao, Runnan Fang, Lei Li, Zhen Bi,
Guozhou Zheng, and Huajun Chen. 2024. EasyIn-
struct: An easy-to-use instruction processing frame-
work for large language models. In Proceedings of
the 62nd Annual Meeting of the Association for Com-
putational Linguistics (Volume 3: System Demonstra-
tions), pages 94–106, Bangkok, Thailand. Associa-
tion for Computational Linguistics.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, John

195

https://arxiv.org/abs/2401.18058
https://arxiv.org/abs/2401.18058
https://github.com/open-compass/opencompass
https://github.com/open-compass/opencompass
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://arxiv.org/abs/2107.02027
https://arxiv.org/abs/2107.02027
https://arxiv.org/abs/2107.02027
https://arxiv.org/abs/2407.09105
https://arxiv.org/abs/2407.09105
https://arxiv.org/abs/2407.09105
https://arxiv.org/abs/2304.07327
https://arxiv.org/abs/2304.07327
https://openreview.net/forum?id=1oijHJBRsT
https://openreview.net/forum?id=1oijHJBRsT
https://github.com/huggingface/peft
https://github.com/huggingface/peft
https://doi.org/10.18653/v1/2024.acl-demos.10
https://doi.org/10.18653/v1/2024.acl-demos.10
https://doi.org/10.18653/v1/2024.acl-demos.10

Schulman, Jacob Hilton, Fraser Kelton, Luke Miller,
Maddie Simens, Amanda Askell, Peter Welinder,
Paul F Christiano, Jan Leike, and Ryan Lowe. 2022.
Training language models to follow instructions with
human feedback. In Advances in Neural Information
Processing Systems, volume 35, pages 27730–27744.
Curran Associates, Inc.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, Alban Desmaison, Andreas Köpf, Edward
Yang, Zach DeVito, Martin Raison, Alykhan Tejani,
Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Jun-
jie Bai, and Soumith Chintala. 2019. PyTorch: an
imperative style, high-performance deep learning li-
brary. Curran Associates Inc., Red Hook, NY, USA.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christo-
pher D Manning, Stefano Ermon, and Chelsea Finn.
2023. Direct preference optimization: Your language
model is secretly a reward model. In Thirty-seventh
Conference on Neural Information Processing Sys-
tems.

Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase,
and Yuxiong He. 2019. Zero: Memory optimization
towards training A trillion parameter models. CoRR,
abs/1910.02054.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu,
Junxiao Song, Xiao Bi, Haowei Zhang, Mingchuan
Zhang, YK Li, Y Wu, et al. 2024. Deepseekmath:
Pushing the limits of mathematical reasoning in open
language models. arXiv preprint arXiv:2402.03300.

Mohammad Shoeybi, Mostofa Patwary, Raul Puri,
Patrick LeGresley, Jared Casper, and Bryan Catan-
zaro. 2019. Megatron-lm: Training multi-billion
parameter language models using model parallelism.
CoRR, abs/1909.08053.

Charlie Snell, Dan Klein, and Ruiqi Zhong. 2022.
Learning by distilling context. arXiv preprint
arXiv:2209.15189.

Abhishek Thakur. 2024. AutoTrain: No-code train-
ing for state-of-the-art models. In Proceedings of
the 2024 Conference on Empirical Methods in Nat-
ural Language Processing: System Demonstrations,
pages 419–423, Miami, Florida, USA. Association
for Computational Linguistics.

Vijay Viswanathan, Chenyang Zhao, Amanda Bertsch,
Tongshuang Wu, and Graham Neubig. 2023.
Prompt2Model: Generating deployable models from
natural language instructions. In Proceedings of
the 2023 Conference on Empirical Methods in Nat-
ural Language Processing: System Demonstrations,
pages 413–421, Singapore. Association for Compu-
tational Linguistics.

Leandro von Werra, Younes Belkada, Lewis Tunstall,
Edward Beeching, Tristan Thrush, Nathan Lambert,
Shengyi Huang, Kashif Rasul, and Quentin Gal-
louédec. 2020. Trl: Transformer reinforcement learn-
ing. https://github.com/huggingface/trl.

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa
Liu, Noah A. Smith, Daniel Khashabi, and Hannaneh
Hajishirzi. 2023. Self-instruct: Aligning language
models with self-generated instructions. In Proceed-
ings of the 61st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 13484–13508, Toronto, Canada. Association
for Computational Linguistics.

Jason Wei, Maarten Bosma, Vincent Zhao, Kelvin Guu,
Adams Wei Yu, Brian Lester, Nan Du, Andrew M.
Dai, and Quoc V Le. 2022. Finetuned language mod-
els are zero-shot learners. In International Confer-
ence on Learning Representations.

