
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 3: System Demonstrations), pages 1–10
July 27 - August 1, 2025 ©2025 Association for Computational Linguistics

MapQaTor: An Extensible Framework for
Efficient Annotation of Map-Based QA Datasets

Mahir Labib Dihan1, Mohammed Eunus Ali1,2, Md Rizwan Parvez3
1Department of Computer Science and Engineering

Bangladesh University of Engineering and Technology (BUET)
2Faculty of Information Technology,

Monash University, Melbourne, Australia
3Qatar Computing Research Institute (QCRI)

{mahirlabibdihan, mohammed.eunus.ali}@gmail.com, mparvez@hbku.edu.qa
https://mapqator.github.io/project/

Adapter Tracker

Node JS

Cached

Tools

Context

Export

2
User submits

queries via tools

3
Query is converted to

request format expected
by chosen Map API

4
Backend checks the

database for the requested
API call; if not found, it
makes the API call and
updates the database.

PostgreSQL

6
Response is converted to

format expected by the Tools

7
User visualizes the fetched

data in embedded map

5

API Call is tracked for
future reference

8
User adds data to Context
(API calls auto-recorded)

9

Based on the Context
user designs QA pair

10
User exports the dataset

as JSON

TextSearch

PlaceDetails

NearbySearch

ComputeRoutes

SearchAlongRoute

Data Collection Tools

Map Services

1
User chooses

desired Map Service

Map APIs

Map Embedding

Question

Answer

Context

Figure 1: Overview of the annotation and visualization process of MapQaTor .

Abstract
Mapping and navigation services like Google
Maps, Apple Maps, OpenStreetMap, are es-
sential for accessing various location-based
data, yet they often struggle to handle natu-
ral language geospatial queries. Recent ad-
vancements in Large Language Models (LLMs)
show promise in question answering (QA), but
creating reliable geospatial QA datasets from
map services remains challenging. We intro-
duce MapQaTor, an extensible open-source
framework that streamlines the creation of re-
producible, traceable map-based QA datasets.
MapQaTor enables seamless integration with
any maps API, allowing users to gather and
visualize data from diverse sources with min-
imal setup. By caching API responses, the
platform ensures consistent ground truth, en-
hancing the reliability of the data even as real-
world information evolves. MapQaTor cen-
tralizes data retrieval, annotation, and visu-
alization within a single platform, offering a
unique opportunity to evaluate the current state

of LLM-based geospatial reasoning while ad-
vancing their capabilities for improved geospa-
tial understanding. Evaluation metrics show
that, MapQaTor speeds up the annotation pro-
cess by at least 30 times compared to man-
ual methods, underscoring its potential for de-
veloping geospatial resources, such as com-
plex map reasoning datasets. The website is
live at: https://mapqator.github.io/ and
a demo video is available at: https://youtu.
be/bVv7-NYRsTw.

.

1 Introduction

In recent years, mapping and navigation services
have transformed the way individuals access and in-
teract with location-based information. Platforms
such as Google Maps and Apple Maps have be-
come essential tools, providing users with features
like route planning, nearby points of interest (POIs),
and contextual data, including reviews and oper-

1

https://mapqator.github.io/project/
https://mapqator.github.io/
https://youtu.be/bVv7-NYRsTw
https://youtu.be/bVv7-NYRsTw
https://mapsplatform.google.com/
https://www.apple.com/au/maps/

Tool API Provider API Endpoint

Text Search

Google Maps
Text Search (New) | Places API
Text Search | Places API

OpenStreetMap Search queries | Nominatim
Mapbox Suggest | Search Box API
TomTom Point of Interest Search
HERE Discover | Geocoding and Search
Azure Maps Search - Get Search Fuzzy

Place Details

Google Maps Place Details (New) | Places API
OpenStreetMap Place details | Nominatim
Mapbox Retrieve | Search Box API
TomTom Place by ID
HERE Lookup | Geocoding and Search
Azure Maps Search - Get Search Fuzzy

Nearby Search
Google Maps Nearby Search (New) | Places API
TomTom Nearby Search

Compute Routes
Google Maps Get a route | Routes API
OpenStreetMap Routing API | GraphHopper
TomTom Calculate Route

Search Along Route
Google Maps Search along route
TomTom Along Search Route

Table 1: Current API Support for Data Collection Tools in MapQaTor

ating hours. However, while these services offer
extensive geospatial data, they often struggle to
understand and process natural language queries.
This limitation hampers their effectiveness for users
seeking to obtain specific information or engage in
more complex question-answering (QA) tasks.

