Unifying Language Agent Algorithms with Graph-based Orchestration
Engine for Reproducible Agent Research

Qiangian Zhang ', Jiajia Liao 2, Heting Ying !, Yibo Ma !,
Haozhan Shen %, Jingcheng Li !, Peng Liu !, Lu Zhang !,
Chunxin Fang 2, Kyusong Lee 2, Ruochen Xu !, Tiancheng Zhao'*"

'0Om AI Research, *Binjiang Institute of Zhejiang University,
3College of Computer Science and Technology, Zhejiang University

tianchez@zju-bj.com

Abstract

Language agents powered by large language
models (LLMs) have demonstrated remarkable
capabilities in understanding, reasoning, and
executing complex tasks. However, developing
robust agents presents significant challenges:
substantial engineering overhead, lack of stan-
dardized components, and insufficient evalua-
tion frameworks for fair comparison. We in-
troduce Agent Graph-based Orchestration for
Reasoning and Assessment (AGORA) ', a flex-
ible and extensible framework that addresses
these challenges through three key contribu-
tions: (1) a modular architecture with a graph-
based workflow engine, efficient memory man-
agement, and clean component abstraction;
(2) a comprehensive suite of reusable agent
algorithms implementing state-of-the-art rea-
soning approaches; and (3) a rigorous evalua-
tion framework enabling systematic compari-
son across multiple dimensions. Through ex-
tensive experiments on mathematical reason-
ing and multimodal tasks, we evaluate vari-
ous agent algorithms across different LLMs,
revealing important insights about their rela-
tive strengths and applicability. Our results
demonstrate that while sophisticated reason-
ing approaches can enhance agent capabilities,
simpler methods like Chain-of-Thought often
exhibit robust performance with significantly
lower computational overhead. AGORA not
only simplifies language agent development but
also establishes a foundation for reproducible
agent research through standardized evaluation
protocols.

1 Introduction

Language agents powered by large language mod-
els (LLMs) are rapidly transforming how we ap-

'We made a demo video at: https://www.youtube.
com/watch?v=WRH-F1zegKI. The comparison of
agent algorithms across different LLMs is also avail-
able at https://huggingface.co/spaces/omlab/
open-agent-leaderboard. Source code of AGORA can be
found at https://github.com/om-ai-1lab/OmAgent.

proach complex computational tasks across diverse
domains. Industry adoption of these technologies is
accelerating, with projections suggesting that 33%
of organizations will implement LLM-based appli-
cations by 2025°. This growing adoption stems
from the unprecedented ability of these systems
to integrate natural language understanding with
action-oriented capabilities.

Despite their promising trajectory, the practical
implementation of language agents remains chal-
lenging for researchers and developers. Current
frameworks often require substantial custom engi-
neering efforts for each application domain, lead-
ing to fragmented implementations and difficulty
in comparing different approaches.

To bridge this gap, we present AGORA, a com-
prehensive framework focused on both practical im-
plementation and scientific evaluation of language
agents. AGORA provides an integrated environ-
ment where researchers can experiment with vari-
ous reasoning strategies while developers can build
robust applications with minimal engineering over-
head. Our framework makes three key contribu-
tions that differentiate it from existing approaches:
a graph-based workflow orchestration engine that
simplifies complex task execution; modular agent
algorithm support for diverse reasoning paradigms;
and easy-to-use client interfaces for evaluation and
interaction.

Through systematic evaluation on mathematical
and multimodal reasoning tasks, we demonstrate
that AGORA not only facilitates rapid development
but also enables rigorous scientific comparison of
different agent paradigms. Our results provide
actionable insights for researchers and practition-
ers navigating the growing landscape of language
agent technologies.

2https: //www.gartner.com/en/articles/

intelligent-agent-in-ai?

107

Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 3: System Demonstrations), pages 107-117
July 27 - August 1, 2025 ©2025 Association for Computational Linguistics

https://www.youtube.com/watch?v=WRH-F1zegKI
https://www.youtube.com/watch?v=WRH-F1zegKI
https://huggingface.co/spaces/omlab/open-agent-leaderboard
https://huggingface.co/spaces/omlab/open-agent-leaderboard
https://github.com/om-ai-lab/OmAgent
https://www.gartner.com/en/articles/intelligent-agent-in-ai?
https://www.gartner.com/en/articles/intelligent-agent-in-ai?

Whole Workflow
Workflow (DnC as Example) \
@ @ Taski — Task2 e ee—> TaskN —
olama. / Openhit
- l I l I l I Loop
Sy - Worker 1 Worker 2 Worker N
S ® & ® & ® &
LLM VLM LLM VLM LLM VLM
e Swtich
] — 1 4swic ask\ >
= = | L e
STM LT™M STM LTM STM LT™M
A
Operators
CoT SC-CoT ToT ReAct PoT 1
DnC GoT RAP V* ZoomEye . N\
final |

Figure 1: A demonstration of AGORA structure.

2 Related Work

Recent years have seen significant development
in LLM agent frameworks and evaluation method-
ologies. Frameworks like LangChain (Developers,
2022), AutoGPT (Developers, 2023), and Agent-
Verse (Chen et al., 2024) offer general-purpose
infrastructures for agent development, while Au-
toAgent (Tang et al., 2025) provides zero-code so-
lutions through declarative interfaces. Specialized
frameworks address domain-specific applications,
including ChemCrow (Bran et al., 2023) for chem-
istry and OS-Copilot (Wu et al., 2024) for operating
systems. For evaluation, comprehensive bench-
mark suites such as AgentBench (Liu et al., 2023b)
and WebArena (Zhou et al., 2023) assess agents
across multiple dimensions including reasoning,
tool use, and web browsing. Leaderboard plat-
forms like Agent Arena (Yekollu et al., 2024) en-
able systematic comparison of agents across mod-
els, frameworks, and tools through user-driven eval-
uations. A notable benchmark in this space is the
Agent Leaderboard (Bhavsar, 2025), which primar-
ily evaluates LLLMs’ tool calling and API interac-
tion capabilities. Our work differs by providing a
comprehensive evaluation framework that assesses
both the underlying LLM capabilities and the ef-
fectiveness of different reasoning language agent
algorithms, enabling researchers to understand the

interplay between model selection and reasoning
strategies.

