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1 Introduction

A heated discussion thread in Al and NLP is au-
tonomous agents, usually powered by large lan-
guage models (LLMs), that can follow language
instructions to carry out diverse and complex tasks
in real-world or simulated environments. There are
numerous proof-of-concept efforts on such agents
recently, including ChatGPT Plugins,' AutoGPT,
generative agents (Park et al., 2023), just to name a
few. The public is also showing an unprecedentedly
high level of excitement. For example, AutoGPT
has received 147K stars in just 4 months, making it
the fastest growing repository in the Github history,
despite its experimental nature with many known
and sometimes serious limitations.

However, the concept of agent has been intro-
duced into Al since its dawn. So what has changed
recently? We argue that the most fundamental
change is the capability of using language. Con-
temporary Al agents use language as a vehicle for
both thought and communication, a trait that was
unique to humans. This dramatically expands the
breadth and depth of the problems these agents can
possibly tackle, autonomously. The capability of
using language, bestowed by their LLM founda-
tions, allows these agents to 1) use a wide range
of tools and reconcile their heterogeneous syntax
and semantics (Parisi et al., 2022; Schick et al.,
2023; Qin et al., 2023a; Patil et al., 2023; Qin
et al., 2023b; Mialon et al., 2023), 2) operate in
complex environments and ground to environment-
specific semantics (Brohan et al., 2023b; Yao et al.,
2022a; Gu et al., 2023; Wang et al., 2023a; Deng
etal., 2023; Zhou et al., 2023), 3) conduct complex
language-driven reasoning (Wei et al., 2022; Shinn
et al., 2023; Chen et al., 2023), and 4) form sponta-
neous multi-agent systems (Park et al., 2023; Liu
et al., 2023b). Therefore, to distinguish from the
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Figure 1: A conceptual framework for language agents.

earlier Al agents, we suggest that these Al agents
capable of using language for thought and commu-
nication should be called “language agents,” for
language being their most salient trait.

Language played a critical role in the evolution
of biological intelligence, and now artificial intelli-
gence may be following a similar evolutionary path.
This is remarkable and concerning at the same time.
Despite the rapid progress, there has been a sig-
nificant lack of systematic discussions regarding
the conceptual definition, theoretical foundation,
promising directions, and risks associated with lan-
guage agents. This proposed tutorial endeavors
to fill this gap by giving a comprehensive account
of language agents based on both contemporary
and classic Al research while drawing connections
to cognitive science, neuroscience, and linguistics
when appropriate.

2 Outline of Tutorial Content

This cutting-edge tutorial will be half-day and
cover a conceptual framework for language agents
as well as important topic areas including tool
augmentation, grounding, reasoning and planning,
multi-agent systems, and risks and societal impact.

2.1 Overview [30mins]

What are language agents and how they differ
from the previous generations of Al agents? We
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will start by discussing why the capability of us-
ing language for thought and communication em-
powered by LLMs is the defining trait of the
contemporary agents, drawing connections to the
role language played in the evolution of biolog-
ical intelligence (Dennett, 2013). We will then
discuss a potential conceptual framework for lan-
guage agents (Figure 1) and how each component
(agent/embodiment/environment) differs from pre-
vious agents. One foundational construct is mem-
ory. We will discuss the resemblances and differ-
ences between a language agent/LLM’s memory
and human memory, including the storage mecha-
nism (Kandel, 2007), long-term memory (LLM’s
parametric memory/vector databases), and work-
ing memory (in-context learning), and how such
memory may support general-purpose language-
driven reasoning. We will wrap up this section by
outlining the key technical and societal aspects that
will be discussed in the rest of the tutorial.

2.2 Tool Augmentation [30mins]

Tool augmentation or tool use (Schick et al., 2023;
Mialon et al., 2023) is a natural extension of lan-
guage agents due to their capability of using lan-
guage for thought and communication. Language
agents start to demonstrate a possibility of au-
tonomously understanding and reconciling the het-
erogeneous syntax and semantics (e.g., XML vs.
JSON) of different tools (i.e., using language for
communication), and orchestrating the tool exe-
cution results into a coherent reasoning process
(i.e., using language for thought). At present, tool
augmentation mainly serves three purposes:

* Provide up-to-date and/or domain-specific in-
formation (Nakano et al., 2021; Lazaridou
et al., 2022; Guu et al., 2020).

Provide specialized capabilities (e.g., high-
precision calculation) that a language agent
may not have or be best at (Schick et al., 2023;
Shen et al., 2023; Cheng et al., 2023; Gao
etal., 2022).

Enable a language agent to act in external
environments (Liang et al., 2022; Wang et al.,
2023a).