Recent advancements in multi-agent and tool-
augmented large language models (LLMs) demon-
strate significant promise for complex reasoning,
decision-making, and generation tasks across vari-
ous application domains, including those that inter-
act with domain-specific tools such as maps (Liu
et al., 2024; Qin et al.). Notable tasks like We-
bArena (Zhou et al.) and VisualWebArena (Koh
et al., 2024) have been proposed with practical
real-life applications involving map usage. How-
ever, despite these developments, there remains no
straightforward method for LLMs to access the vast
databases of map services. Currently, there are no
dedicated platforms designed to efficiently annotate
language-map reasoning tasks, such as question an-
swering. This gap leads to significant challenges in
creating reliable datasets for training and evaluat-
ing LLMs for geospatial reasoning tasks, as many
existing approaches rely on manual data collection
methods that result in inconsistencies, lack of re-
producibility, and difficulties in tracking the origins

of information.
To address these issues, we present MapQaTor, a

web application designed to streamline the creation
of map-based QA datasets. MapQaTor empowers
researchers to seamlessly integrate with any map
API, enabling them to gather, visualize, and an-
notate geospatial data from desired map API with
minimal setup. By caching API responses, the
platform ensures a consistent ground truth, which
enhances the reliability of the datasets, even as
real-world information evolves over time.

In summary, in this demo we have made the
following key contributions:

1. We propose a novel framework, MapQaTor,
first of its kind, which simplifies the creation
of reproducible map-based QA datasets and
reduces reliance on manual data collection
through its extensible architecture, enabling
seamless integration with any map API (e.g.,
Google Maps, Apple Maps, OpenStreetMap).

2. We provide visualization tools that facilitate
better understanding and annotation of geospa-
tial information.

3. We implement caching of API responses to
ensure a consistent ground truth, enhancing
the reliability of QA tasks over time.

4. We evaluate MapQaTor to estimate its useful-

2

https://developers.google.com/maps/documentation/places/web-service/text-search
https://developers.google.com/maps/documentation/places/web-service/search-text
https://nominatim.org/release-docs/develop/api/Search/
https://docs.mapbox.com/api/search/search-box/
https://developer.tomtom.com/search-api/documentation/search-service/points-of-interest-search
https://www.here.com/docs/bundle/geocoding-and-search-api-developer-guide/page/topics/endpoint-discover-brief.html
https://learn.microsoft.com/en-us/rest/api/maps/search/get-search-fuzzy?view=rest-maps-1.0&tabs=HTTP
https://developers.google.com/maps/documentation/places/web-service/place-details
https://nominatim.org/release-docs/develop/api/Details/
https://docs.mapbox.com/api/search/search-box/
https://developer.tomtom.com/search-api/documentation/place-by-id-service/place-by-id
https://www.here.com/docs/bundle/geocoding-and-search-api-developer-guide/page/topics/endpoint-lookup-brief.html
https://learn.microsoft.com/en-us/rest/api/maps/search/get-search-fuzzy?view=rest-maps-1.0&tabs=HTTP
https://developers.google.com/maps/documentation/places/web-service/nearby-search
https://developer.tomtom.com/search-api/documentation/search-service/nearby-search
https://developers.google.com/maps/documentation/routes/compute_route_directions
https://docs.graphhopper.com/#tag/Routing-API
https://developer.tomtom.com/routing-api/documentation/tomtom-maps/calculate-route
https://developers.google.com/maps/documentation/places/web-service/search-along-route
https://developer.tomtom.com/search-api/documentation/search-service/along-route-search

ness and efficiency.
We have published the code on GitHub1 under

the Apache 2 license.