3 AGORA Framework

AGORA is built on top of the OmAgent frame-
work (Zhang et al., 2024), extending it into a
flexible and extensible system for building, or-
chestrating, and evaluating language agents. It
abstracts engineering complexity while exposing
essential, reusable components—such as LLMs,
VLMs, tools, and workflows—needed to construct
powerful and research-friendly agents.

Graph-based Workflow Orchestration En-
gine. At the core of AGORA is a graph-based
orchestration engine designed for modularity and
scalability. As shown in Figure 1, the system
uses a Directed Acyclic Graph (DAG) where each
node represents a task. Tasks are either simple
tasks—developer-defined custom logic—or logical
tasks—built-in control flows such as branching and
looping. Built on the Conductor library, this engine
provides visual representations of workflows, mak-
ing agent behavior intuitive to trace and debug. It
also supports asynchronous, distributed execution,
which is ideal for managing long-running, complex
agent workflows.

Modular Agent Algorithm Support. AGORA
includes a diverse set of agent algorithms such

108

as Chain-of-Thought (CoT), Program-of-Thought
(PoT), ReAct, Tree-of-Thought (ToT), and more.
Each algorithm is implemented as a modular com-
ponent, allowing developers to reuse common func-
tions like memory access, LLM inference, or tool
use. This structure encourages rapid prototyping,
easy extensibility, and consistent evaluation across
reasoning paradigms.

Client Interfaces for Evaluation and Inter-
action. After constructing an agent, AGORA pro-
vides a suite of Client interfaces tailored to different
usage scenarios.

* WebPageClient: delivers a web-based chat
interface that allows users to directly interact
with the agent in real time, making it partic-
ularly suitable for qualitative studies such as
usability testing or behavioral observation.

¢ ProgrammaticClient: supports automated
evaluation using predefined JSON test files,
making it ideal for quantitative studies with
structured benchmarks—it efficiently runs
batch test cases, logs outputs, and summarizes
scores.

* DefaultClient: offers a lightweight
command-line interface, designed for quick
testing and debugging of agent logic during
development. These clients are plug-and-play
and can be easily configured via a configura-
tion file, enabling researchers to seamlessly
adapt the interface to different stages of
experimentation and evaluation.

These client interfaces are plug-and-play and can
be easily configured via a user-friendly config file,
enabling seamless switching based on development
or evaluation needs.

4 Agent Algorithms

The AGORA framework uses modular, reusable
components called operators to simplify building
and customizing Al systems. Each operator acts as
a self-contained unit designed for a specific task,
with clear input and output connections that make
it easy to integrate into larger workflows.

We implemented various agent algorithms as op-
erators and rigorously evaluated their performance
in standardized, controlled environments. A de-
scription of the implemented agent algorithms is
provided in Table 1. In particular, RAP enables
more reliable and transparent decision-making pro-
cesses by transforming complex reasoning tasks

into systematic planning problems. The RAP im-
plementation follows a tree-search-based architec-
ture with four main components: selection, expan-
sion, simulation, and backpropagation. In contrast
to ToT, RAP enables backpropagation in the search
framework, enhancing the efficiency of decision-
tree traversal.

4.1 Implemented Agent Algorithms

In addition, We enhaced ReAct to ReAct-pro in-
spired by the Reflexion (Shinn et al., 2023) im-
plementation. We modified our approach by sepa-
rating the previously combined Think and Action
steps into two distinct model calls, allowing the
model to focus more intently on each phase. We
also improved PoT by merging short-answer and
multiple-choice questions processes into a single
workflow consisting of two modules: the program
executor and the answer extractor. For GoT, we ex-
tend the original GoT implementation into general
GoT by allowing it to conduct any tasks other than
the predefined tasks like sorting.

Algorithm 1 V*

1: function VSTAR(Image I, Query T)

2: VWM <« Init(, T)

3: targets « LLMIdentify(I, T)

4. for each tar in targets do

5: patchBox <— getSize(I)

6: while true do

7: if patchBox < minCropSize then break

8: end if

9: imagePatch <— CropImage(I, patchBox)

10: (scores, subImagePatchs, coords, conf) <— VisualSearch(imagePatch, tar)
11: if conf > thresh then

12: Store(VWM, tar, coords) break

13: end if

14: searchQueue <— HEAPPUSH(priorityQueue, (score, sublmagePatch))
15: if priorityQueue not empty then

16: patch <— HEAPPOP(priorityQueue)[1]

17: PatcheBox < getSize(patch)

18: end if

19: end while

20: end for

21: return LLMAnalyze(VWM)
22: end function

5 [Evaluation and Leaderboard

5.1 Evaluation Framework

Our experimental evaluation focused on two dis-
tinct domains: unimodal mathematical reason-
ing tasks and multimodal high-resolution image
question-answering reasoning tasks. Mathemati-
cal reasoning tasks serve as canonical benchmarks
for logical inference and problem decomposition,
challenging agents to exhibit systematic reasoning
and numerical accuracy. These tasks are inher-
ently language-intensive yet require precise step-
by-step deduction, making them ideal for evaluat-

109

Agent Algorithms

Description

Chain of Thought
(CoT) (Wei et al.,
2022)

Through encourage reasoning in the prompt, CoT enhances LLMs’ reasoning by leverages intermediate steps,
improving performance in complex tasks like arithmetic and symbolic reasoning. It can be broadly categorized
into two types: Zero-shot-CoT and Few-shot-CoT (Kojima et al., 2022).

Self-Consistent CoT
(SC-CoT) (Wang et al.,
2022)

SC-CoT extends traditional CoT by generating multiple independent reasoning paths for the same problem and
aggregating results through majority voting. This approach addresses the inherent variability in LLM reasoning
by exploiting the observation that correct answers tend to emerge more consistently across different reasoning
attempts than incorrect ones.

