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Abstract

Generative large language models (LLMs) have
become crucial for modern NLP research and
applications across various languages. How-
ever, the development of foundational models
specifically tailored to the Russian language
has been limited, primarily due to the signif-
icant computational resources required. This
paper introduces the GigaChat family of Rus-
sian LLMs, available in various sizes, includ-
ing base models and instruction-tuned versions.
We provide a detailed report on the model archi-
tecture, pre-training process, and experiments
to guide design choices. In addition, we evalu-
ate their performance on Russian and English
benchmarks and compare GigaChat with mul-
tilingual analogs. The paper presents a system
demonstration of the top-performing models ac-
cessible via an API, a Telegram bot, and a Web
interface. Furthermore, we have released three
open GigaChat models in open-source 1, aim-
ing to expand NLP research opportunities and
support the development of industrial solutions
for the Russian language.

1 Introduction

The rapid advancement of generative large lan-
guage models (LLMs) has significantly trans-
formed the landscape of natural language process-
ing (NLP), enabling innovative research and appli-
cations across multiple languages. However, de-
veloping foundation and post-trained models for
the Russian language is still a significant challenge.
This resource-intensive task hinders progress in the
field and fails to address the cultural specifics of
the Russian language and culture.

In response to this gap, we introduce the Gi-
gaChat family of Russian LLMs, created from
scratch, which encompasses a variety of sizes, in-
cluding both pre-trained and instruction-tuned ver-
sions. This paper describes our experience creating

1https://huggingface.co/ai-sage

a model family based on the mixture of experts
(MoE) architecture, the experiments in training
such an architecture, and the description of the new
tokenizer designed for the Russian language. Fur-
thermore, we thoroughly evaluate the model’s per-
formance on Russian and English benchmarks and
tests. This paper not only highlights the strengths
of GigaChat in comparison to existing multilingual
models but also offers a practical demonstration
of our top-performing proprietary models through
accessible interfaces such as an API, a Telegram
bot, and a web application. By releasing three open
versions of the GigaChat models as open-source
resources, we aim to encourage further research
in natural language processing (NLP) and support
the ongoing development of industrial applications
tailored to the Russian language.

Our contributions are as follows:

• We introduce the first family of foundation
and post-trained models specifically designed
for the Russian language, based on the Mix-
ture of Experts (MoE) architecture. Three
of these models are available in open-source
(including their variations in int8 and bf16
formats) 2.

• We present experimental results and metrics
on various benchmarks, demonstrating that
our models are comparable to the state-of-the-
art (SOTA) models of similar sizes among
existing open-source models.

• We also share our experiments with the MoE
concentration mechanism and provide code
for MoE expert control.

• We release the Telegram bot and the System
demo Web interface 3 for our most advanced
model.

2Under the MIT license, commercial/non-commercial use,
re-hosting, and fine-tuning are permitted without restrictions.

3The video demonstration is available on YouTube.
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Figure 1: A screenshot of the system demo for the
open Web demo of the GigaChat Max. To access more
features of GigaChat, registration is required.

2 Related Work

MoE architecture Sparse MoE models have
gained significant attention in recent years (Cai
et al., 2024) due to their capacity for efficient scal-
ing while maintaining computational effectiveness.
The foundational work Shazeer et al. (2017) in-
troduced the sparse MoE layer, demonstrating its
effectiveness in training large-scale language mod-
els in application to LSTM-based architectures.
More recently, Mixtral (Jiang et al., 2024) set a
new SOTA for MoE-based LLMs with 47 billion
total parameters but only 13 billion active parame-
ters, outperforming dense models such as LLaMA
2 70B. Another notable contribution, DeepSeek
MoE (Dai et al., 2024), explored modifications to
MoE architecture by increasing the number of ex-
perts while reducing their sizes and adding shared
experts that are always activated, improving expert
specialization and overall model performance.
Russian generative LLMs. Pre-trained open mod-
els for the Russian language remain scarce. The
work of Zmitrovich et al. (2024) introduces a col-
lection of 13 Russian Transformer-based language
models, which include encoder architectures (ru-
BERT, ruRoBERTa, ruELECTRA), decoder archi-
tectures (ruGPT-3), and encoder-decoder architec-
tures (ruT5, FRED-T5). However, even the latest
generative models, such as ruGPT-3.5 4, demon-
strate subpar performance on benchmarks like
the MERA SOTA instruction models (Fenogen-

4https://mera.a-ai.ru/ru/submits/11273

ova et al., 2024). Most SOTA models, mainly
those available as open-source, are either English-
based or multilingual (e.g., Qwen, Mistral, and
their Russian-adapted variants 5), which have been
post-trained on Russian texts. Among the Rus-
sian proprietary models, only a few exist, such
as Cotype by MTS AI and the YandexGPT fam-
ily 6, both of which lack transparency regarding
their training methodologies and architectural de-
tails and are not fully pre-trained on Russian texts.
To bridge this gap and address the need for high-
performing, Russian-focused generative models
that rival their multilingual counterparts, we in-
troduce the GigaChat family.