2 MapQaTor

MapQaTor is a web-based platform designed to
streamline the creation of reproducible, map-based
question-answering (QA) datasets that can be used
to evaluate and advance the geospatial reasoning
abilities of large language models (LLMs). By in-
tegrating with any map API, MapQaTor enables
users to efficiently gather, annotate, and visualize
map data to support complex, location-based QA
tasks. This section details the main components
of the platform, its architecture, and its unique fea-
tures. Figure 1 outlines the proposed framework,
which enables users to interact with map APIs by
submitting queries, processing responses, and vi-
sualizing data. The framework allows users to de-
sign question-answer pairs and export the dataset
in JSON format for downstream applications. The
whole working flow is shown using ten key steps.

2.1 Context Designer

The core function of MapQaTor is to generate Con-
text2 using data collection tools, enabling struc-
tured and efficient QA pair creation.

2.1.1 Data Collection Tools
MapQaTor ’s data collection framework (Figure 2)
integrates five modular tools—Text Search, Place
Details, Nearby Search, Compute Routes, and
Search Along Route—to unify diverse map API
functionalities under a standardized interface. Each
tool follows a consistent design pattern:

• Inputs: User-defined parameters (e.g., lo-
cation coordinates, filters, natural language
queries).

• Outputs: Structured API responses (e.g.,
places, routes, metadata) normalized for
downstream tasks.

• Context Integration: All inputs, raw API out-
puts, and processed data are stored as reusable
Context, preserving traceability, and enabling
QA generation.

The tools abstract API-specific complexities
through configurable adapters while maintaining

1https://github.com/mapqator/
2Context refers to the data and information necessary to

design a QA pair, ensuring that the answer to each question
exists within the context.

provider flexibility. Below, we outline their roles
and workflows, with visual examples.
Text Search: Allows users to search for places by
entering free-text queries (e.g., “Eiffel Tower” or
“Starbucks near Central Park”). This tool leverages
map API search capabilities to retrieve place names,
addresses, and coordinates, making it efficient for
locating points of interest (Figure 5).
Place Details: Fetches granular metadata (e.g.,
opening hours, accessibility) for a selected location
(Figure 6). It resolves API schemas into unified
fields, supporting factual queries like “Does the
Louvre Museum offer wheelchair access?”
Nearby Search: Finds points of interest (POIs)
near a location (Figure 7). Users can filter by price
tiers, ratings, and ranking logic, enabling spatial
QA pairs like “List nearby restaurants of Eiffel
Tower with at least a 4 rating.”
Compute Routes: Generates navigation paths be-
tween locations (Figure 8), supporting multi-stop
optimization and travel mode selection (e.g., driv-
ing, walking), with step-by-step instructions and
route metrics.
Search Along Route: Identifies POIs along a route
(Figure 9). Users specify filters and route param-
eters, enriching trip-planning contexts like “Find
gas stations along Highway 1 from San Francisco
to Los Angeles.”

2.1.2 Context Management

Each tool’s execution appends a Context entry con-
taining:

• Raw API Data: Original JSON responses for
debugging and reproducibility.

• Normalized Fields: Extracted attributes (e.g.,
coordinates, ratings) in a unified schema.

• Metadata: Timestamps, API provider, and
query parameters.

This layered organization ensures flexibility: raw
data supports provider-specific analysis, while nor-
malized fields streamline QA generation.

2.1.3 Impact on Reproducibility

The architecture guarantees that identical queries
produce the same structured outputs, even if the
underlying API changes. For example, a Nearby
Search for “restaurants near Louvre Museum” re-
turns normalized fields like rating, price, and
coordinates, regardless of whether Google Maps
or OpenStreetMap is used. This consistency is
critical for long-term dataset validity.