Tree of Thoughts (ToT)
(Yao et al., 2023)

ToT facilitates advanced decision-making by examining coherent textual units, or "thoughts," as intermediate
steps in problem-solving. Unlike traditional token-level approaches, ToT enables LLMs to construct and
evaluate a thought tree using methods like Breadth-First Search (BFS) or Depth-First Search (DFS) to derive an
optimal chain of thought.

Reasoning and Acting
(ReAct) (Yao et al.,
2022)

ReAct allows language models to engage with external environments through an iterative cycle of thought,
action, and observation. The model reasons about the current state, executes relevant actions, and processes
feedback until it gathers sufficient information to deliver a final response.

Program of Thought
(PoT) (Chen et al.,
2022)

PoT is designed to enhance the reasoning capabilities of language models by integrating programming language
statements into their outputs. Unlike CoT, PoT leverages the strengths of language models like Codex to
generate both text and executable code.

Divide-and-Conquer
(DnC) (Zhang et al.,
2024)

DnC enhances problem-solving by decomposing complex issues into manageable sub-problems. In this
approach, LLMs alternate between the roles of conqueror, which directly addresses the problem, and divider,
which breaks it down into smaller components. The conqueror and the divider operate in an iterative loop until
the termination criteria are met.

Graph-of-Thought
(GoT) (Besta et al.,
2024)

GoT extends the ToT framework by introducing aggregation and refining transformations, enabling advanced
graph-based reasoning. This approach decomposes tasks into identical subtasks, processes them independently,
and aggregates sub-responses while leveraging internal loops to refine response quality.

Reasoning via Plan-
ning (RAP) (Hao et al.,
2023)

RAP enhances LLMs by framing complex reasoning tasks as structured planning problems and employing
a Monte Carlo Tree Search (MCTS) framework. The RAP implementation follows a tree-search-based
architecture with four main components: selection, expansion, simulation, and backpropagation. Selection
means intelligently choosing promising paths through the reasoning tree; Expansion breaks down complex
questions into manageable sub-questions; Simulation evaluates potential solution paths through systematic
exploration; and Backpropagation updates the search strategy based on solutions discovered. In contrast to ToT,
RAP enables backpropagation in the search framework, enhancing the efficiency of decision-tree traversal.

V*(Wu and Xie, 2023)

V* introduces a meta-architecture for VLMs, SEAL (Show, sEArch, and TelL.), a LLM-guided visual search
method that enhances high-resolution image processing through iterative search and contextual reasoning. V*
simulates human visual search process and leverages top-down features and contextual guidance to address
the limitations of traditional visual encoders. First, V* assesses whether visual search is necessary. If so, the
VLM identifies the target object. Subsequently, the LLM-guided search model recursively partitions the image
into smaller regions and searches for the target based on the confidence scores derived from contextual cues
until the target is located. The information about the identified target is stored in the Visual Working Memory
(VWM). Finally, the VLM generates the response using the visual information of all targets stored in the VWM.
A implementation of V* is presented in Algorithm 1.

ZoomEye (Shen et al.,
2024)

ZoomEye is a training-free agent algorithm that enhances VLM performance on high-resolution images by
simulating human zooming behavior. Treating the image as a tree structure, it dynamically explores zoomed-in
regions based on visual cues and problem-specific priorities calculated by the VLMs.

Table 1: Agent algorithms implemented in AGORA.

ing the core reasoning capabilities of LLMs. Mean-
while, multimodal tasks involving high-resolution
image understanding address the growing demand
for agents to simulate real-world scenarios where
contextual reasoning across diverse inputs is es-
sential. Comprehensive experiments were con-
ducted across multiple evaluation metrics, agent
algorithms, and LLMs to assess reasoning capabili-
ties in both domains.

To evaluate language agents, this study defines
four key metrics: accuracy, cost, token usage, and
pass rate. Specially, accuracy assesses the propor-
tion of predictions that exactly match the ground-
truth response; cost quantifies the total expendi-
ture incurred measured in US dollar. We used
API services for close-sourced models and mod-
els with more than 70 billion from SiliconFlow'
and OpenAIz; Token usage measures the number
of tokens that a language agent uses to generate

predictions, and pass rate measures the proportion
of valid predictions among all predictions, where a
prediction is considered valid if it is neither empty
nor null.

5.2 Experimental Setup

5.2.1 Mathematical Reasoning Tasks

The mathematical reasoning benchmarks include:

GSMBSK (Cobbe et al., 2021): A dataset for eval-
uating language agents’ ability to solve elementary
math word problems. we conducted the evaluation
using 8-shot learning.

AQuA (Ling et al., 2017): This dataset is specif-
ically designed to reason through diverse algebraic
problems to assess reasoning abilities. We em-
ployed zero-shot learning in the experiments.

'SiliconFlow: https://siliconflow.cn/zh-cn/
20penAl: https://openai.com/

110

MATH-500 (Hendrycks et al., 2021): A dataset
comprising 500 mathematical reasoning problems
has been meticulously designed to evaluate the abil-
ity of language agents to tackle complex mathemat-
ical challenges, where 4-shot learning is applied.

We applied both commercial and open-source
models in the experiments.

Commercial Models: In our experiment, GPT-
3.5 Turbo and GPT-40 from OpenAl, and Doubao-
lite-32k from ByteDance were used as LLM for
agent algorithms, and GPT-3.5 Turbo was also used
for the extraction of AQuA answers.

Open-source models: We also evaluated open
source models like Llama and Qwen for perfor-
mance and cost effectiveness. We used the follow-
ing models as the LLMs for Agents: Qwen2.5-72B-
Instruct, Qwen2.5-7B-Instruct (Yang et al., 2024b),
Qwen2-1.5B-Instruct, Qwen2-0.5B-Instruct (Yang
et al., 2024a), Llama-3.3-70B-Instruct, Llama-3.1-
8B-Instruct (Grattafiori et al., 2024), InternLM?2.5-
7B-Chat (Cai et al., 2024), deepseek-r1-1.5B (Guo
et al., 2025).