3 GigaChat Family

3.1 Overview

The GigaChat family is the first collection of foun-
dation and post-trained models specifically de-
signed and pre-trained from scratch for the Russian
language. The initial version 7 of the GigaChat
family employs the MoE architecture that we now
release in open-source: base model, instructed ver-
sion, and aligned with Direct Preference Optimiza-
tion (DPO) (Rafailov et al., 2023). Advanced pro-
prietary models — Lite, Pro, and MAX — are con-
tinually updated and accessible through a user API
and a dedicated Telegram bot, ensuring ongoing
improvements and enhanced usability.

3.2 System demo

The GigaChat models support a versatile user inter-
action system, offering free access through a Tele-
gram bot and a Web demo interface 8. The Web
version contains the advanced proprietary model,
GigaChat Max 9 Max allows users to engage in
conversations by submitting text prompts in both
Russian and English, all within a predefined char-
acter limit. The screenshot in Figure 1 illustrates
the interface of the free version, which offers two
primary features: 1) chatting capability and 2) au-
dio ASR input via GigaAM 10. The full version

5T-pro-it-1.0, RuadaptQwen2.5-32B-Instruct, Zero-
Mistral-Small-24B

6https://ya.ru/ai/gpt-4
7It is noteworthy that the three open models were previ-

ously also available through an API, and they continue to
receive regular enhancements and improvements.

8https://giga.chat/
9The API for the system demo is updating to the latest

versions; we are reporting the version of GigaChat 2 as of
March 2025.

10https://github.com/salute-developers/GigaAM
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of the interface is available only after registration
and includes additional functionalities such as file
processing and predefined prompts for various use
cases.

The key features of the Telegram bot (@gi-
gachat_bot) include an interactive chatbot that en-
gages users in conversation and the capability to in-
voke the Kandinsky model (Arkhipkin et al., 2024)
for image generation based on user prompts. Addi-
tionally, the bot offers a variety of predefined user
prompts and can process files.

3.3 Open models

In this section, we explain the choice of the ar-
chitecture and all the parts of the models creation,
starting with the pre-trained base model.

3.3.1 Models architecture

The GigaChat-A3B-base model leverages a MoE
architecture with 20 billion total parameters, of
which approximately 3.3 billion are activated per
forward pass (see Table 1). In our experiments
using the same data, the MoE design demonstrates
significant efficiency gains, including double the
training speed and a 40% reduction in inference
latency compared to similarly sized dense models,
such as 8B LLaMA 3.

The efficiency stems from block-sparse compu-
tation using optimized STK Triton kernels rather
than Megablocks and selective activation check-
pointing, reducing computational requirements by
40% versus a 7B dense model while processing
1 trillion tokens. These optimizations eliminate
the need for expert parallelism while maintaining
model performance. The architecture replaces stan-
dard MLP blocks with MoE layers (except the first
layer, which uses a gated MLP due to token distri-
bution challenges). Each MoE block employs mul-
tiple experts and an unnormalized router to promote
specialization, following insights from DeepSeek
MoE. The intermediate dimension is expanded to
14,336 (as in Mistral 7B (Jiang et al., 2023)) to
enhance capacity, and experts are shared across
layers to improve parameter efficiency. This com-
bination of sparse computation, expert sharing, and
optimized routing enables high throughput with
reduced resource consumption, making the model
scalable for large-scale training and inference.

Section A.1 of the Appendix describes the train-
ing process details.

3.3.2 Pre-train
The base model was trained using a constant
multi-step learning rate scheduler with warmup.
The scheduler included a warmup period of 2000
batches, after which four learning rate decay steps
took place at 30%, 60%, 90%, and 98% of the total
training duration. At these milestones, the learning
rate was reduced by multiplying by factors of 0.25,
0.0625, 0.015625, and 0.00390625 (i.e., (0.25)1,
(0.25)2, (0.25)3, and (0.25)4, respectively). The
initial learning rate was set to 1e-4. The training
process used a global batch size of approximately
16 million tokens (2048 sequences with 8192 to-
kens per sequence) and accumulated 9.5 trillion
tokens across 8k pre-training steps.

