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Abstract
We present OLMOTRACE, the first system that
traces the outputs of language models back to
their full, multi-trillion-token training data in
real time. OLMOTRACE finds and shows ver-
batim matches between segments of language
model output and documents in the training
text corpora. Powered by an extended version
of infini-gram (Liu et al., 2024), our system
returns tracing results within a few seconds.
OLMOTRACE can help users understand the
behavior of language models through the lens
of their training data. We showcase how it
can be used to explore fact checking, halluci-
nation, and the creativity of language models.
OLMOTRACE is publicly available and fully
open-source.

1 Introduction

Tracing the outputs of language models (LMs) back
to their training data is an important problem. As
LMs gain adoption in higher-stakes scenarios, it
is critical to understand why they generate certain
responses. However, these modern LMs are trained
on massive text corpora with trillions of tokens,
which are often proprietary. Fully open LMs (e.g.,
OLMo; OLMo et al. 2024) enable access to the
training data, but existing behavior tracing methods
(Koh and Liang, 2017; Khalifa et al., 2024; Huang
et al., 2024) have not been scaled to work within
this multi-trillion-token setting due to their heavy
computational needs.

Figure 1: OLMOTRACE on Ai2 Playground. Left: On a response generated by OLMo, OLMOTRACE highlights
text spans found verbatim in the model’s training data and shows their source documents. Brighter highlights
indicate spans from more relevant training documents, while darker highlights denote less relevant ones. Right:
When user clicks the “View Document” button, the document is shown with extended context. Try OLMOTRACE
at https://playground.allenai.org.
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In this paper, we introduce OLMOTRACE, a
system that traces LM outputs verbatim back to its
full training data and displays the tracing results to
LM users in real time. Given an LM response to
a user prompt, OLMOTRACE retrieves documents
from the model’s training data that contain exact
matches with pieces of the LM response that are
long, unique, and relevant to the whole response;
see Figure 1 for an example.

The key idea that makes OLMOTRACE fast is
that exact matches can be quickly located in a large
text corpus if we pre-sort all of its suffixes lexico-
graphically. We use infini-gram (Liu et al., 2024) to
index the training data and develop a novel parallel
algorithm to speed up the computation of match-
ing spans (§3). In our production system, OLMO-
TRACE completes tracing for each LM response
(avg. ∼450 tokens) within 4.5 seconds on average.

The purpose of OLMOTRACE is to give users
a tool to explore where LMs may have learned
to generate certain word sequences, focusing on
verbatim matching as the most direct connection
between LM outputs and the training data. OL-
MOTRACE offers an interactive experience, so that
users can explore which training documents con-
tain a specific span in the LM response, or inspect a
particular document and locate its matching spans
in the LM response. We present three case stud-
ies for ways to use OLMOTRACE (§5): (1) fact
checking, (2) tracing the LM-generated “creative”
expressions, and (3) tracing math capabilities. We
invite the community to explore more use cases to
better understand the relationship between data and
models.

OLMOTRACE is available in the Ai2 Play-
ground1 and supports the three flagship OLMo
models (OLMo et al., 2024; Muennighoff et al.,
2024) including OLMo-2-32B-Instruct.2 For each
model, it matches against its full training data,
including pre-training, mid-training, and post-
training. OLMOTRACE can be applied to any LM
as long as the service provider has access to its
full training data. The core part of the system is
open-sourced under the Apache 2.0 license.3

2 System Description
Features of OLMOTRACE. Figure 1 shows OL-
MOTRACE applied to an LM response. When OL-
MOTRACE is enabled in the Ai2 Playground, it

1https://playground.allenai.org
2
https://huggingface.co/allenai/OLMo-2-0325-32B-Instruct

3https://github.com/allenai/infinigram-api

Stage Dataset # Docs # Tokens

pre-training allenai/olmo-mix-1124 3081 M 4575 B
mid-training allenai/dolmino-mix-1124 81 M 34 B
post-training SFT & DPO & RLVR 1.7 M 1.6 B