In the experiments, the default setting uses a
temperature of 0. More algorithm settings other
than default can be found in Appendix A.

5.2.2 Multimodal Reasoning Tasks

Regarding multimodal reasoning task, we imple-
mented MME-RealWorld (Zhang et al., 2025) as
the benchmark. MME-RealWorld aims at solving
high-resolution image problems highly relevant to
real-world applications. Specifically, we selected
images with resolutions between 2K and 4K in the
lite version. We implemented V* and ZoomEye
in the evaluation, implementation details can be
found in Appendix A. Because we only applied
open source VLMs and all models used were de-
ployed locally, cost is not involved for evaluation.

5.3 Mathematical Reasoning Results

5.3.1 Performance Comparison

The average scores and average token consump-
tions of LLM and algorithm pairs are illustrated in
Figure 2, where the average token consumption is
calculated by first summing the input and output
tokens per sample for each dataset, then computing
the overall mean across all benchmarks. The com-
parison details can be found at Open Agent leader-
board (Lab, 2025). Furthermore, we performed a
score versus cost analysis for different LLM agent
algorithms, as depicted in Figure 3. The dashed
line in the plot represents an ideal trend line, which

Average Scores of LLM and Algorithm Pairs

Algorithms

(a) Average scores.
Average Total Tokens (K) of LLM and Algorithm Pairs

45
ToT- 32 154 151 . 17.7 .. 145 (214 135 115 o
ReAct-Pro ... 17.3 151 87 54 58 3

SC-CoT- 146 47 54 50 60 48 49 49 23 16 17

PoT- 25 11 10 10 10 12 10 13 10 08 09 20

Algorithms

CoT- 1.8 08 08 09 09 09 09 08 08 07 07

0.5 S

(b) Average input and output token consumptions.

Figure 2: LLMs and agent algorithms average scores
and average token consumptions on mathematical rea-
soning tasks.

serves as a visual benchmark, illustrating the opti-
mal balance between cost and performance. Points
on the top-left corner indicate agent-LLM pairs
that offer the best possible trade-off between task
accuracy and computational cost. Models smaller
than 7B parameters were self-hosted locally, thus
their cost metrics are not shown. It should be men-
tioned that GoT, RAP and DnC were excluded from
the comparison. GoT is specifically designed to
decompose complex tasks into several identical
sub-tasks, such as sorting and keyword counting.
RAP and DnC was not included due to its high
token consumption.

Open-source models with 70 billion parameters
have demonstrated exceptional performance com-
pared to other models. Also, Qwen2.5-7B-Instruct
surpasses GPT-3.5 Turbo in this task. Surprisingly,
deepseek-r1-1.5B, with only 1.5 billion parameters,
exhibits remarkable performance by outperforming
the InternLLM2.5-7B-Chat model. When consider-
ing different agent algorithms, the simplest CoT
approach also outperforms other agent algorithms
while utilizing the least number of tokens.

111

5.3.2 Key Findings

Simple agent algorithms show robust perfor-
mance. CoT and SC-CoT algorithm has demon-
strated remarkable performance despite their sim-
plicity. Utilizing the Doubao-lite-32k model, CoT
achieved an accuracy of 89.31% on the GSM8K
dataset, with a token cost of only $0.0558. How-
ever, SC-CoT encounters challenges with smaller
models, which struggle to strictly adhere to instruc-
tions, resulting in difficulties parsing the output.
Notably, more advanced algorithms, such as PoT
and TOT, which incorporate external tools, per-
form worse on mathematical problems compared
to the simpler algorithms. We observed that PoT’s
reliance on the code generation and parsing capa-
bilities of LLMs does not lead to significant im-
provements compared to other agent algorithms.
In fact, it can have negative effects, particularly
with smaller LLM models due to the code gener-
ation quality. Moreover, the thinking generation
and state evaluation for ToT does not significantly
reduce the difficulty of reasoning, but rather sig-
nificantly increases its token usage, which leads to
exhibiting poorer performance.

This phenomenon prompts a reflection on the
value of algorithmic complexity. The advantage
of simpler methods is primarily reflected in the
reduction of error accumulation. Complex agent
algorithms often involve multiple steps, each po-
tentially introducing errors, whereas a single rea-
soning chain significantly reduces the risk of er-
ror propagation. CoT’s simple prompts are easier
to adjust and optimize, making the reasoning pro-
cess more transparent, easier to understand, and
improved. In terms of cost-effectiveness, CoT’s ad-
vantages are even more apparent. Lower token con-
sumption translates to reduced operational costs,
and faster reasoning speeds enhance system respon-
siveness. Additionally, the straightforward imple-
mentation reduces development and maintenance
costs. These findings offer important practical in-
sights. When designing intelligent systems, we
should prioritize simple and direct solutions, in-
troducing complexity only when necessary. It is
advisable to start with a basic CoT implementa-
tion and gradually optimize based on the specific
task characteristics, while carefully evaluating the
actual benefits of each added complexity.

Agent algorithms can be sensitive to prompts.

We also noticed the importance of prompt design.
As shown in Table 2, the base ReAct achieved

a baseline performance of 34.25% on the AQuA
dataset. Inspired by the Reflexion implementation,
we prompt ReAct to ReAct-Pro by separating the
previously combined Think and Action steps into
two distinct model calls, allowing the model to
focus more intently on each phase. This modifica-
tion alone boosted accuracy to 40.16%. The real
breakthrough came from a remarkably simple ad-
dition by including the sentence: "You can take as
many steps as needed" in the prompt, we observed
an extraordinary increase in accuracy to 64.57%,
an almost 90% improvement over the baseline.
This simple prompt fundamentally transformed the
model’s behavior patterns.

Agent Algorithm | Dataset LLM Score
ReAct GSM8K | GPT-3.5 Turbo | 38.13
ReAct-Pro GSM8K | GPT-3.5 Turbo | 74.91
ReAct AQuA GPT-3.5 Turbo | 34.25
ReAct-Pro AQuA GPT-3.5 Turbo | 64.57

Table 2: Comparison of ReAct and ReAct-Pro on differ-
ent datasets.