After the initial training step, we conducted a
context extension in two stages: first to 32K and
then to 128K. To improve performance with the
extended context, we adjusted the base for RoPE
embeddings (Su et al., 2024) using the ABF ap-
proach (Xiong et al., 2023). For each training stage,
we utilized the following values: 10K for the initial
8K context, 300K for 32K, and 1.4M for 128K. The
model employed a constant learning rate scheduler
with predefined drops during training. Continuous
training in the long context used the final learn-
ing rate from the 8K context, maintaining this rate
throughout both training stages.

To evaluate the adaptation of the model, we used
English PassKey11 and LongBench (v1) (Bai et al.,
2023). The LongBench evaluation set the maxi-
mum sample length according to the target context
length, while the PassKey evaluation ranged from
8,000 to 128,000 tokens. Overall, the extension
involved about 1.8 trillion tokens and tens of thou-
sands of steps, but evaluations showed that it could
be accomplished in just a few thousand steps.

3.3.3 Post-train
Each model trained on various versions of the post-
train data (see the Section 4.2) has its own hyper-
parameters, so in addition to several checkpoints
within a single training (the model state is saved
twice per epoch), we run several training iterations
to select the best model from all of them. The fi-
nal hyperparameters for the best open models are
presented in Table 2.

It is important to note that the final checkpoint
does not always yield the highest performance met-
rics. In some versions of the dataset, the optimal

11passkey.py
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Model Architecture Parameters Hidden Layers Shared experts Routed experts KV Heads Heads Context Length

GigaChat-A3B-base MoE 20B 28 2 64 8 16 131k

Table 1: Summary of the GigaChat-A3B-base model architecture configurations.

model is achieved during the middle of the training
process, while in others, it may be reached closer
to the end. Therefore, selecting the best model
involves a variety of heuristics based on specific
needs. We choose from the metrics described in
Section 5.1.

3.3.4 DPO
In developing the GigaChat-A3B-instruct 1.5, we
identified key issues with DPO, such as its focus on
widening the gap between good and bad responses
rather than improving accuracy, leading to halluci-
nations and instability. It also overlooks the impor-
tance of common token prefixes. To tackle these
issues, we proposed modifications to the DPO loss
function (Equation 1), including unique weighting
factors that prioritize enhancing good responses
over suppressing bad ones, particularly concern-
ing shared prefixes. We also added a normalized
negative log-likelihood term relative to a reference
model to stabilize loss ratios.

loss =E(x,yw,yl)∼D
[
− log σ

(
βw log

πθ(yw | x)
πref(yw | x)

− βl log
πθ(yl | x)
πref(yl | x)

)
+ log

πθ(yw | x)
πref(yw | x)

]

(1)

3.3.5 Optimal Tokenization
A new tokenizer has been developed to enhance
the text encoding for Cyrillic words, programming
languages, and LaTeX. We improve accuracy in
handling code data by including common keywords
and supporting spaces, tabs, and line breaks. High-
frequency terms from LaTeX and programming
are incorporated to minimize fragmentation, ensur-
ing efficient tokenization of essential syntax ele-
ments. The selection of tokenizers was optimized
to maximize the average length of tokens within
domain-specific datasets.

Training Process We employed an iterative re-
finement process on a training dataset to maximize
tokenization efficiency. Our focus was to ensure
balanced performance across multiple domains, in-
cluding programming languages such as C, Java,
C#, LaTeX markup, and general language corpora.

The primary language of concern was Russian, with
additional support for English and European lan-
guages, Arabic, Uzbek, and Kazakh. This effort
primarily aims at the Russian community and the
support of rarer languages, for which high-quality
language models are scarce.

For training, we leveraged the Hugging Face
Byte-Pair Encoding (BBPE) algorithm, conduct-
ing multiple experiments to generate candidate
tokenizers. During these experiments, we gradu-
ally adjusted the proportion of texts from different
domains (Russian, English, other languages, and
code). This process resulted in a large number of
candidate tokenizers (more than a hundred). From
these, we selected the tokenizer that demonstrated
the best performance compared to other tokenizers.
The tokenizer training data and tokenizer compari-
son details are presented in Appendix A.3.