Total 3164 M 4611 B

Table 1: The full training data of OLMo-2-32B-Instruct,
which OLMOTRACE matches against. For mid-training
data, we excluded sources that already appeared in the
pre-training data, from both the statistics and the index.

highlights the matching spans in the response, and
shows all training documents matching at least one
of these spans in a document panel. OLMOTRACE

supports inspecting the documents that match with
any particular highlighted span (App. Figure 6,
left), and locating the spans enclosed by any par-
ticular document (App. Figure 6, right). In the
document panel, each document is shown with a
snippet of 80 tokens surrounded the matched span;
OLMOTRACE allows users to further inspect the
document with an extended context (500 tokens).

The training data. The three supported OLMo
models are trained on the same pre-training and
mid-training data, and slightly different post-
training data. OLMOTRACE matches against the
entirety of an LM’s training data. Table 1 shows
links and statistics of the training data of OLMo-
2-32B-Instruct, which totals 3.2 billion documents
and 4.6 trillion (Llama-2) tokens. The other two
OLMo models have similar training data size.

3 The Inference Pipeline

OLMOTRACE takes as input an LM response to
a user prompt, and outputs (1) a set of text spans
in the LM response, each marked by its starting
and ending position, and (2) a list of documents
from the training data of this LM, each containing
one or more of the aforementioned text spans. The
OLMOTRACE inference pipeline consists of the
following five steps (illustrated in Figure 2):

Step 1: Find maximal matching spans. We find
all maximal spans in the LM output that appear
verbatim in the training data. Specifically, we first
tokenize the LM output with the Llama-2 tokenizer,
and find all spans of the token ID list that satisfy
the following criteria:

1. Existence: The span appears verbatim at least
once in the training data;

2. Self-contained: The span does not contain a
period token (.) or newline token (\n) unless
it appears at the end of the span; and the span
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Figure 2: The OLMOTRACE inference pipeline, as described in §3. For better illustration, we slightly adjusted the
highlighted spans and document relevance from the actual example.

does not begin or end with incomplete words;
3. Maximality: The span is not a subspan of an-

other span that meets the above two criteria.

This is the most compute-heavy step, since naively
we need to enumerate all O(L2) spans of the LM
output (where L is the length of the LM output in to-
kens, and typically L ∈ [102, 103]) and scan the en-
tire training data (with N tokens where N > 1012).
We propose a fast algorithm to compute these max-
imal matching spans (§3.1), which reduces the
time complexity to O(L logN), and latency to
O(logN) when fully parallelized. After this step,
we have a set of relatively long spans that appear
in the training data.

Step 2: Filter to keep long and unique spans.
To declutter the UI and only show spans that are
more likely “interesting”, we filter spans to keep
ones with the smallest span unigram probability,
a metric that captures both length and uniqueness.
The span unigram probability is defined as the prod-
uct of unigram probabilities of all tokens in the
span, where the token unigram probability derived
from statistics of the LM’s entire training data. (We
pre-compute and cache the token unigram prob-
ability for the entire vocabulary.) A lower span
unigram probability usually means the span is rela-
tively long and contains non-common tokens. We
keep K spans with the smallest unigram probabil-
ity, where K = ⌈0.05× L⌉.

During development, we tried keeping the
longest spans instead of those with smallest span
unigram probability. However, we found that rank-
ing with the span length metric leads to worse rele-
vance level on documents retrieved from the filtered

spans (see measurement of relevance in App. §C
and Table 3), and thus we favored the span unigram
probability metric. We chose unigram over bigram
or trigram because they computing them (either
online or pre-caching) takes a lot of time.

Step 3: Retrieve enclosing documents. For each
kept span, we retrieve up to 10 document snippets
from the training data that enclose this span. Due
to the maximality criterion in step 1, most spans
appear no more than 10 times. If a span exceeds
this limit, we randomly sample 10 to keep retrieval
time manageable and avoid UI overload.