Open-source models are competitive with
commercial ones. Open-source models at the
70B level, such as Llama-3.3-70B-Instruct and
Qwen2.5-72B-Instruct, have shown outputs that ex-
ceed those of the closed-source GPT-40. However,
the enhancement brought by agent frameworks to
top-tier large models (such as GPT and models
above 70B) is relatively limited. In some cases,
complex agents like ReAct may even lead to a de-
cline in performance.

Small models perform better with simple
agent algorithms. For smaller models, such as
Qwen2.5-7B-Instruct, CoT demonstrates a marked
improvement, while PoT shows limited enhance-
ment. This limitation is primarily attributed to the
bottleneck in code generation capabilities.

5.4 Multimodal Reasoning Results

5.4.1 Performance Comparison

We compared 10, V*, and ZoomEye using vari-
ous models. The detailed comparison results are
shown in Table 3 in Appendix C. It is important
to note that due to the specific nature of the V*
models, we were unable to obtain their token usage
data. Overall, the final scores of the same mod-
els improved after using the ZoomEye framework,
particularly the Qwen2.5-VL-7B-Instruct model,
which even outperformed the Qwen2.5-VL-72B-
Instruct 10. After applying the agent algorithms,
both the input and output token usage increased sig-

112

nificantly. Notably, the Qwen2.5-VL models (7B
and 72B) demonstrated identical token consump-
tion patterns in IO, which can be attributed to their
strong instruction adherence capabilities and the
multiple-choice format of the benchmark questions.
Moreover, the V* framework received one of the
lowest scores, primarily due to its low pass rate.

5.4.2 Key Findings

In our experiments, we found that the performance
of the models was generally improved after us-
ing a multimodal agent workflow like ZoomEye,
especially the 7B model outperformed the 72B
model. This phenomenon suggests that adopting
multimodal agent can effectively provide more vi-
sual details in final answer, thus helping the model
to generate more accurate answers. Therefore, if
computational resources are sufficient, it is recom-
mended to prioritize models with larger parameters
to fully leverage their potential. However, if com-
putational resources are limited, smaller models
combined with efficient agent workflows can still
achieve comparable results.

6 Discussion

In the design of agent systems, it is crucial to pri-
oritize straightforward and direct solutions, incor-
porating complexity only when necessary. It is
recommended to begin with a fundamental CoT
that achieves a balance between performance and
cost. Complexity can be progressively increased
based on task requirements (e.g., using ToT for hi-
erarchical planning when CoT proves insufficient) ,
ensuring a systematic trade-off between efficiency
and task complexity. For the selection of LLMs, we
recommend utilizing models with at least 7 billion
parameters or employing reasoning models such
as deepseek-rl. This recommendation is primarily
due to the tendency of smaller models to exhibit
issues with instruction adherence. Furthermore, we
noticed multimodal agent algorithms like Zoom-
Eye can enhance agent performance by providing
valuable visual details. Although larger models
should be prioritized when resources allow, smaller
models can still yield competitive outcomes.

7 Conclusions

In this paper, we present AGORA , a comprehen-
sive framework for building and evaluating lan-
guage agent algorithms that addresses critical chal-
lenges of engineering overhead, fragmented imple-
mentations, and insufficient evaluation standards.

Our graph-based workflow orchestration engine
(built on DAGs) enables dynamic task decomposi-
tion and asynchronous distributed execution. Mean-
while, its modular design standardizes agent algo-
rithms (e.g., CoT, V*) for plug-and-play integra-
tion. The multi-client evaluation interfaces also fa-
cilitate both qualitative user studies and quantitative
benchmarking, enabling rigorous cross-algorithm
comparisons across LLMs and tasks. We systemati-
cally integrated 10 state-of-the-art agent algorithms
spanning from CoT to V*, under a unified modular
architecture, which reduces engineering overhead.

Our evaluation across mathematical and multi-
modal tasks revealed several important insights.
First, simpler reasoning approaches like CoT often
demonstrate robust performance and consume less
cost than more complex alternatives. Second, the
effectiveness of different agent algorithms varies
substantially across different model sizes. Third,
for multimodal tasks, specialized agent algorithms
like ZoomEye can substantially enhance model per-
formance on high-resolution images, highlighting
the value of reasoning strategies using VLMs.

As the field continues to evolve, we believe this
framework will serve as a valuable foundation for
exploring increasingly sophisticated agent architec-
tures and reasoning approaches. Future work of
AGORA should focus on: (1) expanding the eval-
uation framework to encompass broader complex
real-world tasks (e.g., tool utilization and web in-
teraction scenarios); (2) developing adaptive agents
that dynamically select optimal reasoning strategies
based on task characteristics; and (3) prioritizing
seamless integration of emerging LLMs via exten-
sions to AGORA’s modular architecture.

References

Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang,
Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
Shijie Wang, Jun Tang, Humen Zhong, Yuanzhi
Zhu, Mingkun Yang, Zhaohai Li, Jianqiang Wan,
Pengfei Wang, Wei Ding, Zheren Fu, Yiheng Xu,
Jiabo Ye, Xi Zhang, Tianbao Xie, Zesen Cheng,
Hang Zhang, Zhibo Yang, Haiyang Xu, and Junyang
Lin. 2025. Qwen2.5-vl technical report. Preprint,
arXiv:2502.13923.

Maciej Besta, Nils Blach, Ales Kubicek, Robert Gersten-
berger, Michal Podstawski, Lukas Gianinazzi, Joanna
Gajda, Tomasz Lehmann, Hubert Niewiadomski, Pi-
otr Nyczyk, et al. 2024. Graph of thoughts: Solving
elaborate problems with large language models. In
Proceedings of the AAAI Conference on Artificial
Intelligence, volume 38, pages 17682-17690.

113

https://arxiv.org/abs/2502.13923

Pratik Bhavsar. 2025. Agent leaderboard.
https://huggingface.co/spaces/galileo-ai/
agent-leaderboard.