Two metrics are essential for practical tool aug-
mentation: robustness, i.e., accuracy in using tools,
and flexibility, i.e., ease of integrating a new tool.
While existing efforts, e.g., ChatGPT Plugins, have
made meaningful progress on flexibility, robust-
ness still presents a significant challenge. This is
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particularly problematic for tools that produce side
effects in the world (e.g., a tool for sending emails).
We will discuss the challenges and opportunities
around tool augmentation.

2.3 Grounding [30mins]

Most of the transformative applications of language
agents involve connecting an agent to some real-
world environments (e.g., through tools or em-
bodiment), be it databases (Cheng et al., 2023),
knowledge bases (Gu et al., 2023), the web (Deng
et al., 2023; Zhou et al., 2023), or the physical
world (Brohan et al., 2023a). Each environment is
a unique context that provides possibly different
interpretations of natural language. Grounding, i.e.,
the linking of (natural language) concepts to con-
texts (Chandu et al., 2021), thus becomes a central
and pervasive challenge. There are two types of
grounding related to language agents:

* Grounding natural language to an environ-
ment (Gu et al., 2023). This is also closely
related to the meaning of natural language,
which, as Bender and Koller (2020) put it, is
the mapping from an utterance to its commu-
nicative intent.

* Grounding an agent’s decisions in its own con-
text (i.e., working memory), which includes
external information from tools (Liu et al.,
2023a; Yue et al., 2023; Gao et al., 2023;
Cheng et al., 2023).

We will discuss the current work on both types of
grounding, the remaining challenges, and promis-
ing future directions.

2.4 Reasoning and Planning [30mins]

The simplest way for language agents to interact
with external worlds is to generate the next action
via the LLM (Nakano et al., 2021; Schick et al.,
2023), but the mapping from context to action is
often non-trivial and such approaches often require
fine-tuning to learn the mapping. Inspired by prior
work that leverages intermediate reasoning to im-
prove LLM performance (Nye et al., 2021; Wei
et al., 2022), approaches such as ReAct (Yao et al.,
2022b) start to leverage intermediate reasoning for
better acting by flexibly analyzing environmental
observations, making plans, tracking task status,
recovering from exceptions, etc. Subsequent stud-
ies (Shinn et al., 2023; Chen et al., 2023) further
leverage LLM reasoning for explicit self evaluation,



critic, or reflection, to further improve agent per-
formance. On the other hand, the simplest way for
language agents to plan multiple steps of actions is
to generate an action plan (Huang et al., 2022), but
the token-by-token autoregressive decoding makes
it hard to forecast planned future, backtrack from
error, or maintain a global exploration structure
for planning. To this end, recent works have be-
gun to enhance LMs with re-planning (Song et al.,
2022) or tree search algorithms (Yao et al., 2023;
Hao et al., 2023) to systematically explore and
make decisions in the planning space, analogous
to planning-based agents such as AlphaGo (Silver
et al., 2016). We will also discuss the recent trend
that blurs the boundary between reasoning and act-
ing, which leads to a more unified methodology be-
tween reasoning and planning (e.g., Monte-Carlo
tree search applied for both reasoning (Hao et al.,
2023) and action planning (Silver et al., 2016)).

2.5 Multi-Agent Systems [30mins]

When Al agents are equipped with the capabil-
ity of using language for thought and communica-
tion, it starts to enable multi-agent systems quite
different from the conventional ones (Ferber and
Weiss, 1999)—agents can now act and communi-
cate with each other in a more autonomous fash-
ion. On the one hand, agents may now be gen-
erated with minimal specification instead of pre-
programmed and can continually evolve through
use and communication to produce complex so-
cial behaviors (Park et al., 2023), collaborate for
task solving (Wu et al., 2023; Qian et al., 2023;
Hong et al., 2023), or debate for more divergent
and faithful reasoning (Chan et al., 2023; Liang
et al., 2023; Du et al., 2023). On the other hand,
human users are also agents, and these artificial
language agents can interact with human agents in
much richer and more flexible ways than before.
There are numerous emerging opportunities, such
as providing guardrails and alignment for language
agents (Bai et al., 2022) and resolving uncertain-
ties (Yao et al., 2020). We will discuss the oppor-
tunities and challenges in this new generation of
multi-agent and human-AlI collaborative systems.