3

https://github.com/mapqator/

SearchAlongRoute

inputs = { origin, destination, travelMode,
routeModifiers, type, minRating,
priceLevels, rankPreference,
maxResultCount }

outputs = { places, routes }

methods = { convertRouteRequest,
convertNearbyRequest,
convertRouteResponse,
convertNearbyResponse }

attributes = { allowedParams,
TravelSelectionField, convertTravelModeToIcon,
convertTravelModeToLabel, AvoidSelectionField,
PoiCategorySelectionField, formatPoiCategory }

NearbySearch

inputs = { lat, lng, type, keyword,
minRating, priceLevels, rankPreferences,
maxResultCount }

outputs = { places, routingSummaries }

methods = { convertRequest,
convertResponse }

attributes = { PoiCategorySelectionField,
formatPoiCategory, allowedParams }

inputs = { id }
outputs = { ... regularOpeningHours,
priceLevel, rating, accessibilityOptions .. }
methods = { convertRequest,
convertResponse, getFields }

PlaceDetailsTextSearch

inputs = { textQuery }
outputs = [{ id, displayName,
shortFormattedAddress, location }, ...]
methods = { convertRequest,
convertResponse, suggest, retrieve }

ComputeRoutes

inputs = { origin, destination, intermediates,
travelMode, routeModifiers }

outputs = { optimizeWaypointOrder, routes }

methods = { convertRequest,
convertResponse }

attributes = { allowedParams,
TravelSelectionField, convertTravelModeToIcon,
convertTravelModeToLabel, AvoidSelectionField }

Figure 2: Standardized schema for data collection tools, unifying inputs, outputs, methods, and attributes.

2.1.4 Visualization Tools
For visualizing geospatial data, MapQaTor utilizes
the Google Maps JavaScript API3 to display places
and routes directly on an embedded map. Users
can view places as markers and visualize route
paths (Figures 5–9). To render routes, MapQa-
Tor decodes polyline-encoded data from map APIs
into latitude-longitude coordinates using polyline
decoding algorithm 4, ensuring accurate visualiza-
tion of complex routes. These visualization tools
help users understand spatial relationships, facil-
itating the creation of precise and context-aware
map-based questions.

2.2 Question Design and Annotation

The Question Design and Annotation feature in
MapQaTor facilitates the creation and manage-
ment of questions, enhancing the process of gener-
ating high-quality QA pairs (Figure 3). It supports
four answer formats: Yes/No, Single Choice, Mul-
tiple Choice, and Open Ended, allowing users to
select the format that best suits their needs. Users
can assign categories to each question, enabling
better organization and retrieval based on thematic
relevance. Also, while writing question/answer
user will get Place Name suggestions to ensure
consistency and uniqueness (Appendix E). The sys-
tem also supports AI-assisted question generation,
leveraging Gemini-2.0-Flash (DeepMind, 2025)
with few-shot prompting to automatically gener-

3https://developers.google.com/maps/
documentation/javascript/overview

4https://developers.google.com/maps/
documentation/routes/polylinedecoder

Question

Question Category

Answer Type

Correct Answer

AI-Assisted
Question Generator

Context

Figure 3: QA design and annotation interface.

ate sample question from context, further enhanc-
ing the annotation process. Once QA pairs are
created, they can be evaluated using the Prompt
Design Interface (see Appendix B). This interface
allows users to structure prompts, compare model’s
responses against ground truth, and assess the per-
formance.

2.3 Context Optimization

The structured context generated by MapQaTor’s
data collection tools is often large and complex,
containing detailed raw data and numerous meta-

4

https://developers.google.com/maps/documentation/javascript/overview
https://developers.google.com/maps/documentation/javascript/overview
https://developers.google.com/maps/documentation/routes/polylinedecoder
https://developers.google.com/maps/documentation/routes/polylinedecoder

Structured Context

{
 textSearch: { ... },
 placeDetails: { ... },
 nearbySeach: [{
 locationBias: "ChIJLU...6p3I0",
 type: "restaurant",
 minRating: 4,

 places: [...]
],
 computeRoutes: [...],
 searchAlongRoute: [...],
}

....
Nearby Restaurants of Eiffel Tower
with a minimum rating of 4 are:
1. La Casa di Alfio | Rating: 4.5*
(4450) | Moderate | ~ 391s (473m)
2. Chez Pippo | Rating: 4.6* (4339) |
Expensive| ~ 331s (391m)
3. Firmine | Rating: 4.1* (4816) |
Moderate | ~ 463s (557m)
4. Le Bouchon | Rating: 4.1* (3156)
| Moderate | ~ 390s (477m)
5. Le New York | Rating: 4.3* (2106)
| Moderate | ~ 976s (1146m)
....