4 Data

4.1 Pre-train data

We aggregate diverse textual sources to construct a
robust pre-training dataset, ensuring a balance be-
tween linguistic richness, domain-specific knowl-
edge, and data quality. The dataset comprises 1)
web-scraped texts, 2) high-quality publications, 3)
programming code, and 4) synthetic data. The
data statistic is presented in Table 3. We imple-
ment precise deduplication across all languages and
sources to ensure corpus integrity and reduce re-
dundancy. Additionally, we enhance the dataset for
English-language data through MinHash dedupli-
cation (Broder, 1997), which effectively minimizes
semantic duplicates.

Web data To construct a high-quality pre-
training corpus, we leverage Common Crawl web
dumps from 2017-2023 (Penedo et al., 2023b),
(Li et al., 2024) and used a lightweight classi-
fier (Joulin et al., 2016) to extract multilingual texts
in Russian, English, Kazakh, Uzbek, Portuguese,
and Arabic. These texts were further classified
using LLMs and specialized models to identify
educational 12 and high-value informational con-

12https://huggingface.co/datasets/
HuggingFaceFW/fineweb-edu
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model optimizer scheduler params of scheduler hyperparameters
GigaChat-A3B-instruct AdamW Constant custom drop -
GigaChat-A3B-instruct 1.5 AdamW Cosine warmup: 200 steps, max steps: 7900 betas (0.9, 0.95), eps: 1.0e-8

Table 2: Hyperparameters of the post-training models during the training.

tent (Li et al., 2024), resulting in 4.4T tokens of
curated data. The dataset is predominantly English
(63.76%) and Russian (26.49%), with Portuguese
(7.80%) and Arabic (1.90%), and less than 0.06%
combined for Kazakh and Uzbek.

High-Quality Textual Sources We incorporate
high-quality textual content from open-access
books and academic articles, processed using ad-
vanced optical character recognition for accurate
extraction. This adds 630B tokens of linguistic data.
Additionally, we enrich the dataset with scientific
and encyclopedic sources like arXiv, Wikipedia,
and PubMed 13, improving reasoning and factual
consistency in the pre-training model.

Programming Code Corpus We use the Star-
Coder2 (Lozhkov et al., 2024) dataset alongside a
curated set of open-source software code to create
a diverse programming dataset that complies with
licensing requirements. Machine learning models
filter out low-quality code, yielding a 230B token
subset ideal for code generation and understanding
tasks.

Synthetic data Real-world data is limited by
bias, privacy, and scarcity, while synthetic data
is scalable and controlled. Phi-4 (Abdin et al.,
2024) demonstrates that synthetic data pre-training
improves performance on reasoning and STEM
benchmarks. For math and programming, we built
a Numina-inspired pipeline (Jia et al., 2024) that
expands seed mathematical problems by solving
them multiple times and filtering via majority vote
and threshold. We also created high-quality syn-
thetic code tasks (complex Python problems with
documentation, explanations, and assertions) with
structured prompts and diversified them using per-
sonas (Ge et al., 2024) and lipograms 14.

4.2 Post-train data

Clean training data is essential during the post-
training phase. All supervised fine-tuning dia-
logues are annotated by professional AI trainers

13https://pubmed.ncbi.nlm.nih.gov/download/
14https://en.wikipedia.org/wiki/Lipogram

Data source Unique Tokens Seen Tokens

Web 4.4T 5.6T
HQ Sources 630B 1.3T
Code 230B 1.3T
Synthetic data 9B 81B

Table 3: Pre-train data distribution.

who evaluate responses based on criteria like adher-
ence to instructions, context awareness, factual ac-
curacy, and safety. We created the Dialog Creation
annotation project on the crowdsourcing platform
Tagme 15 to generate diverse dialogs across various
domains while maintaining high data quality stan-
dards. AI trainers select the best responses from
different model variants, using metadata for dataset
balancing and error analysis to enhance model per-
formance. To overcome the challenge of models
retaining information from rare documents, we im-
proved our model’s memory and retrieval abilities
through Retrieval-Augmented Generation follow-
ing the experiments of the Grattafiori et al. (2024).
This approach generates domain-specific training
data from the pre-training corpus, enhancing con-
textual understanding.

Thus, the post-training of the open GigaChat-
A3B-instruct model comprises about 250k items in
the following proportion of data sources described
in Table 4.