Step 4: Merge spans, merge documents. To
further declutter the UI, we merge (i.e., take the
union of) overlapping spans into a single span to be
highlighted in the LM output. Also, if two snippets
are retrieved from the same document, we merge
them into a single document to be displayed in the
document panel.

Step 5: Rerank and color documents by rele-
vance. To prioritize showing the most relevant
documents, in the document panel we rank all doc-
uments by a BM25 score in descending order. The
per-document BM25 score is computed by treating
the collection of retrieved documents as a “corpus”,
and the concatenation of user prompt and LM re-
sponse as the “query”.4 We use this BM25 score
because it has fairly high agreement with human
judgment on topical relevance (§4), and can be
quickly computed using CPUs. Subsequently, we
bucket the BM25 scores into three levels – high
relevance, medium relevance, and low relevance

4We use the implementation in https://github.com/
dorianbrown/rank_bm25
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Figure 3: Computation of the maximal matching spans (§3.1). For each suffix of the LM output, OLMOTRACE
computes its longest matching prefix (color-underlined) with a single FIND query on the infini-gram index of the LM
training data. All suffixes of the LM output are processed in parallel. Finally, non-maximal spans are suppressed.

– and display a colored sidebar on each document
to represent its relevance level. High relevance are
highlighted with the most saturated color, and low
relevance with the least saturated color. We also
apply this differential coloring on span highlights:
a span’s relevance level is computed as the maxi-
mum relevance level among documents enclosing
the span. As a result, users are more likely to find
highly relevant documents for spans highlighted
with the most saturated color.

3.1 Fast Span Computation

Efficiently identifying all maximal matching spans
across multi-trillion-token corpora is a non-trivial
challenge. To tackle this, we index the training cor-
pora with infini-gram (Liu et al., 2024) and develop
a new parallel algorithm for fast span computation.

Infini-gram. Infini-gram is a text search engine.
It supports efficiently counting text queries and
retrieving matching documents in massive text cor-
pora with trillions of tokens. To make operations
fast, infini-gram indexes text corpora with the suf-
fix array (SA) data structure, and at inference time
keeps the huge index files on low-latency SSD
disks to avoid loading them into RAM. For OL-
MOTRACE, we build an infini-gram index on the
tokenized version of the LMs’ training data (using
the Llama-2 tokenizer). On top of this index, in this
work we devise a novel parallel algorithm to com-
pute maximal matching spans with low compute
latency (Figure 3 and Algorithm 1); we discuss this
algorithm and its implementation below.

Problem analysis. The problem of finding all
maximal matching spans can be broken down into
two steps: (1) finding the longest matching prefix
of each suffix of the LM output; and (2) suppress-
ing the non-maximal spans. This is because starting
from each position, there can be at most one span
that is a maximal matching span (if there are two,

Algorithm 1 Compute maximal matching spans.
Input Model output S1:L (tokenized), training text corpus
T1:N (tokenized) and its suffix array A1:N

procedure GETMAXIMALMATCHINGSPANS(S, T,A)
spans← []
for b = 1, . . . , L do ▷ execute in parallel

if Sb is a begin-of-word token then
len← GETLONGESTPREFIXLEN(Sb:L, T, A)
spans← spans + [(b, b+ len)]

return SUPPRESSNONMAXIMALSPANS(spans)
procedure GETLONGESTPREFIXLEN(s, T,A)