Formatted Context

Figure 4: Comparison of structured and formatted con-
text for improved readability and reduced size.

data elements. While this structure is necessary to
ensure complete traceability and data accuracy, it
can be cumbersome when used directly in down-
stream tasks. To address this challenge, we convert
the structured context into a more formatted con-
text, which is a more compact, human-readable
version (See figure 4). This transformation retains
the key information needed for evaluating LLMs
for QA tasks, while eliminating unnecessary com-
plexity. By simplifying the context, we signifi-
cantly reduce token usage and improve processing
efficiency, making it more suitable for large-scale
evaluations and effective LLM-based analysis.

2.4 API Extensibility

New APIs can be integrated into MapQa-
Tor by extending base tool classes (e.g.,
NearbySearch) and implementing ab-
stract methods (e.g., convertRequest,
convertResponse) as shown in Figure 12.
Attributes like PolCategorySelectionField
and allowedParams (Figure 2) handle provider-
specific UI elements, such as point-of-interest
(POI) categories, which vary across APIs (e.g.,
Google Maps vs. OpenStreetMap). To date,
MapQaTor has integrated 20 APIs from 6
providers (Table 1), including both paid and free
options. This modular design ensures adaptability
to diverse map APIs while maintaining a consistent
user experience.

2.5 Secure API Handling

MapQaTor ’s backend securely mediates interac-
tions between frontend tools (e.g., Nearby Search,
Text Search) and third-party map APIs through two
critical steps:
Tool-to-Backend Requests: As shown in Fig-
ure 12, frontend tools send API-agnostic re-

quests containing credential placeholders (e.g.,
key:TOMTOM_API_KEY) and provider-specific pa-
rameters.
API Key Injection: The backend replaces place-
holders with environment-stored credentials. Sen-
sitive keys are never exposed in client-side code.

2.6 Caching Mechanism

To enhance efficiency and ensure consistency,
MapQaTor caches API responses in a PostgreSQL
database. This caching mechanism not only re-
duces the number of repeated API calls, saving
time and resources, but also ensures that the ground
truth data remains consistent over time. By stor-
ing API responses, the platform enables efficient
retrieval of previously fetched data, which is partic-
ularly valuable when querying the same locations
or routes multiple times. The caching mechanism
thereby contributes to faster performance and more
reliable QA dataset creation, even as real-world
map data continues to evolve.

2.7 Application Scenarios

MapQaTor is primarily designed to support the cre-
ation of both training and evaluation datasets for
geospatial question answering (QA), enabling the
benchmarking (See Section 3.2) and improvement
of large language models (LLMs) in geospatial rea-
soning tasks. In addition to evaluation, MapQaTor
can be used to create high-quality training datasets
for supervised fine-tuning (SFT) and alignment.
Using MapQaTor’s extensible architecture, users
have the flexibility to evaluate the richness and ca-
pabilities of any available map services.

3 Experiments and Evaluation

3.1 Comparison with Manual Methods

We conducted a controlled experiment to quantify
MapQaTor ’s efficiency gains in geospatial data
collection compared to manual methods. Two final-
year undergraduate (BSc) students with Google
Maps experience performed four geospatial tasks
both manually and via MapQaTor. The results
(Table 2) demonstrate a significant improvement in
data retrieval speed, with MapQaTor requiring at
least 30 times less time than the manual approach.
Task Definitions Four core geospatial operations
were evaluated:

• Place Details: Retrieve name, address, rat-
ing, opening hours, reviews for the Louvre
Museum

5

• Nearby Search: List 20 nearby restaurants of
Louvre Museum, sorted by distance

• Compute Routes: Generate two alternative
driving routes from Eiffel Tower to Louvre
Museum

• Search Along Route: List 20 restaurants
along the driving route from Eiffel Tower to
Louvre Museum.