Domain Proportion

chats 10%
long context (books) 4%
code 4%
science 16%
general world knowledge (web) 34%
translations 1%
text editing 12%
business specifics 3%
functions / api 16%

Table 4: Post-training proportion of the task domains
and instructions in the GigaChat-A3B-instruct.
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Benchmark Shots GigaChat-
A3B-instruct

GigaChat-A3B
-instruct 1.5 Qwen 2.5 T Lite Llama 3.1 GigaChat2 Pro GigaChat2 MAX

GSM8K 5 0.764 0.774 0.895 0.882 0.789 0.95 0.956
MATH 4 0.462 0.393 0.704 0.592 0.329 0.752 0.773

HumanEval 0 0.329 0.378 0.854 0.799 0.683 0.915 0.871
MBPP 0 0.385 0.441 0.820 0.759 0.725 0.862 0.894

MMLU EN 5 0.648 0.650 0.710 0.718 0.682 0.821 0.86
MMLU RU 5 0.598 0.600 0.632 0.626 0.569 0.775 0.805
MMLU PRO EN 5 0.348 0.357 0.565 0.509 0.443 0.644 0.667
RUBQ 0 0.675 0.688 0.373 0.583 0.484 0.658 0.723
WINOGRANDE 4 0.750 0.762 0.636 0.670 0.624 0.796 0.832
CyberMetric 0 0.798 0.791 0.787 0.883 0.796 0.84 0.832

IFEval 0 0.411 0.433 0.819 0.730 0.812 0.837 0.899

Table 5: Comprehensive comparison of models across Russian/English benchmarks. The best result in each column
is highlighted in bold, the best result in the same model size is underscored.

Model Total RWSD ruModAr USE MaMuRAMu
ruHHH

Honest Helpful Harmless

Human Benchmark 0.852 0.835 0.942 0.701 0.796 0.705 0.797 0.948

Claude 3.7 Sonnet 0.682 0.788 0.919 0.536 0.89 0.82 0.864 0.931
GigaChat 2 MAX 0.67 0.642 0.963 0.581 0.864 0.803 0.831 0.948
Gemini 1.5 Pro 0.675 0.627 0.707 0.433 0.868 0.836 0.797 0.931
GPT-4o 0.642 0.496 0.729 0.457 0.874 0.852 0.729 0.862
DeepSeek V3 0.677 0.612 0.718 0.499 0.882 0.803 0.763 0.793

Phi-3.5-MoE-Inst 0.487 0.465 0.464 0.199 0.726 0.656 0.644 0.81
GigaChat 2 Pro 0.649 0.665 0.943 0.534 0.831 0.803 0.814 0.897
Mixtral-8x22B-Inst 0.486 0.473 0.523 0.269 0.747 0.836 0.881 0.966
Qwen2.5-72B-Inst 0.601 0.715 0.665 0.32 0.849 0.869 0.831 0.897
Llama-3.1-405B-Inst 0.59 0.677 0.573 0.357 0.868 0.803 0.864 0.759

RuadaptQwen2.5-7B 0.536 0.465 0.492 0.162 0.751 0.738 0.78 0.776
GigaChat 2 0.541 0.369 0.854 0.361 0.766 0.754 0.814 0.931
T-lite-it-1.0 0.552 0.535 0.493 0.147 0.775 0.689 0.797 0.862
GigaChat-A3B-instruct 0.512 0.535 0.853 0.325 0.728 0.689 0.78 0.759
GigaChat-A3B-instruct 1.5 0.511 0.512 0.84 0.32 0.728 0.689 0.831 0.793
gemma-3-27b 0.567 0.588 0.626 0.328 0.797 0.82 0.864 0.914

gemma-2-9b 0.453 0.558 0.592 0.154 0.689 0.574 0.627 0.552
GigaChat-A3B-base 0.422 0.508 0.608 0.127 0.675 0.574 0.593 0.552
Llama-3.2-3B 0.362 0.477 0.592 0.075 0.528 0.41 0.542 0.483
Yi-1.5-9B-32K 0.428 0.569 0.516 0.12 0.516 0.59 0.661 0.621
Qwen1.5-7B 0.374 0.558 0.485 0.056 0.52 0.541 0.627 0.603
Mistral-7B-v0.1 0.404 0.581 0.517 0.107 0.585 0.574 0.559 0.552
ruGPT-3.5 0.213 0.462 0.001 0.082 0.226 0.459 0.475 0.483

Table 6: MERA benchmark results. The model’s descriptions are available in the MERA leaderboard