Andres M Bran, Sam Cox, Oliver Schilter, Carlo Baldas-
sari, Andrew D White, and Philippe Schwaller. 2023.
Chemcrow: Augmenting large-language models with
chemistry tools.

Zheng Cai, Maosong Cao, Haojiong Chen, Kai Chen,
Keyu Chen, Xin Chen, Xun Chen, Zehui Chen,
Zhi Chen, Pei Chu, Xiaoyi Dong, Haodong Duan,
Qi Fan, Zhaoye Fei, Yang Gao, Jiaye Ge, Chenya
Gu, Yuzhe Gu, Tao Gui, Aijia Guo, Qipeng Guo,
Conghui He, Yingfan Hu, Ting Huang, Tao Jiang,
Penglong Jiao, Zhenjiang Jin, Zhikai Lei, Jiaxing Li,
Jingwen Li, Linyang Li, Shuaibin Li, Wei Li, Yin-
ing Li, Hongwei Liu, Jiangning Liu, Jiawei Hong,
Kaiwen Liu, Kuikun Liu, Xiaoran Liu, Chengqi Lv,
Haijun Lv, Kai Lv, Li Ma, Runyuan Ma, Zerun Ma,
Wenchang Ning, Linke Ouyang, Jiantao Qiu, Yuan
Qu, Fukai Shang, Yunfan Shao, Demin Song, Zi-
fan Song, Zhihao Sui, Peng Sun, Yu Sun, Huanze
Tang, Bin Wang, Guoteng Wang, Jiaqi Wang, Ji-
ayu Wang, Rui Wang, Yudong Wang, Ziyi Wang,
Xingjian Wei, Qizhen Weng, Fan Wu, Yingtong
Xiong, Chao Xu, Ruiliang Xu, Hang Yan, Yirong
Yan, Xiaogui Yang, Haochen Ye, Huaiyuan Ying, Jia
Yu, Jing Yu, Yuhang Zang, Chuyu Zhang, Li Zhang,
Pan Zhang, Peng Zhang, Ruijie Zhang, Shuo Zhang,
Songyang Zhang, Wenjian Zhang, Wenwei Zhang,
Xingcheng Zhang, Xinyue Zhang, Hui Zhao, Qian
Zhao, Xiaomeng Zhao, Fengzhe Zhou, Zaida Zhou,
Jingming Zhuo, Yicheng Zou, Xipeng Qiu, Yu Qiao,
and Dahua Lin. 2024. Internlm2 technical report.
Preprint, arXiv:2403.17297.

Weize Chen, Yusheng Su, Jingwei Zuo, Cheng Yang,
Chenfei Yuan, Chi-Min Chan, Heyang Yu, Yaxi Lu,
Yi-Hsin Hung, Chen Qian, Yujia Qin, Xin Cong,
Ruobing Xie, Zhiyuan Liu, Maosong Sun, and Jie
Zhou. 2024. Agentverse: Facilitating multi-agent
collaboration and exploring emergent behaviors. In
The Twelfth International Conference on Learning
Representations.

Wenhu Chen et al. 2022. Program of thoughts
prompting: Disentangling computation from reason-
ing for numerical reasoning tasks. arXiv preprint
arXiv:2211.12588.

Zhe Chen, Weiyun Wang, Yue Cao, Yangzhou Liu,
Zhangwei Gao, Erfei Cui, Jinguo Zhu, Shenglong Ye,
Hao Tian, Zhaoyang Liu, Lixin Gu, Xuehui Wang,
Qingyun Li, Yimin Ren, Zixuan Chen, Jiapeng Luo,
Jiahao Wang, Tan Jiang, Bo Wang, Conghui He, Bo-
tian Shi, Xingcheng Zhang, Han Lv, Yi Wang, Wengqi
Shao, Pei Chu, Zhongying Tu, Tong He, Zhiyong Wu,
Huipeng Deng, Jiaye Ge, Kai Chen, Kaipeng Zhang,
Limin Wang, Min Dou, Lewei Lu, Xizhou Zhu, Tong
Lu, Dahua Lin, Yu Qiao, Jifeng Dai, and Wenhai
Wang. 2025. Expanding performance boundaries of
open-source multimodal models with model, data,
and test-time scaling. Preprint, arXiv:2412.05271.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, Christopher Hesse, and John Schulman.
2021. Training verifiers to solve math word prob-
lems. arXiv preprint arXiv:2110.14168.

AutoGPT Developers. 2023. Autogpt.

LangChain Developers. 2022. Langchain: Framework
for developing applications powered by language
models.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri,
Abhinav Pandey, Abhishek Kadian, Ahmad Al-
Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten,
Alex Vaughan, et al. 2024. The llama 3 herd of mod-
els. arXiv preprint arXiv:2407.21783.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song,
Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma,
Peiyi Wang, Xiao Bi, et al. 2025. Deepseek-rl: In-
centivizing reasoning capability in llms via reinforce-
ment learning. arXiv preprint arXiv:2501.12948.

Shibo Hao, Yi Gu, Haodi Ma, Joshua Hong, Zhen
Wang, Daisy Wang, and Zhiting Hu. 2023. Rea-
soning with language model is planning with world
model. In Proceedings of the 2023 Conference on
Empirical Methods in Natural Language Processing,
pages 8154-8173, Singapore. Association for Com-
putational Linguistics.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul
Arora, Steven Basart, Eric Tang, Dawn Song, and Ja-
cob Steinhardt. 2021. Measuring mathematical prob-
lem solving with the math dataset. arXiv preprint
arXiv:2103.03874.

Takeshi Kojima, Shixiang (Shane) Gu, Machel Reid, Yu-
taka Matsuo, and Yusuke Iwasawa. 2022. Large lan-
guage models are zero-shot reasoners. In Advances in
Neural Information Processing Systems, volume 35,
pages 22199-22213. Curran Associates, Inc.