Manual Method
• Used Google Maps5 web interface
• Copied data to spreadsheets with exact format-

ting
• Repeated 5 times per task per participant, with

the median time recorded to mitigate outliers.
Automated Method

• Executed via MapQaTor ’s Web Interface
• Used identical search parameters

Task MapQaTor Manual
Place Details 10.17 sec 487 sec
Nearby Search 12.50 sec 456 sec
Compute Routes 14 sec 516.5 sec
Search Along Route 15.66 sec 476 sec

Table 2: Quantitative comparison between our system
and manual methods.

3.2 The MapEval Benchmark

To evaluate the annotation quality, we introduce
MapEval (Dihan et al., 2025), a benchmark de-
signed to evaluate LLMs on geospatial reasoning
tasks. One of its evaluation settings, MapEval-
Textual6, assesses model performance by prompt-
ing LLMs with context and a question, then com-
paring their responses to the annotated ground truth.
This evaluation used 300 MCQs annotated using
MapQaTor to benchmark 19 LLMs (e.g., Claude-
3.5-Sonnet, GPT-4o, Gemini-1.5-Pro). Preliminary
results (Table 3) reveal significant gaps in model
performance on complex spatial tasks, demonstrat-
ing the value of MapQaTor in generating high-
quality datasets for benchmarking.

MapQaTor’s caching mechanism was key in an-
notating the dataset within the Google Map API’s
free tier limit, while the visualization feature im-
proved annotation accuracy and human evaluation.
In MapEval-Textual, two human evaluators, who
were not involved in the annotation process, an-

5https://www.google.com/maps
6https://huggingface.co/datasets/MapEval/

MapEval-Textual

swered the same 300 MCQs, achieving an aver-
age accuracy of 86.67%—more than 20% higher
than the top-performing models (Table 3). This
disparity is attributed to MapQaTor’s context vi-
sualization feature (Section 2.1.4). While LLMs
only had access to textual context, lacking visual-
ization capabilities, humans were able to leverage
the embedded map to interpret the spatial context.

Model Accuracy (%)
Claude-3.5-Sonnet 66.33
Gemini-1.5-Pro 66.33
GPT-4o 63.33
Human (with MapQaTor) 86.67

Table 3: MapEval-Textual Performances

In MapEval-Textual, LLMs were prompted with
Formatted Context (Section 2.3). Statistics for
the 300 MCQs reveal that the average length of
Structured Context is 17,534 characters, while the
Formatted Context is just 2,536 characters—an
85.54% reduction. This not only demonstrates
MapQaTor’s space efficiency but also significantly
lowers evaluation costs, as the cost is based on the
number of tokens processed.

4 Related Works

Recent research has highlighted the potential of
map data in mimicking real-world planning tasks
through various tools (Xie et al., 2024; Zheng et al.,
2024). Additionally, studies emphasize the sig-
nificance of caching API call results to establish
a stable database for evaluation purposes (Guo
et al., 2024; Xie et al., 2024). The development
of web-based platforms for integrating geospatial
data has also been explored, focusing on stream-
lining data collection and enhancing the usability
of geospatial information for research and develop-
ment (Choimeun et al., 2010; Cai and Hovy, 2010;
Zheng et al., 2014).

While tool-calling datasets like ToolBench (Qin
et al.) and APIBank (Li et al., 2023) include
location-based tasks, their data collection processes
lack traceability and reproducibility. This limita-
tion highlights a significant gap in the current land-
scape: the development of datasets for geospatial
question answering is still in its infancy. Exist-
ing resources often fail to capture the rich contex-
tual information provided by modern map services.
Therefore, there is a pressing need for innovative
approaches that effectively leverage the extensive

6

https://www.google.com/maps
https://huggingface.co/datasets/MapEval/MapEval-Textual
https://huggingface.co/datasets/MapEval/MapEval-Textual

data available from map services to create compre-
hensive geospatial QA datasets.