5 Evaluation

5.1 Benchmarks

For the evaluation of the models, we use var-
ious common benchmarks in English and Rus-
sian that assess skills such as Mathematics
Performance (GSM8K (Cobbe et al., 2021),
MATH (Hendrycks et al., 2021)), Coding Abil-
ity (HumanEval (Chen et al., 2021), MBPP 16),
General Knowledge (MMLU EN (Hendrycks et al.,
2020), MMLU RU 17, MMLU PRO (Wang et al.,
2024), RUBQ (Korablinov and Braslavski, 2020),
WINOGRANDE (Sakaguchi et al., 2021)), Cyber-
security Knowledge (CyberMetric (Tihanyi et al.,

15https://tagme.sberdevices.ru/
16https://github.com/google-research/

google-research/tree/master/mbpp
17https://mera.a-ai.ru/ru/tasks/9

2024)), and Instruction Following (IFEval (Zhou
et al., 2023)). Table 5 presents a comprehensive
performance comparison between open versions
of GigaChat models and other open post-trained
LLMs of compatible sizes (Llama 3.1 8b 18, Qwen
2.5 7 19, and T-Lite 20) across benchmarks. As the
benchmark was created specifically for the Rus-
sian language, we present the assessment of pre-
training and instructing models on the benchmark
MERA (Fenogenova et al., 2024). For all tests, the
LM Evaluation Harness framework 21 was used.

18https://huggingface.co/meta-llama/Llama-3.
1-8B

19https://huggingface.co/Qwen/Qwen2.
5-7B-Instruct

20https://huggingface.co/AnatoliiPotapov/
T-lite-instruct-0.1

21https://github.com/EleutherAI/
lm-evaluation-harness
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5.2 Results

English Benchmarks The GigaChat-A3B-
instruct and GigaChat-A3B-instruct 1.5 models
(3.3B active parameters) show a balanced trade-off
between scale and performance against larger 7–8B
counterparts (Qwen2.5 7B, Llama 3.1 8B, T-Lite).
While mathematical (-14% GSM8K, -34% MATH)
and programming (-46% MBPP, -55% HumanEval)
gaps reflect parameter limitations, they excel in
reasoning (+15% RUBQ, +12% WINOGRANDE)
and retain competitiveness in MMLU (-5% to
-8%). Challenges in high-difficulty MMLU PRO
(-36%) and instruction following (-47% IFeval)
persist, though DPO optimization yields targeted
improvements. For the CyberMetric benchmark,
new models also show competitive results, being
11% lower than the leader. Concerning GigaChat 2
MAX, GigaChat 2 Pro, the models show the best
scores for all benchmarks, slightly falling short
only on CyberMetric (-5%).

Russian Benchmarks Designed for Russian-
language proficiency, the models (GigaChat 2
MAX, GigaChat 2 Pro, GigaChat 2) achieve
near-state-of-the-art results on MERA benchmark
(±2–7%) and dominate specialized tasks: ruModAr
(+4% to +29%) and USE (+7% to +33%) high-
light strengths in logic and complex comprehen-
sion. Coreference resolution (RWSD: -7% to -
18%) and advanced reasoning (MaMuRAMu: -3%
to -4%) show room for growth, yet performance
remains competitive against both frontier models
(e.g., GPT-4) and mid-tier alternatives. GigaChat-
A3B-instruct and GigaChat-A3B-instruct 1.5 show
a performance close to GigaChat 2. GigaChat-A3B-
base reaches the level of best 9 billion pre-train
models trailing by 12-20% on RWSD and USE, by
2% on MaMuRAMu, leading by 2% on ruModAr.
Concerning the ruHHH dataset aimed at scoring
the model’s ability to determine the Honest, Help-
ful and Harmless behavior all GigaChat models
show nearly the highest results among the same
tier models: GigaChat 2 MAX, GigaChat 2 Pro, Gi-
gaChat 2 show the best or nearly the best scores for
Harmless while being slightly behind the leaders
for Honest and Helpful (-9% to -4%); GigaChat-
A3B-base remains competitive against the other
3B–13B models (-12% to -3%); GigaChat-A3B-
instruct, GigaChat-A3B-instruct 1.5 show close
scores while demonstrating that DPO may help de-
termine Helpful behavior better (+7% compared to
without DPO).