Hao Xiang, Bowen Yu, Hongyu Lin, Keming Lu, Yao-
jie Lu, Xianpei Han, Le Sun, Jingren Zhou, and
Junyang Lin. 2024. Aligning large language mod-
els via self-steering optimization. arXiv preprint
arXiv:2410.17131.

Zhangchen Xu, Fengqing Jiang, Luyao Niu, Yun-
tian Deng, Radha Poovendran, Yejin Choi, and
Bill Yuchen Lin. 2025. Magpie: Alignment data
synthesis from scratch by prompting aligned LLMs
with nothing. In The Thirteenth International Con-
ference on Learning Representations.

Kevin Yang, Dan Klein, Asli Celikyilmaz, Nanyun Peng,
and Yuandong Tian. 2023. Rlcd: Reinforcement
learning from contrastive distillation for language
model alignment. arXiv preprint arXiv:2307.12950.

Weizhe Yuan, Richard Yuanzhe Pang, Kyunghyun Cho,
Xian Li, Sainbayar Sukhbaatar, Jing Xu, and Ja-
son Weston. 2024. Self-rewarding language models.
Preprint, arXiv:2401.10020.

Yaowei Zheng, Richong Zhang, Junhao Zhang, Yanhan
Ye, and Zheyan Luo. 2024. LlamaFactory: Unified
efficient fine-tuning of 100+ language models. In
Proceedings of the 62nd Annual Meeting of the As-
sociation for Computational Linguistics (Volume 3:
System Demonstrations), pages 400–410, Bangkok,
Thailand. Association for Computational Linguistics.

Chunting Zhou, Pengfei Liu, Puxin Xu, Srini Iyer, Jiao
Sun, Yuning Mao, Xuezhe Ma, Avia Efrat, Ping Yu,
Lili Yu, Susan Zhang, Gargi Ghosh, Mike Lewis,
Luke Zettlemoyer, and Omer Levy. 2023. Lima: Less
is more for alignment. Preprint, arXiv:2305.11206.

A Basic Alignment Techniques

As an all-in-one toolkit for alignment, in this chap-
ter we present a series of practices for aligning mod-
els ranging from 7B to 72B with basic fine-tuning
methods using AUTOALIGN. Throughout the pro-
cess, we employ UltraChat (Ding et al., 2023) and
UltraFeedback (Cui et al., 2023), which are widely
adopted in academia as training data. This series
of experiments also provides usable baselines for
the academic community.

196

https://proceedings.neurips.cc/paper_files/paper/2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf
https://openreview.net/forum?id=HPuSIXJaa9
https://openreview.net/forum?id=HPuSIXJaa9
https://arxiv.org/abs/1910.02054
https://arxiv.org/abs/1910.02054
https://arxiv.org/abs/1909.08053
https://arxiv.org/abs/1909.08053
https://doi.org/10.18653/v1/2024.emnlp-demo.44
https://doi.org/10.18653/v1/2024.emnlp-demo.44
https://doi.org/10.18653/v1/2023.emnlp-demo.38
https://doi.org/10.18653/v1/2023.emnlp-demo.38
https://github.com/huggingface/trl
https://doi.org/10.18653/v1/2023.acl-long.754
https://doi.org/10.18653/v1/2023.acl-long.754
https://openreview.net/forum?id=gEZrGCozdqR
https://openreview.net/forum?id=gEZrGCozdqR
https://openreview.net/forum?id=Pnk7vMbznK
https://openreview.net/forum?id=Pnk7vMbznK
https://openreview.net/forum?id=Pnk7vMbznK
https://arxiv.org/abs/2401.10020
https://doi.org/10.18653/v1/2024.acl-demos.38
https://doi.org/10.18653/v1/2024.acl-demos.38
https://arxiv.org/abs/2305.11206
https://arxiv.org/abs/2305.11206

Model MT-Bench
(EN)

MATH
(EN)

GSM-8K
(EN)

HumanEval
(EN)

MBPP
(EN)

HumanEval-
CN(ZH)

MBPP-
CN(ZH)

MMLU
(EN)

GPQA
(EN)

CMMLU
(ZH)

C-Eval
(ZH)

BBH
(EN)