5 Conclusion

In this paper, we have proposed a novel frame-
work, MapQaTor, first of its kind, to automati-
cally fetch rich contextual map service data, which
forms the basis to develop language-map bench-
mark datasets for evaluating SoTA LLMs. Our
developed web platform simplifies data collection
for users by offering precise spatial information,
user-friendly search, and efficient data retrieval by
using Map APIs. Our application also enables user
to create geospatial questionnaire. Experimental
evaluation suggests that MapQaTor is highly ef-
fective in developing geospatial question answer
datasets. We believe this approach introduces a
new task in geospatial question answering, which
has the potential to open a new research direction
in the intersection of language models and spatial
reasoning.

Limitations

Despite the capabilities of MapQaTor, several limi-
tations should be acknowledged. The platform uti-
lizes several paid map APIs, which may incur costs
based on usage. During the current public demon-
stration period, users can explore its features with-
out immediate expenses; however, in the long run,
users will need to host the platform independently
and integrate their own API keys to access paid
functionalities. This requirement necessitates an
understanding of the pricing structures associated
with the various APIs, potentially impacting acces-
sibility for some users. The platform’s functionality
is heavily dependent on the availability and stability
of external map APIs, meaning that any changes,
deprecations, or invalid API keys can negatively
impact performance. The quality of the generated
QA pairs is contingent on the retrieved data and
users’ ability to formulate meaningful questions,
which can introduce variability in dataset quality.
The evaluation metrics used might not encompass
all aspects of usability, possibly overlooking qual-
itative user feedback. In addition to map service
data, other platforms such as Trip Advisor can also
be a rich source of additional context for geospatial
queries.

References
Congxing Cai and Eduard Hovy. 2010. Summarizing

textual information about locations in a geo-spatial
information display system. In Proceedings of the
NAACL HLT 2010 Demonstration Session, pages 5–
8.

S Choimeun, N Phumejaya, S Pomnakchim, and Chan-
tana Chantrapornchai. 2010. Tool for collecting spa-
tial data with google maps api. In U-and E-Service,
Science and Technology: International Conference
UNESST 2010, Held as Part of the Future Genera-
tion Information Technology Conference, FGIT 2010,
Jeju Island, Korea, December 13-15, 2010. Proceed-
ings, pages 107–113. Springer.

Google DeepMind. 2025. Gemini 2.0 flash. Accessed:
2025-03-13.

Mahir Labib Dihan, Md Tanvir Hassan, Md Tanvir
Parvez, Md Hasebul Hasan, Md Almash Alam,
Muhammad Aamir Cheema, Mohammed Eunus Ali,
and Md Rizwan Parvez. 2025. Mapeval: A map-
based evaluation of geo-spatial reasoning in founda-
tion models. In Forty-second International Confer-
ence on Machine Learning.

Zhicheng Guo, Sijie Cheng, Hao Wang, Shihao Liang,
Yujia Qin, Peng Li, Zhiyuan Liu, Maosong Sun, and
Yang Liu. 2024. Stabletoolbench: Towards stable
large-scale benchmarking on tool learning of large
language models. In Findings of the Association for
Computational Linguistics ACL 2024, pages 11143–
11156.

Jing Yu Koh, Robert Lo, Lawrence Jang, Vikram
Duvvur, Ming Lim, Po-Yu Huang, Graham Neu-
big, Shuyan Zhou, Russ Salakhutdinov, and Daniel
Fried. 2024. Visualwebarena: Evaluating multimodal
agents on realistic visual web tasks. In Proceedings
of the 62nd Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 881–905.

Minghao Li, Yingxiu Zhao, Bowen Yu, Feifan Song,
Hangyu Li, Haiyang Yu, Zhoujun Li, Fei Huang,
and Yongbin Li. 2023. Api-bank: A comprehensive
benchmark for tool-augmented llms. In Proceedings
of the 2023 Conference on Empirical Methods in
Natural Language Processing, pages 3102–3116.

Xiao Liu, Hao Yu, Hanchen Zhang, Yifan Xu, Xuanyu
Lei, Hanyu Lai, Yu Gu, Hangliang Ding, Kaiwen
Men, Kejuan Yang, et al. 2024. Agentbench: Evalu-
ating llms as agents. In ICLR.