6 Conclusion

We present the GigaChat family of LLMs, which
is the only model developed from scratch during
the pre-training stage specifically for the Russian
language. By employing the MoE architecture and
a specialized tokenizer, we have developed mod-
els that effectively address Russian linguistic and
cultural nuances while achieving competitive per-
formance against leading benchmarks. Our open-
source release of three GigaChat models and user-
friendly interfaces like a Telegram bot and a Web
application for the frontier models aims to encour-
age further research and industrial applications in
Russian NLP. The contributions outlined, includ-
ing the introduction of Russian-focused models and
experimental results, reflect our commitment to en-
hancing the field. By providing these resources to
the community, we hope to foster innovation and
collaboration in developing inclusive and effective
language technologies for Russian-speaking users.

Ethical Statement

Possible Misuse Our research should not con-
tribute to creating content that negatively impacts
individual or community well-being. This includes
the following restrictions: (i) involvement in leg-
islative applications or censorship, (ii) dissemina-
tion of disinformation or infringement on the right
to access information, (iii) dehumanizing or misrep-
resenting individuals or their religions, cultures, or
beliefs, and (iv) promoting harmful or discrimina-
tory content. To address this issue, the models’ API
format includes a censorship filter to mitigate inap-
propriate content that could pose potential risks.

Biases and data quality The pre-training data
for all the models includes a wide range of con-
tent from Russian and English internet sources,
which may introduce various stereotypes and bi-
ases. Thorough evaluations of these models are
crucial to identifying potential vulnerabilities when
applied to data outside their training domain.

Energy Efficiency and Usage We compute the
CO2 emissions from training our LLMs as Equa-
tion 2 (Strubell et al., 2019):

CO2 =
PUE ∗ kWh ∗ ICO2

1000
(2)

The resulting number of the CO2 for the open
models is presented in Table 7. 251k kg of CO2

is approximately equivalent to a round-trip flight

99



Model CO2 (kg)
GigaChat-A3B-base 251k
GigaChat-A3B-instruct 253k
GigaChat-A3B-instruct 1.5 255k

Table 7: CO2 emissions of the models training.

from New York to London emits 1,600 kg of CO2

per passenger.

Limitations

Lack of Reasoning Capabilities The models do
not exhibit advanced reasoning abilities (like the
models like DeepSeeek R1), which may restrict its
effectiveness in tasks requiring complex problem-
solving or logical inference.

Alignment Preferences The models have been
specifically aligned to generate long and aesthet-
ically pleasing chat responses. While this may
appeal to some users, others might find such re-
sponses verbose or less practical for their needs.

Tokenizator The effectiveness of the trained tok-
enizer and the trained LMs is highly dependent on
the quality and size of the corpus used. A limited or
biased corpus can lead to suboptimal tokenization
and model performance, potentially missing crit-
ical linguistic nuances and specific domain cases,
such as characters from formal or other languages.

Reproducibility Issues Due to the use of closed
pre-training, fine-tuning, and DPO datasets for pro-
prietary models, the results cannot be indepen-
dently replicated or verified. This lack of trans-
parency may inhibit further research and validation
efforts. However, we are open-sourcing three ver-
sions of the MoE-based GigaChat, and we hope
this will encourage further research in Russian.
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A Appendix

A.1 Training details
We used a mixed precision training methodology
(bfloat16 for most operations and fp32 for critical
components, such as the router). The complete
training process accumulated approximately 10 tril-
lion tokens, with the final annealing phase compris-
ing 40 billion tokens of pre-trained data described
in Section 4.1.

We tackled communication bottlenecks in large-
scale distributed training environments with over
256 GPUs by increasing batch size instead of
adding more devices with the same workload. This
strategy allowed for overlapping communication
and computation, minimizing idle time and enhanc-
ing training throughput. The sparse computation
patterns of the MoE architecture, along with a
moderate hidden size, enabled us to significantly
increase the batch size per device while staying
within memory limits.

Throughout the training process, we sys-
tematically monitored expert utilization and
router confidence using entropy-based metrics:
H_utilization (quantifying token distribution be-
tween experts) and H_sparsity (measuring router
confidence). We analyzed token distribution among
experts and monitored top− k router scores, iden-
tifying several critical issues: expert collapse phe-
nomena (experts receiving minimal token assign-
ments), disproportionate token processing by spe-
cific experts, and router uncertainty indicated by
consistently low confidence scores. These metrics
guided our hyperparameter optimization, especially
for the auxiliary load balancing loss for uniform
expert utilization. Visualizing expert utilization pat-
terns offered insights that shaped our decision to
implement a standard Gated MLP in the first layer.