Om AI Lab. 2025. Open agent leader-
board. https://github.com/om-ai-lab/
open-agent-leaderboard.

Wang Ling, Dani Yogatama, Chris Dyer, and Phil Blun-
som. 2017. Program induction by rationale genera-
tion: Learning to solve and explain algebraic word
problems. arXiv preprint arXiv:1705.04146.

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae
Lee. 2023a. Visual instruction tuning. Preprint,
arXiv:2304.08485.

Xiao Liu, Hao Yu, Hanchen Zhang, Yifan Xu, Xuanyu
Lei, Hanyu Lai, Yu Gu, Hangliang Ding, Kaiwen
Men, Kejuan Yang, Shudan Zhang, Xiang Deng, Ao-
han Zeng, Zhengxiao Du, Chenhui Zhang, Sheng
Shen, Tianjun Zhang, Yu Su, Huan Sun, Minlie
Huang, Yuxiao Dong, and Jie Tang. 2023b. Agent-
bench: Evaluating llms as agents. arXiv preprint
arXiv: 2308.03688.

114

https://huggingface.co/spaces/galileo-ai/agent-leaderboard
https://huggingface.co/spaces/galileo-ai/agent-leaderboard
https://arxiv.org/abs/2304.05376
https://arxiv.org/abs/2304.05376
https://arxiv.org/abs/2403.17297
https://openreview.net/forum?id=EHg5GDnyq1
https://openreview.net/forum?id=EHg5GDnyq1
https://arxiv.org/abs/2412.05271
https://arxiv.org/abs/2412.05271
https://arxiv.org/abs/2412.05271
https://github.com/Significant-Gravitas/AutoGPT
https://github.com/langchain-ai/langchain
https://github.com/langchain-ai/langchain
https://github.com/langchain-ai/langchain
https://doi.org/10.18653/v1/2023.emnlp-main.507
https://doi.org/10.18653/v1/2023.emnlp-main.507
https://doi.org/10.18653/v1/2023.emnlp-main.507
https://proceedings.neurips.cc/paper_files/paper/2022/file/8bb0d291acd4acf06ef112099c16f326-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/8bb0d291acd4acf06ef112099c16f326-Paper-Conference.pdf
https://github.com/om-ai-lab/open-agent-leaderboard
https://github.com/om-ai-lab/open-agent-leaderboard
https://arxiv.org/abs/2304.08485

Haozhan Shen, Kangjia Zhao, Tiancheng Zhao,
Ruochen Xu, Zilun Zhang, Mingwei Zhu, and
Jianwei Yin. 2024. Zoomeye: Enhancing multi-
modal llms with human-like zooming capabilities
through tree-based image exploration. Preprint,
arXiv:2411.16044.

Noah Shinn, Federico Cassano, Ashwin Gopinath,
Karthik Narasimhan, and Shunyu Yao. 2023. Re-
flexion: Language agents with verbal reinforcement
learning. Advances in Neural Information Process-
ing Systems, 36:8634-8652.

Jiabin Tang, Tianyu Fan, and Chao Huang. 2025. Au-
toagent: A fully-automated and zero-code framework
for llm agents. arXiv e-prints, pages arXiv—2502.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le,
Ed Chi, Sharan Narang, Aakanksha Chowdhery, and
Denny Zhou. 2022. Self-consistency improves chain
of thought reasoning in language models. arXiv
preprint arXiv:2203.11171. Published at ICLR 2023.

Jason Wei et al. 2022. Chain of thought prompting elic-
its reasoning in large language models. In NeurIPS.

Penghao Wu and Saining Xie. 2023. V*: Guided vi-
sual search as a core mechanism in multimodal 1lms.
Preprint, arXiv:2312.14135.

Zhiyong Wu, Chengcheng Han, Zichen Ding, Zhenmin
Weng, Zhoumianze Liu, Shunyu Yao, Tao Yu, and
Lingpeng Kong. 2024. Os-copilot: Towards gener-
alist computer agents with self-improvement. arXiv
preprint arXiv:2402.07456.

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng,
Bowen Yu, Chang Zhou, Chengpeng Li, Chengyuan
Li, Dayiheng Liu, Fei Huang, Guanting Dong, Hao-
ran Wei, Huan Lin, Jialong Tang, Jialin Wang, Jian
Yang, Jianhong Tu, Jianwei Zhang, Jianxin Ma, Jin
Xu, Jingren Zhou, Jinze Bai, Jinzheng He, Junyang
Lin, Kai Dang, Keming Lu, Keqin Chen, Kexin Yang,
Mei Li, Mingfeng Xue, Na Ni, Pei Zhang, Peng
Wang, Ru Peng, Rui Men, Ruize Gao, Runji Lin,
Shijie Wang, Shuai Bai, Sinan Tan, Tianhang Zhu,
Tianhao Li, Tianyu Liu, Wenbin Ge, Xiaodong Deng,
Xiaohuan Zhou, Xingzhang Ren, Xinyu Zhang, Xipin
Wei, Xuancheng Ren, Yang Fan, Yang Yao, Yichang
Zhang, Yu Wan, Yunfei Chu, Yugiong Liu, Zeyu
Cui, Zhenru Zhang, and Zhihao Fan. 2024a. Qwen2
technical report. arXiv preprint arXiv:2407.10671.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui,
Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng Liu,
Fei Huang, Haoran Wei, et al. 2024b. Qwen2. 5
technical report. arXiv preprint arXiv:2412.15115.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak
Shafran, Karthik Narasimhan, and Yuan Cao. 2022.
React: Synergizing reasoning and acting in language
models. arXiv preprint arXiv:2210.03629. Pub-
lished at ICLR 2023.

Shunyu Yao et al. 2023. Tree of thoughts: Deliberate
problem solving with large language models. In
NeurlPS.

Nithik Yekollu, Arth Bohra, Ashwin Chirumamilla, Kai
Wen, Sai Kolasani Wei-Lin Chiang, Anastasios An-
gelopoulos, Joseph E. Gonzalez, Ion Stoica, and
Shishir G. Patil. 2024. Agent arena.