(l, r)← FIND(s, T,A) ▷ an infini-gram query
if l ̸= r then ▷ non-empty segment, s is found in T

len← |s|
else ▷ empty segment, s is not found in T

len1← LONGESTPREFIXLEN(s, TA[l]:)
len2← LONGESTPREFIXLEN(s, TA[l+1]:)
len← max(len1, len2)

while s:len−1 contains a delimiter token OR slen+1 is
not a begin-of-word token do

len← len− 1
return len

procedure SUPPRESSNONMAXIMALSPANS(spans)
sort spans by beginning position in ascending order
newspans← []
maxend← 0
for (b, e) in spans do

if maxend < e then
maxend← e
newspans← newspans + [(b, e)]

return newspans

then one is a subspan of the other and thus is not
maximal). The first step consists of multiple inde-
pendent tasks that can be parallelized, and as we
will show below, each task can be done with one
FIND query. FIND is a core query operation in
infini-gram; it returns the segment of SA that cor-
responds to all occurring positions of a search term
in the text corpus. Since in infini-gram, the pro-
cessing speed of FIND queries is bounded by disk
I/O latency and there is a lot of unused throughput,
parallelizing these queries can reduce the overall
compute latency. In fact, with parallelization, the
overall processing speed is bottlenecked by the disk
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I/O throughput, and thus in our production system
we store the index files on high-IOPS SSD disks.

Finding the longest matching prefix of a suf-
fix. With FIND queries, the length of the out-
putted segment is the count of the search term in
the text corpus. Naively, we can run FIND queries
on incrementally long prefixes of the LM output’s
suffix until the count becomes zero (which takes
O(L) queries), or we can do binary-lifting + binary-
search to reduce to O(logL) queries. However, we
show below that we can do this with one single
FIND query (O(1)).

We use the fact that when the search term does
not exist in the text corpus, FIND would return
a 0-length segment (delimited by a left-inclusive
starting position and a right-exclusive ending posi-
tion that are identical), where the previous (or next)
SA element corresponds to the suffix in the text cor-
pus that lexicographically precedes (or succeeds)
the search term (see Figure 3). Consequently, the
suffix in the text corpus that shares the longest com-
mon prefix (LCP) with the search term must come
from one of these two neighboring suffixes, and in-
specting these two suffixes would tell us the length
of the longest matching prefix for this search term.
Therefore, we can simply run FIND once with the
entire LM output’s suffix to find out its longest
matching prefix.

In reality, we shard the infini-gram index because
each shard is limited to 500B tokens. In case there
are multiple shards, we run FIND on each one in
parallel, and take the maximum of LCP length from
all shards.

Note that to retrieve documents containing the
longest matching prefix, we need to run a second
FIND query to locate all its occurrences in the SA.
In practice, we run this query immediately after the
first one to leverage temporal locality in the disk
cache.

Suppressing non-maximal spans. We gather the
longest matching prefix of all suffixes into a list
of spans. These spans begin at monotonically in-
creasing positions, but end at monotonically non-
decreasing positions that may still be identical, and
thus there may still be non-maximal spans (see
Figure 3). To remove the non-maximal spans, we
make a pass on the spans in increasing order of the
beginning position, and only keep spans with an
ending position larger than that of the previously
encountered spans.

3.2 Benchmarking Inference Latency
We host the inference pipeline on a CPU-only node
in the Google Cloud Platform. The node has 64
vCPUs and 256GB RAM, and we store the index
files on 40TB of SSD disks. See App. §B for a
detailed description of our production system.

We empirically benchmark the latency of the
most compute-intensive part of our inference
pipeline: steps 1–3, which include computing max-
imal matching spans and retrieving document snip-
pets. We collect 98 conversations from internal
usage of OLMo models in the Ai2 Playground, and
send them to OLMOTRACE. On average, each LM
response has 458 tokens, and the OLMOTRACE

inference latency per query is 4.46 seconds. This
is in line with our disk I/O analysis in App. §B.
The low inference latency allows us to present OL-
MOTRACE results to users in real time and offer a
smooth user experience.