Llama-3-8BUltraChat 5.41 13.58 59.89 20.12 36.00 28.05 31.40 62.92 29.29 48.38 46.89 59.13
Llama-3-8BUltraChat_UltraFeedback 6.17 14.64 53.53 29.27 35.40 29.88 28.40 63.50 30.81 48.47 48.21 57.61
Llama3-70bUltraChat 6.29 31.80 82.34 20.73 45.40 20.12 42.40 75.30 26.77 64.25 62.16 79.60
Llama3-70BUltraChat_UltraFeedback 6.49 32.70 73.69 31.71 42.40 17.68 44.40 76.45 27.27 64.49 63.31 81.64
Qwen2-7BUltraChat 5.93 40.34 81.96 46.34 37.60 40.85 36.00 69.80 33.84 81.83 82.15 61.30
Qwen2-7BUltraChat_UltraFeedback 6.61 42.48 79.38 49.39 39.80 48.17 38.60 70.11 31.31 82.20 82.66 61.58
Qwen2-72BUltraChat 6.79 50.20 89.08 45.12 47.40 31.71 45.00 81.13 28.28 89.62 90.25 79.61
Qwen2-72BUltraChat_UltraFeedback 6.94 52.70 88.55 59.15 46.60 48.78 45.40 82.01 32.83 88.49 90.24 81.17
Qwen2.5-7BInfinite_9M 6.85 39.44 84.08 71.95 58.40 64.02 55.20 74.51 37.88 78.79 80.23 71.03

Table 5: Performance Reference with the standard alignment training datasets UltraChat and UltraFeedback.

Anthropic- OpenAI OpenAI Stanford Reward-
Helpful WebGPT Summ. SHP Bench

Llama-2-13B UltraFeedback Official Report 66.7 65.1 66.8 68.4 67.6
Llama-2-13B UltraFeedbackMixture Official Report 71.0 65.2 74.0 73.7 —
Llama-3-8B UltraFeedbackBinary — 62.56 — 69.67 67.41 73.68

Table 6: Reward Model Training Performance with AUTOALIGN.

A.1 Supervised Finetuning

Supervised Finetuning (SFT) is a fundamental tech-
nique in Post-Training where models are trained
on specific datasets to improve their capabilities on
targeted tasks.

SFT helps models better align with human pref-
erences and expectations by learning from high-
quality demonstrations of desired outputs. This
process typically involves training on instruction-
response pairs to teach the model how to follow
user instructions effectively.

As shown in the Table 5, models like Llama-
3-8B and Qwen2-7B benefit from SFT with Ul-
traChat data. We also train Qwen2.5-7B on very
large scale SFT data (Infinite-Instruct9M) to fur-
ther demonstrate the potential of SFT, the resulting
model show great improvement on code and math
abilities.

Rejection-Sampling Finetuning As a variant of
Supervised Finetuning. AUTOALIGN also supports
customize rules to iteratively filter training data,
i.e., Rejection-Sampling Finetuning.

A.2 Reinforcement Learning

Direct Preference Optimization Direct Prefer-
ence Optimization (DPO) is an efficient alternative
to traditional reinforcement learning methods to fur-
ther improve the Supervised Finetuned models. It
directly optimizes model outputs based on human
preferences without explicitly training a reward
model.

In Table 5, we see models with UltraFeedback
suffix underwent DPO training with AutoAlign.
For example, Qwen2-7B shows improvement from

Phase Global Batch Size Learning Rate

IFT 64 5× 10−6

EFT 64 2× 10−7

DPO Iteration 1 64 5.5× 10−8

DPO Iteration 2 64 3× 10−8

Table 7: Training hyperparameters in Self-Rewarding

5.93 to 6.61 on MT-Bench after DPO training,
demonstrating how this technique can effectively
enhance model alignment with human preferences
in a second stage, bypassing the complexity of
RLHF’s multi-stage process.

Group Relative Policy Optimization Group
Relative Policy Optimization (GRPO) (Shao et al.,
2024) is a policy gradient algorithm that eliminates
the need for a value function model and instead
uses the average reward of multiple sampled out-
puts from the same problem as a baseline to esti-
mate the advantage function, thereby significantly
reducing the memory and computational overhead
of the PPO algorithm. This method maintains train-
ing effectiveness while avoiding the complexity
of training an additional value network, making
it particularly suitable for model optimization in
mathematical reasoning tasks.

Reward Modeling Reward modeling involves
training a separate model to evaluate the quality of
responses, which can then be used to guide the auto
alignment process. Table 6 shows reward model
training performance with AUTOALIGN, where the
Llama-3-8B model trained on UltraFeedbackBinary
achieves 73.68% accuracy on Reward-Bench. The

197

reward models trained with AUTOALIGN can be
further used for iteratively filtering the on-policy
data for policy iteration.

B Implementation Details

B.1 Details in Self-Rewarding Reproduction
Hyperparameters of Training Table 7 shows
the hyperparameters of each training phase in self-
rewarding.

198