A.2 Ablation study: Expert interpretations

During the experiments on the model architecture,
we analyze router behavior to investigate if experts
in GigaChat-A3B-base, specialize in specific do-
mains such as math, medicine, and code. To do
this, we constructed embeddings for a subset of
the Pile (Gao et al., 2020) dataset 22 using router
activations. Each embedding emb is a matrix of
size l × e, where l is the number of MoE layers
and e is the number of experts in one layer (not
including shared experts). Each sample embij is
calculated as the number of activations of expert j
in layer i normalized by the length of the sample
in tokens.

We clustered the embeddings with UMAP and
HDBSCAN, revealing that samples grouped by
domain (Fig. 2), indicating that router decisions
encode domain information. This aligns with the
findings in (Li and Zhou, 2024), where MoE mod-
els provided effective embeddings without the need

22We use the version https://huggingface.co/
datasets/monology/pile-uncopyrighted of the set
where all copyrighted content was removed
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for fine-tuning. Clusters were identified in sports,
cooking, biology, and programming domains.

We created domain-specific embeddings by av-
eraging values within clusters. These embeddings
help differentiate experts in those fields. To iden-
tify significant experts, we set values below 3

e to
zero, keeping only those at least three times greater
than expected. We then use filtered embeddings
to guide our model toward specific domains by
adjusting router activations to prioritize selected
experts.

We found that this method allows us to con-
trol generation flow 23; for example, using sports-
related embeddings led to texts focused on sports.
Similar patterns emerged in other domains. While
this method has potential benefits, it also has limita-
tions that may hinder the model’s language model-
ing capabilities. Despite these challenges, we view
this approach as promising and intend to provide a
more detailed analysis in future research.

A.3 Tokenizer details
For tokenizer training, we utilized both open-
source datasets, namely FRW (Penedo et al.,
2023a), RedPajama (Together Computer, 2023),
StarCoder (Li et al., 2023), as well as collected
from the Web like Common Crawl 24, Wikipedia 25

and Stack Exchange 26. For details on post-
processing and cleaning the open-source datasets,
refer to their respective articles. We filtered
the datasets using established heuristics, such as
language-based filtering and removing personal
information, promotional content, and duplicates.
Several sets of data were prepared for training to-
kenizers, varying in size from 30 billion to 300
billion characters to reflect different text lengths.

To ensure the effectiveness of our approach,
we tested tokenizers against established models,
including GPT-4, GPT-4o, Mistral, Qwen2, and
DeepSeek. The comparison was based on the av-
erage character-per-token ratio across different do-
mains, as summarized in Table 8 with selected do-
mains. Tokenizers with the prefix giga_tokenizer
represent multiple variants from our experiments,
differing in data balancing strategies and the num-
ber of additional tokens introduced.

23Examples of the code for generation control are presented
in the example notebook.

24https://commoncrawl.org/get-started
25https://dumps.wikimedia.org/ruwiki/latest/
26https://archive.org/details/stackexchange
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Figure 2: 2d-projection of embeddings with UMAP

Tokenizer
Languages

ArXiv
Wiki

Mean ScoreC Java C# Ru Ar En

giga_tokenizer_1 3.57 4.15 4.62 3.61 4.18 3.34 4.47 3.99
giga_tokenizer_2 3.56 4.14 4.60 3.61 4.14 3.30 4.44 3.97

gpt-4o 3.74 4.43 4.88 3.39 3.40 3.07 4.68 3.94
giga_tokenizer_5 3.39 3.97 4.44 3.54 4.20 3.50 4.43 3.92
giga_tokenizer_3 3.51 4.11 4.59 3.54 4.04 3.25 4.35 3.91
giga_tokenizer_4 3.50 4.11 4.58 3.53 4.00 3.21 4.33 3.90

llama-3 3.75 4.54 4.99 3.38 3.02 2.60 4.62 3.85
mistral-nemo 3.38 4.06 4.50 3.49 3.18 3.24 4.51 3.76

qwen2 3.69 4.52 4.95 3.31 2.70 2.56 4.50 3.75
gpt-4 3.74 4.55 4.98 3.38 2.04 1.44 4.62 3.54

nemotron-4-256k 2.82 3.34 3.76 3.25 3.20 2.93 4.57 3.41
deepseek-coder-v2 2.95 3.51 3.92 3.35 2.39 1.11 4.42 3.10

deepseek-v2 2.95 3.51 3.92 3.35 2.39 1.11 4.42 3.10
mistral-large 2.75 3.26 3.64 3.14 2.46 1.13 4.04 2.92

Table 8: Comparison of Tokenizers by Character-per-Token Ratio.
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