4 Analyses

We analyze the some properties of the spans and
documents outputted by OLMOTRACE, using the
same 98 conversations as in §3.2.
Length of spans. We report the length of spans
given after step 2 (filtering for long and unique
spans, before merging). The spans have a mean
length of 10.4 tokens and a median of 10 to-
kens. Figure 4 (left) shows the distribution of span
lengths. This tells us that there are many long
pieces of text shared between the LM output and
its training data, which are revealed by OLMO-
TRACE.
Relevance score of documents. To improve user
experience, OLMOTRACE reranks the retrieved
documents by relevance to the LM output using
BM25. We found that the maximum attainable
BM25 score is roughly capped by 0.18 times the
number of characters in the LM output (Figure 4,
middle), so we normalize the BM25 scores by this
coefficient. After normalization, we bucket the
scores as follows: ≥ 0.7 is high relevance, between
0.5 and 0.7 is medium relevance, and < 0.5 is low
relevance. We empirically found these thresholds
to be aligned with human expectations, and this
puts 14% of documents as high relevance. We use
the same normalization and thresholds for span
scores (Figure 4, right), rendering 19% of spans as
high relevance.
Validating the relevance rankings. We con-
ducted a study to evaluate the relevance level of
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Figure 4: Statistics of spans and documents outputted by OLMOTRACE. Left: The spans selected are relatively
long, with a mean length of 10.4 tokens. Middle: The max attainable BM25 relevance score of a document is
roughly proportional to the response length, so we make the score thresholds proportional to the response length.
Right: The relevance score of a span is the max score among its corresponding documents.

the top displayed documents to the LM output. We
first composed a rubric for scoring document rel-
evance on a 0–3 scale (App. Table 2, left), and
asked a human expert to annotate the top-5 dis-
played documents for each conversation according
to this rubric. This human evaluation round was
done with OLMOTRACE results under a different
hyperparameter setting than our final setting, and
we later improved the setting under the guidance
of LLM-as-a-Judge evaluation. The first document
displayed in each conversation received an average
relevance score of 1.90 (roughly meaning “being on
the same topic as the LM output), and the top-5 doc-
uments scored an average of 1.43 (App. Table 3).
We then switched to LLM-as-a-Judge evaluation
(Zheng et al., 2023) with gpt-4o, and found that
it mostly agrees with human evaluation (with a
Spearman correlation coefficient of 0.73). LLM-
as-a-Judge assigned slightly lower scores overall,
with average scores of 1.73 and 1.28 on first and
top-5 documents, respectively. We then used LLM-
as-a-Judge to guide the tuning of several hyperpa-
rameters in OLMOTRACE, and our final setting
achieved average LLM-as-a-Judge scores of 1.82
on first documents and 1.50 on top-5 documents.
See App. §C for additional details on relevance
evaluation and hyperparameters tuning.
Training stage of retrieved documents. Among
the retrieved documents, we found the vast major-
ity (96.7%) belong to the pre-training data, 0.9%
belong to the mid-training data, and 2.4% to the
post-training data. Among post-training, 0.9% are
from the SFT data, 1.5% are from the DPO data,
and none are from the RLVR data. We note that
this distribution heavily depends on the topic of the
conversation: for example, a math-heavy LM out-
put may result in more documents retrieved from

SFT and RLVR datasets.

5 Case Studies

We envision that researchers and the general public
can use OLMOTRACE in many ways to understand
the behavior of LMs. Below we discuss three ex-
ample use cases, and we invite the community to
explore additional ones.

Fact checking. If the LM states a fact, users may
be able to fact-check the statement against its train-
ing data. In Figure 5(a), OLMo outputs “The space
needle was built for the 1962 World Fair,”. OLMO-
TRACE highlights this span of tokens as it appears
verbatim in the training data and shows the corre-
sponding documents (the screenshot captured one
of the ten documents). For most documents from
the pretraining data (like this one), users can click
on the “View Document” button and find the URL
to the original webpage where this document was
crawled.

We note that inspecting the document context
and source can help users make a more informed
judgment on the factuality of the statement, as
words can be misleading out of context, and some
web sources may be unreliable.