Lu Zhang, Tiancheng Zhao, Heting Ying, Yibo Ma,
and Kyusong Lee. 2024. Omagent: A multi-modal
agent framework for complex video understand-
ing with task divide-and-conquer. arXiv preprint
arXiv:2406.16620.

Yi-Fan Zhang, Huanyu Zhang, Haochen Tian, Chaoyou
Fu, Shuangqing Zhang, Junfei Wu, Feng Li, Kun
Wang, Qingsong Wen, Zhang Zhang, Liang Wang,
Rong Jin, and Tieniu Tan. 2025. Mme-realworld:
Could your multimodal IIm challenge high-resolution
real-world scenarios that are difficult for humans?
Preprint, arXiv:2408.13257.

Shuyan Zhou, Frank F Xu, Hao Zhu, Xuhui Zhou,
Robert Lo, Abishek Sridhar, Xianyi Cheng, Yonatan
Bisk, Daniel Fried, Uri Alon, et al. 2023. Webarena:
A realistic web environment for building autonomous
agents. arXiv preprint arXiv:2307.13854.

115

https://arxiv.org/abs/2411.16044
https://arxiv.org/abs/2411.16044
https://arxiv.org/abs/2411.16044
https://doi.org/10.48550/arXiv.2203.11171
https://doi.org/10.48550/arXiv.2203.11171
https://arxiv.org/abs/2312.14135
https://arxiv.org/abs/2312.14135
https://doi.org/10.48550/arXiv.2210.03629
https://doi.org/10.48550/arXiv.2210.03629
https://arxiv.org/abs/2408.13257
https://arxiv.org/abs/2408.13257
https://arxiv.org/abs/2408.13257
https://webarena.dev
https://webarena.dev
https://webarena.dev

A Agent Algorithm Parameter Settings

In the experiments of this paper, the default setting
for LLMs uses a temperature of 0. For ReAct-Pro,
the parameter is set with a maximum number of
steps equal to 10. For SC-CoT, the temperature is 1
and the number of paths is 5; For TOT, we use bfs
as the search method, with b as 1, max depth and a
max steps are both setted as 6, and the number of
evaluations is 3.

The mulitmodal model configration is described
as follows:

V#: The SEAL structure uses specific models
trained on llava-7b, including seal_vqa_7b and
seal_vsm_7b. seal_vqa is responsible for identi-
fying and providing the target objects needed for
the search from question, as well as utilizing the
data in the VWM(visual working memory) to an-
swer the relevant questions. seal_vsm combines
the common sense knowledge with the context of
the image to locate the target object and records
its information into VWM. Due to the specificity
of the model, parameters such as temperature and
max_tokens were not configured. As for the visual
search parameters such as the confidence threshold,
we use the same parameters as the original settings:
confidence maximum 0.5, minimum 0.3, target cue
threshold 6.0, target cue threshold decay 0.7, target
cue threshold minimum 3.0. In addition we set 10
as the maximum search steps for each target. The
reason for this is that the minimum image size of
Vstar is 224x224, which can take an hour or even
longer when searching for high-resolution images
(e.g., 4K images) if we do not limit the number of
search steps.

ZoomEye: As a more generalized agent visual
search framework, we apply and evaluate a vari-
ety of mainstream open-source multimodal mod-
els, including Llava-v1.5-7B (Liu et al., 2023a),
InternVL2.5-8B (Chen et al., 2025), Qwen2.5-VL-
7B-Instruct (Bai et al., 2025), and Qwen2.5-VL-
72B-Instruct, which support a wide range of com-
plex multimodal visual questioning tasks. For these
VLMs, we set temperature to 0.0 and max_tokens
to 2048. We also set the same parameters as the
ZoomEye original settings:

* Answering Confidence Threshold:
— Maximum: 0.4

— Minimum: 0

¢ Smallest Patch Size: 384

116

* Depth Limit: 5
e Number of Intervals: 2

e Threshold Decrease: [0.1, 0.1, 0.2]

Score Versus Cost Analysis on
Mathematical Reasoning

Performance Comparison on
Multimodal Reasoning

Average Score vs Average Cost by Algorithm and LLM

Algorithms
A ® 0
- A W CoT
[] A SC-CoT
80 i & PoT
] A * ToT
B * ReAct-Pro
L 4
70 X
[
v g
8 ® * ~ LLMs
wn 60 | " * ® GPT-3.5 Turbo
() ® GPT-40
%’ ’ A x @® Llama-3.3-70B-Instruct
CIL.) Ry Qwen2.5-72B-Instruct
> @ Doubao-lite-32k
< 50
+
40
30
+
0.10 1.00 10.00

Average Cost ($)

Figure 3: Score versus cost analysis for different LLM agent algorithms. The ideal models appear in the top-left
corner with high performance and low cost. Models smaller than 7B parameters were self-hosted locally, thus their
cost metrics are not shown.

Agent | VLMs Score Pass Rate Total Input Total Output All Tokens
Tokens Tokens

ZoomEye | Qwen2.5-VL-72B-Instruct 51.56 99.81 76,808,965 1,276,460 78,085,425

ZoomEye | Qwen2.5-VL-7B-Instruct 48.06 96.50 94,418,593 1,472,836 95,891,429
10 Qwen?2.5-VL-72B-Instruct 44.47 100.00 6,174,490 2,114 6,176,604

ZoomEye | InternVL2.5-8B 43.42 99.34 153,857,588 2,017,170 155,874,758
10 InternVL2.5-8B 42.95 100.00 2,779,778 2,335 2,782,113
10 Qwen?2.5-VL-7B-Instruct 42.86 100.00 6,174,490 2,114 6,176,604

ZoomEye | Llava-v1.5-7B 31.60 98.86 113,073,261 1,368,724 114,441,985
10 Llava-v1.5-7B 24.79 100.00 734,868 17,036 751,904
A seal_vqa & seal_vsm 15.14 72.37 - - -

Table 3: Performance comparison of different agents and VLMs on MME-RealWorld.

117