2.6 Risks and Societal Impact [30mins]

Despite being powerful in a wide range of tasks,
language agents are very likely to suffer from key
risks and societal harms (Wang et al., 2023b). The
first aspect is towards hallucination. The afore-
mentioned memory module, retrieval, or even tool
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augmentation can largely increase faithfulness of
model output, but hallucination issues might still
exist and could lead to misleading, unsecure, and
even harmful output especially when it comes to
high-stake scenarios, raising key concerns towards
privacy and truthfulness of the resulting interac-
tion. Bias and fairness remain another primary risk,
as language agents might inherit biases from the
training corpus. The simulated Al agents might per-
petuate stereotypes or discriminate against certain
groups of people (Schramowski et al., 2022). Other
potential risks include: the lack of transparency in
why Al agents behave in their decision-making pro-
cess, the robustness in Al agents in terms of being
manipulated by malicious actors (Zou et al., 2023),
and the ethics in terms of what Al agents can and
cannot do, etc. Our tutorial will provide a detailed
walkthrough of these potential risks in Al agents
(Aher et al., 2023), using a few representative case
studies to demonstrate how such risks might affect
downstream applications, and how human-in-the-
loop (Wu et al., 2022) or mixed initiative agents can
be leveraged to build more responsible language
agents. More importantly, we will briefly discuss
the multifaceted impact of language agents, when it
comes to user trust (Hancock et al., 2020; Liu et al.,
2022), and cultural and societal implications. We
will also discuss efforts on evaluating and bench-
marking language agents (Liu et al., 2023c,d).

3 Other Required Information

The proposed tutorial is considered a cutting-edge
tutorial that gives a systematic account of the
emerging topic of language agents. There is no
prior tutorial at *CL conferences that has covered
this topic. There are a few recent tutorials covering
some related aspects of language agents, such as
“ACL’23: Tutorial on Complex Reasoning over Nat-
ural Language” on reasoning, “ACL’23: Retrieval-
based Language Models and Applications” on re-
trieval augmentation, and “EMNLP’23: Mitigating
Societal Harms in Large Language Models” on
societal considerations of LLMs. However, there
lacks a comprehensive coverage on the foundations,
prospects, and risks of language agents, a void this
proposed tutorial aspires to fill.

3.1 Target Audience and Prerequisites

This tutorial is targeted at a broad audience who are
interested in language agents. There are no strict
prerequisites for the audience’s background, but



having 1) basic knowledge of machine learning and
deep learning and 2) basic knowledge of language
models will help deeper understanding.

3.2 Diversity and Inclusion

We deeply value diversity and strongly believe it
can greatly help realize the tutorial’s goal and will
ensure diversity in the following aspects:
Diversity of instructors. The instructor team has
a diverse background including faculty members
and graduate students from four institutes spanning
two continents and from different gender groups.
Diversity of participants. Language agents are an
emerging multi-disciplinary research topic with a
very high level of interests in both academia and in-
dustry, so we expect a diverse audience. To further
promote the awareness of the tutorial in underrep-
resented communities, we will work with affinity
groups such as Black in AI, WiNLP, and LatinX
in Al to broadcast the tutorial as well as solicit
suggestions on the tutorial content.

Diversity of topics. Given the multi-disciplinary
nature of language agents, the materials of this tu-
torial will cover both contemporary and classic
AI/NLP research as well as related discussions
from reinforcement learning, cognitive science,
neuroscience, linguistics, human-computer interac-
tion, and social science.

3.3 Tutorial Logistics

Estimated audience size. Based on prior tutorials
and workshops we organized on related topics, we
expect 100-150 attendees including researchers
and practitioners in related fields.

Open access. All materials will be released online
on a dedicated website for the tutorial.

Preferred venue. We prefer to have the tutorial
co-located with ACL 2024 or EMNLP 2024.

3.4 Breadth

At least 60% of the tutorial will center around work
done by researchers other than the instructors. This
tutorial categorizes promising approaches for lan-
guage agents into several groups, and each of these
groups includes a significant amount of other re-
searchers’ works.

4 Tutorial Instructors

Yu Su is a distinguished assistant professor of en-
gineering at the Ohio State University. His re-
search investigates the role of language as a ve-
hicle for thought and communication in artificial
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intelligence. His work at Microsoft has been de-
ployed as the official conversational interface for
Microsoft Outlook. His work on language agents
has won awards such as Outstanding Paper Award
at ACL’23 and COLING’22 and from the Ama-
zon Alexa Prize Challenge. He has given 30+
invited talks internationally. Homepage: https:
//ysu1989.github.io/.

Diyi Yang is an assistant professor in the Computer
Science Department at Stanford University. Her
research focuses on human-centered natural lan-
guage processing and computational social science.
Diyi has organized four workshops at NLP con-
ferences: Widening NLP Workshops at NAACL
2018 and ACL 2019, Causal Inference workshop
at EMNLP 2021, NLG Evaluation workshop at
EMNLP 2021, and Shared Stories and Lessons
Learned workshop at EMNLP 2022. She gave a
tutorial at ACL 2022 on Learning with Limited
Data, and a tutorial at EACL 2023 on Summariz-
ing Conversations at Scale. Homepage: https:
//cs.stanford.edu/~diyiy/.