Tracing “creative” expressions. While LMs can
be creative in piecing expressions together in new
ways, seemingly novel expressions may not be truly
new, as LMs may have learned them during train-
ing. In such cases, OLMOTRACE reveals the po-
tential source of LM-generated expressions. In Fig-
ure 5(c), OLMo outputs a story in the Tolkien style,
and OLMOTRACE highlights verbatim matches
with the training data, e.g., “I’m going on an ad-
venture” matches with the shown document, which
is a fan fiction about the Hobbits.
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(a) Fact checking: Inspecting the document (and its source
URL) helps verify the factual claim made in the span.

(b) Tracing “creative” expressions: Matching spans reveal
potential source of LM-generated “creative” expressions.

(c) Tracing math capabilities: Arithmetics carried out by
LMs can be traced verbatim to their training data.

Figure 5: Example use cases of OLMOTRACE. In
(a) and (c), one span has been selected to inspect its
enclosing documents; the selected span is colored with
solid green while other span highlights are hidden.

Tracing math capabilities. OLMOTRACE helps
understanding how LMs learned to carry out arith-
metic operations and solve math problems. In Fig-
ure 5(d), OLMo correctly answers Problem 4 from
the AIME 2024 I exam (a combinatorics problem).
OLMOTRACE shows that the calculation step, “\bi-
nom{10}{4} = \frac{10!}{4!(10-4)!} = 210” ap-
pears verbatim in the post-training dataset.

6 Related Work
Comparison with RAG. Retrieval-augmented
generation (RAG) systems retrieve relevant docu-

ments from a database and condition the LM gen-
eration on the retrieved documents. Examples of
them include Bing Chat, Google AI Overview, and
Perplexity AI. Despite looking similar, OLMO-
TRACE is fundamentally different from RAG: OL-
MOTRACE retrieves documents post-hoc and does
not intervene with the LM generation. The purpose
of retrieval in OLMOTRACE is to show the connec-
tion between an LM’s output and its training data,
not to improve the generation itself.

Comparison with search engines. Traditional
search engines (e.g., Google) retrieve documents
from their web index. OLMOTRACE retrieves
matches in an LM’s training data, which is more
suitable to use for understanding the data origin of
LM behaviors.

Tracing LM generation into training data. One
classical approach to trace LM generation is using
influence functions (Koh and Liang, 2017; Han
et al., 2020; Han and Tsvetkov, 2022), which lever-
age gradient information to find influential training
examples for a given test example. While effective
on a small scale, influence functions are intractable
for trillion-token training data due to their high
computational cost. Our work takes a different
approach: we directly retrieve similar training ex-
amples by lexical overlap, with the heuristic that
such training examples are likely to be influential
for the given output.

Other types of tracing. Khalifa et al. (2024)
train LMs to cite documents from the pretraining
data, which is an intervention on the training pro-
cess of LMs. Some work traces LM behavior into
sources other than the training data. Huang et al.
(2024) extend RAG to have LMs cite retrieved doc-
uments provided in-context, whereas Chuang et al.
(2025) train LMs to cite content from the long con-
text provided to the LM at inference time. Gao et al.
(2022) retrieve supporting evidence for LM gener-
ations from Google Search; the Gemini App has
a “double-check response” feature that highlights
parts of the LM response and shows similar results
from Google Search, which is updated in real time
and thus not identical to Gemini’s training data,
making it less useful for scientific exploration.
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Limitations

OLMOTRACE finds lexical, verbatim matches be-
tween an LM’s output and its training data. The
retrieved documents should not be interpreted as
having a causal effect on the LM output, or as sup-
porting evidence or citations for the LM output.

Mitigating social and legal risks. OLMO-
TRACE can make potentially problematic contents
in the LM training data more easily exposed. We
conducted an internal red-teaming effort and imple-
mented mitigation measures based on the findings.
We focused on three aspects: copyright, PII (per-
sonal identifiable information), and toxicity. For
copyright, we were able to make OLMOTRACE

show documents with news articles or song lyrics,
while we did not see any copyrighted book; we
offer a takedown request form for copyright hold-
ers to fill out in case they identify documents in-
fringing their copyright, and we implemented an
efficient way to take down documents in the infini-
gram engine so that we don’t need to re-index the
full training data. For PII, we were unable to find
any PII data in OLMOTRACE results, and we im-
plemented a regex-based filter to block documents
with PII. For toxicity, text moderation is already im-
plemented in Ai2 Playground to filter user prompts,
and we do not add further filtering.
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A More Screenshots of OLMOTRACE

Figure 6 is an extension of Figure 1 and shows
screenshots of OLMOTRACE when user interacts
with the UI.