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan
Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru Tang,
Bill Qian, et al. Toolllm: Facilitating large language
models to master 16000+ real-world apis. In The
Twelfth International Conference on Learning Repre-
sentations.

Jian Xie, Kai Zhang, Jiangjie Chen, Tinghui Zhu, Renze
Lou, Yuandong Tian, Yanghua Xiao, and Yu Su. 2024.

7

https://aistudio.google.com/welcome
https://icml.cc/virtual/2025/poster/44415
https://icml.cc/virtual/2025/poster/44415
https://icml.cc/virtual/2025/poster/44415

Travelplanner: A benchmark for real-world planning
with language agents. In International Conference
on Machine Learning, pages 54590–54613. PMLR.

Huaixiu Steven Zheng, Swaroop Mishra, Hugh Zhang,
Xinyun Chen, Minmin Chen, Azade Nova, Le Hou,
Heng-Tze Cheng, Quoc V Le, Ed H Chi, et al. 2024.
Natural plan: Benchmarking llms on natural lan-
guage planning. CoRR.

Yuxin Zheng, Zhifeng Bao, Lidan Shou, and An-
thony KH Tung. 2014. Mesa: A map service to sup-
port fuzzy type-ahead search over geo-textual data.
Proceedings of the VLDB Endowment, 7(13):1545–
1548.

Shuyan Zhou, Frank F Xu, Hao Zhu, Xuhui Zhou,
Robert Lo, Abishek Sridhar, Xianyi Cheng, Tianyue
Ou, Yonatan Bisk, Daniel Fried, et al. Webarena: A
realistic web environment for building autonomous
agents. In The Twelfth International Conference on
Learning Representations.

8

A Data Collection Tools

Figure 5: Search for a place

Figure 6: Fetch full details of a place

B Prompt Design Interface

The prompt design interface enables users to gen-
erate prompts for LLM evaluation by selecting a
structured or formatted context. It displays the gen-
erated prompt, ground truth answers, and Gemini’s
response for comparison. Figure 10 illustrates this
process.

C Exclusion of Temporal Variations in
Routing APIs

To ensure reproducibility, MapQaTor removes tem-
poral variations in routing by:

Figure 7: Search Nearby Places

Figure 8: Find routes between places

Figure 9: Search places along a route

Traffic Awareness Setting: Routing APIs are set
to "TRAFFIC_UNAWARE," ensuring consistent
travel times by ignoring real-time traffic.
Exclusion of Transit Mode: The "TRANSIT"
mode is excluded to prevent variability from sched-

9

Prompt Designer Generated Prompt

Ground Truth

Gemini's Response

Figure 10: The figure illustrates prompt creation, ground truth comparison, and Gemini’s response assessment.

ule changes.
Benefits:

• Ensures consistent responses for identical
queries.

• Focuses evaluations on spatial reasoning, not
real-time changes.

• Provides a stable baseline for model bench-
marking.

These measures enable reliable and reproducible
geospatial evaluations in MapQaTor .

D API Extension Mechanism

Figure 12 demonstrates how new map services are
integrated by extending MapQaTor ’s core tools:

E Place Name Suggestion

Using the TextSearch tool, annotators can retrieve
place names. While writing a question or answer,
pressing ’@’ suggests available place names, en-
suring consistency between context and QA pairs.

Figure 11: Suggesting available places from the context.

class TomTomApi extends TextSearch {
constructor () {

super();
this.family = "tomtom ";

}

convertRequest = (query) => {
return {

url: "https ://api.tomtom.com/
search /2/ poiSearch /" + query + ".
json",
method: "GET",
params: {

key: "key:TOMTOM_API_KEY",
limit: 5,
language: "en-US",

},
};

};

convertResponse = (data) => {
const places = data.results.map((
place) => ({

id: place.id,
displayName: {

text: place.poi.name ,
},
shortFormattedAddress: place.
address.freeformAddress ,
location: {

latitude: place.position.lat ,
longitude: place.position.lon ,

},
}));
return { places };

};
}

Figure 12: Extending Text Search for TomTom API

10