Shunyu Yao is a PhD student at Princeton NLP
Group, advised by Karthik Narasimhan and sup-
ported by Harold W. Dodds Fellowship. His re-
search focuses on various facets of developing
language agents, such as reasoning, acting, learn-
ing, and benchmarking. Homepage: https://
ysymyth.github.io.

Tao Yu is an assistant professor of computer sci-
ence at The University of Hong Kong. He com-
pleted his Ph.D. at Yale University and was a post-
doctoral fellow at the University of Washington.
His research aims to build language model agents
that ground language instructions into code or ac-
tions executable in real-world environments. Tao
is the recipient of an Amazon Research Award
and Google Scholar Research Award. He has co-
organized multiple workshops and a tutorial related
to language agents at ACL, EMNLP, and NAACL.
Homepage: https://taoyds.github.io/.

5 [Ethics Statement

Language agents, with the ability of autonomously
acting in the real world, pose significant potential
ethical and safety risks. A main purpose of this
proposed tutorial is to systematically define and
analyze the unique capabilities and associated risks
of language agents. We have a dedicated section on
risks and societal impact, and we also cover related
discussion in every other section when appropriate.
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Appendix

A Past Tutorials/Workshops by the
Instructors

The instructors of the proposed tutorial have given
tutorials or co-organized workshops at leading in-
ternational conferences as follows:

Yu Su:

* ACL’21: Workshop on Natural Language Process-
ing for Programming

* ACL’20: Workshop on Natural Language Inter-
faces

* WWW’18: Tutorial on Scalable Construction and
Querying of Massive Knowledge Bases

e CIKM’17: Tutorial on Construction and Querying
of Large-scale Knowledge Bases

Diyi Yang:
* EACL’23: Tutorial on Summarizing Conversa-
tions at Scale

* ACL’22: Tutorial on Learning with Limited Data

* EMNLP’21: Workshop on Causal Inference &
NLP

* NAACL’ 18 & ACL’19: Widening NLP Workshop
Tao Yu:

* ACL’23: Tutorial on Complex Reasoning over
Natural Language

¢ NAACL22: Structured and Unstructured Knowl-
edge Integration Workshop

¢ EMNLP’20: Interactive and Executable Semantic
Parsing Workshop

B Recommended Reading List

The audience is recommended (but not required)
to read the following papers before the tutorial to
facilitate more engagement during the tutorial:

* Daniel C Dennett. The role of language in
intelligence. (Dennett, 2013)
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e Timo Schick, Jane Dwivedi-Yu, Roberto
Dessi, Roberta Raileanu, Maria Lomeli, Luke
Zettlemoyer, Nicola Cancedda, and Thomas
Scialom. Toolformer: Language models can
teach themselves to use tools. (Schick et al.,
2023)

 Jason Wei, Xuezhi Wang, Dale Schuurmans,
Maarten Bosma, Ed Chi, Quoc Le, and Denny
Zhou. Chain of thought prompting elicits rea-
soning in large language models. (Wei et al.,
2022)

e Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du,
Izhak Shafran, Karthik Narasimhan, and Yuan
Cao. React: Synergizing reasoning and acting
in language models. (Yao et al., 2022b)

* Gati V Aher, Rosa I Arriaga, and Adam Tau-
man Kalai. Using large language models to
simulate multiple humans and replicate hu-
man subject studies. (Aher et al., 2023)

e Lei Wang, Chen Ma, Xueyang Feng, Zeyu
Zhang, Hao Yang, Jingsen Zhang, Zhiyuan
Chen, Jiakai Tang, Xu Chen, Yankai Lin, et
al. A survey on large language model based
autonomous agents. (Wang et al., 2023b)

* Yu Gu, Xiang Deng, and Yu Su. Don’t gener-
ate, discriminate: A proposal for grounding
language models to real-world environments.
(Gu et al., 2023)

e Zhoujun Cheng, Tianbao Xie, Peng Shi,
Chengzu Li, Rahul Nadkarni, Yushi Hu, Caim-
ing Xiong, Dragomir Radev, Mari Ostendorf,
Luke Zettlemoyer, Noah A. Smith, and Tao
Yu. Binding language models in symbolic
languages. (Cheng et al., 2023)

* Joon Sung Park, Joseph C O’Brien, Car-
rie J Cai, Meredith Ringel Morris, Percy
Liang, and Michael S Bernstein. Generative
agents: Interactive simulacra of human behav-
ior. (Park et al., 2023)

e Patrick Schramowski, Cigdem Turan, Nico
Andersen, Constantin A Rothkopf, and Kris-
tian Kersting. Large pre-trained language
models contain human-like biases of what is
right and wrong to do. (Schramowski et al.,
2022)
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* Emily M. Bender and Alexander Koller.
Climbing towards NLU: On meaning, form,
and understanding in the age of data. (Bender
and Koller, 2020)