B Production System Setup

We host the production system of OLMOTRACE

on Google Cloud Platform. We store the infini-
gram index files on pd-balanced SSD disks with
up to 80,000 read IOPS per VM. To achieve the
maximum IOPS, we mount the disks to an N2 VM
with 64 vCPUs. We keep the index files on disk for
inference to avoid needing an unrealistic amount of
RAM, and allocate 256GB RAM for the VM to fit
the fully-materialized page tables of the mmap’ed
index files (0.2% the full file size). To enhance
system availability and throughput, we keep 2 VM
replicas and multi-mount the same disks to both
VMs, and we keep OLMOTRACE processing in
separate workers.

In the infini-gram engine, we turn off prefetching
(setting all prefetch depth to 0) because it would
slow down the overall inference. (Prefetching re-
duces the latency of single query at the cost of per-
forming more disk read ops speculatively, which
is not beneficial when disk I/O throughput is the
bottleneck.) We also implemented a batched ver-
sion of GETDOCBYPTR query to retrieve multiple
training documents in parallel and reduce latency.
Disk I/O analysis. Here we compute the number
of random disk reads needed in the span computa-
tion step. For each beginning token position in the
LM output, we need to find its longest matching

prefix which means 2 FIND queries; effectively this
only counts as 1 FIND query because most disk
reads are shared and cached. Each Find takes 2 bi-
nary searches over the SA, but our implementation
combines them into 1 binary search. Each binary
search takes logN ≈ 40 steps, where each step
takes 2 disk reads – one on the SA and one on the
text corpus. In practice we partition the training
data into 12 shards, so multiply the number of disk
reads by 12. This means for each token in the LM
output, we need 40 × 2 × 12 = 960 disk reads.
Given that our disks have 80,000 IOPS, OLMO-
TRACE can processes, for example, a 100-token
LM output within 1.2 seconds.

C More Details on Document Relevance
Evaluation

For human evaluation, we used the rubric in Table 2
(left). For LLM-as-a-Judge evaluation, we used the
prompt in Table 2 (right), which closely follows the
rubric, and gpt-4o-2024-08-06 as the judge model.

Table 3 shows the evaluation results. We re-
port 4 metrics: average score among the first and
top-5 displayed documents, and the percentage of
relevant documents among the first and top-5 dis-
played documents. We report different settings in
reversed chronological order. For the last row, we
used an early hyperparameter setting of OLMO-
TRACE with human evaluation, and for the second-
last row we used the same hyperparameter setting
but switched to LLM-as-a-Judge. The early hyper-
parameter setting differs from our final setting in
that:

Figure 6: Screenshots on interacting with OLMOTRACE on Ai2 Playground. Left: When user clicks on a
highlighted span, the document panel is filtered to only present documents enclosing the selected span. Right:
When user clicks the “Locate Span” button on a document, the span highlights will narrow down to those enclosed
in the selected document. Clicking on the same place again or the “Clear Selection” button will lead back to showing
all spans and documents (Figure 1, left).
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Score Description

0 The snippet or context of the snippet is about a different topic than the
query and model response (though possibly semantically similar):
For example, for the query breast cancer symptoms, give a 0 to:
A snippet about heart attack symptoms – wrong topic
A snippet about brain cancer symptoms – may not necessarily apply to
breast cancer symptoms

1 The snippet or context of the snippet is about a broader topic than the
query and model response, or is potentially relevant but there’s not enough
information:
For example, for the query breast cancer symptoms, give a 1 to:
A snippet about cancer in general – missing key specifics of symptoms

2 The snippet or context of the snippet is on the right topic of the query and
model response, but is in a slightly different context or is too specific to fit
the exact query:
For example, for the query breast cancer symptoms, give a 2 to:
A snippet referring a breast cancer treatment side effect

3 The snippet or context of the snippet is about a subject that is a direct
match, in topic and scope, of the most likely user intent for the query and
model response:
For example, for the query breast cancer symptoms, give a 3 to:
A snippet discussing a symptom specific to breast cancer

LLM-as-a-Judge Prompt

You will be given a user prompt, a model’s response
to the prompt, and a retrieved document. Please
rate how relevant the document is to the prompt and
model response. Rate on a scale of 0 (not relevant) to
3 (very relevant). Respond with a single number, and
do not include any other text in your response.

Rubric for rating:
0: The document is about a different topic than the
prompt and model response.
1. The document is about a broader topic than the
prompt and model response, or is potentially relevant
but there’s not enough information.
2. The document is on the right topic of the prompt
and model response, but is in a slightly different
context or is too specific.
3. The document is about a subject that is a direct
match, in topic and scope, of the most likely user
intent for the prompt and model response.

Prompt: {prompt}
Model response: {response}
Retrieved document: {document}

Table 2: Left: Rubrics for document relevance evaluation. Right: Prompt for automatically evaluating document
relevance with LLM-as-a-Judge.

Avg score Avg score % relevant % relevant
Setting (1st doc) (top-5 docs) (1st doc) (top-5 docs)

our final setting 1.82 1.50 63.3% 55.1%
+ BM25 doc reranking only considers LM response (no user prompt) 1.78 1.49 62.2% 54.5%

+ shorten doc context length to 100 tokens 1.74 1.44 64.3% 52.9%
+ span ranking w/ length 1.56 1.37 57.1% 49.4%
+ drop spans w/ frequency >10 1.73 1.28 62.2% 47.0%

+ switch to human annotator 1.90 1.43 63.0% 46.2%

Table 3: Evaluating the relevance level of top documents displayed by OLMOTRACE. Avg score is on a likert scale
of 0-3, where 0 is “unrelated” and 3 is “highly relevant”. For % relevant, we consider a document as relevant if it
gets a score of 2 or 3. We use LLM-as-a-Judge with gpt-4o-2024-08-06, except in the last row where we collect
annotation from a human expert.

1. Before step 2, it dropped maximal matching
spans that appear more than 10 times in the
training data (i.e., frequency >10);

2. In step 2, it ranked the spans by descending
length instead of ascending span unigram prob-
ability;

3. When reranking documents in step 5, the BM25
scorer only considered a context length of 100
tokens around the span instead of 500;

4. The BM25 scorer only considered the LM re-
sponse and did not consider the user prompt.

We tuned LLM-as-a-Judge so that it has high agree-
ment and roughly matched statistics with the hu-
man evaluation, and our selection of model (gpt-
4o-2024-08-06) and prompt (Table 2, right) was
the best combination we reached.

We then incrementally adjusted the hyperparam-
eter settings in OLMOTRACE and measured the
document relevance with LLM-as-a-Judge. The

first change we made is to no longer drop maximal
matching spans that appear more than 10 times in
the training data. The dropping was due to a lim-
itation in the early version of our system, and we
thought this would lead to incomplete results (many
documents are duplicated more than 10 times in the
pre-training data) and decided to not drop any max-
imal matching spans according to frequency. Not
dropping spans decreased the metrics on the first
displayed documents, but increased the metrics on
the top-5. Subsequently, we incrementally flipped
item 2, 3, and 4 in the above change list, and with
every change applied, the overall document rele-
vance metrics improved (with a small exception on
% relevant among first displayed documents). Our
final setting achieved an average relevance score of
1.82 among the first displayed documents, and 1.50
among the top-5 documents, according to LLM-as-
a-Judge.
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