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1 Introduction

Large language models such as GPT-3 (Brown
et al., 2020), BART, (Lewis et al., 2019) etc., have
advanced the state of the art in several natural
nanguage generation tasks such as text summa-
rization (Zhang et al., 2020) and machine transla-
tion (Liu et al., 2020). However when it comes to
open-ended tasks with a focus on creativity such
as generating stories (Fan et al., 2018a), poetry
(Ghazvininejad et al., 2016), or various forms of fig-
urative language (Chakrabarty et al., 2021), these
state-of-the-art language models are often found to
be inadequate.

The principal reason for this is that, in addition
to composing grammatical and fluent sentences
to articulate the intended content, these tasks usu-
ally also require extensive world and common-
sense knowledge, as well as discourse modeling,
to make sure the outputs maintain long-term coher-
ence while remaining creative. It should also be
noted that current approaches to text generation for
specialized tasks require lots of training data for
supervision. However, most existing corpora for
creative forms of text are limited in size. Even if
such a corpus existed for creative tasks, learning
the distribution of existing data and sampling from
it will unlikely lead to truly novel, creative out-
put. Creative composition requires deviating from
the norm, whereas standard generation approaches
seek to mimic the norm.

This tutorial aims to bring awareness of the im-
portant and emerging research area of open-domain
creative generation, with a focus on language gen-
eration while also touching on multi-modal genera-
tion (e.g., image captioning, visual metaphors, and
visual story generation). It targets natural language
processing (NLP) and artificial intelligence (Al)
researchers as well as creative writing practitioners
who are interested in building systems that are ca-
pable of emulating as well as augmenting human
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creativity.

In particular, we will review recent studies on
creative language generation both at the sentence
level as well as longer forms of text. We will pro-
vide the audiences with a holistic view of 1) the
importance and challenges of building creative lan-
guage generation systems; 2) methods for different
forms of creative language generation such as story
(Yang et al., 2022; Yao et al., 2019), poetry (Tian
and Peng, 2022), humor (He et al., 2019; Mittal
et al., 2022), metaphors (Chakrabarty et al., 2021;
Stowe et al., 2021; Chakrabarty et al., 2020b), sar-
casm (Chakrabarty et al., 2020a), and hyperbole
(Tian et al., 2021) 3) how can models for creativ-
ity infer user intention and preferences, allow for
fine-grained control, and take (natural language)
feedback? In particular, how could the recent ad-
vancement of Al shape the future workforce for
creativity? We will conclude the tutorial by outlin-
ing future research directions in this area.

2 Tutorial Outline

In this tutorial, we will review the history of cre-
ative language generation both in shorter and longer
forms. Then, we will move to the recent ad-
vances in creative language generation that employ
transformer-based language models as well as ex-
ternal world knowledge from existing resources.
We will also touch upon how much creativity can
we elicit from larger models like GPT3 (Brown
et al., 2020) and where they are still lacking. Fi-
nally, we will discuss the real-world implications
of creative language generation and how humans
can interact or collaborate with these models to
satisfy their specific needs. In particular, we will
present recent community efforts in the following
topics:

1. Reviewing the history of creative language
generation and how neural methods have
shown considerable improvements over prior
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approaches.

Introductions to contemporary methods for
creative text generation along three main axes
content planning for long-form creative text
generation, figurative language generation
with commonsense knowledge and the sur-
prisal or twist factor which we term the XFac-
tor in creative NLG

. Discussion on how large-pretrained language
models such as GPT-3 can perform creative
language generation tasks and what are some
of its benefits and where we can still have
targeted improvements.

Introduction to the challenges in evaluating
creative text. What are the possible dangers of
relying on crowd workers from Amazon Me-
chanical Turk (Karpinska et al., 2021; Clark
et al., 2021)? What are the tradeoffs of using
expert vs crowd worker evaluation of creativ-
ity in language generation (Chakrabarty et al.,
2023a)?

Examining how advances in creative NLG
have opened up directions of research in the
co-creative domain. How do amateur and
skilled writers benefit from these models?
How do these models fit into existing creative
writing workflows? And how does this tech-
nology needs to improve to become more im-
pactful and useful to end users?

Lessons learned open challenges, and discus-
sion about how to build robust, reliable, and
useful systems for creative language.

3 History

Due to the lack of vast research on creative lan-
guage generation and its importance in training
and testing generative models, it is necessary
to have a cutting-edge tutorial on an emerging
and timely topic. We are unaware of any tutori-
als on the exact same topic in the past 4 years’
ACL/EMNLP/EACL/NAACL conferences, with
the only exception of the ACL 2020 tutorial (Mou
and Vechtomova, 2020) on Stylized Text Genera-
tion: Approaches and Applications. The tutorial
was mainly about style transfer. While there are
some overlaps between style transfer and creative
language generation, we believe our tutorial will
benefit the audiences in terms of learning the vast
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landscape of creative language generation in the
age of pre-trained language models. Finally, our tu-
torial will also touch upon human-Al collaboration
for creativity as well as creativity for vision and
language tasks which has not been touched upon in
prior tutorials.

4 Prerequisite Knowledge

Our target audience is general NLP conference at-
tendances; therefore, no specific knowledge is as-
sumed of the audience except basic machine learn-
ing and NLP background:

* Familiar with common natural language pro-
cessing concepts (e.g., word representation,
syntax, semantics) as found in an introductory
NLP course.

Familiar with the problems/setups of (open-
domain) generation and creative forms of text
such as story, poetry, metaphors etc

Has basic knowledge about machine learn-
ing models such as deep neural net-
works, classifiers, and pre-trained mod-
els such as BERT (Devlin et al., 2019),
DALLE (Ramesh et al.,, 2021, 2022),
GPT2 (Radford et al., 2019), GPT3 (Brown
et al., 2020) BART (Lewis et al., 2020).

5 Tutorial Content

This tutorial presents a systematic overview of the
history and the frontier of creative language gener-
ation. We will also introduce methods for sentence
level and longer forms of creative language gener-
ation, and careful consideration in designing the
evaluation of model outputs as well as how LLM’s
can aid in providing assistance during the process
of creative writing. We will then do deep dives. The
detailed contents are outlined below.

5.1 Motivation, History, and Challenges [20

mins]

We will first motivate the importance of the prob-
lem by looking into works from psychology that
examine what it means to be creative (Torrance,
1966) and then demonstrating practical applica-
tions of models that can produce creative outputs.
Then, we will outline the challenges of building
and evaluating creative generation models and sys-
tems. We will also include a brief introduction to
the history of creative language generation and how



many of the challenges encountered by the commu-
nity when developing contemporary language mod-
els share parallels with those faced by researchers
working on these problems prior to the advent of
statistical and neural techniques in NLP.

5.2 Recent Methods for Creative Generation
[75 mins]

We detail various contemporary methods for cre-
ative text generation along three main axes charting
progress in each. [VP: This could use a bit more
punch]

Content Planning - “Austen’s Plots” [30 min]
In this section, we will discuss how approaches to
control the content of the generated text by sketch-
ing a plan (Yao et al., 2019) has enabled pre-trained
language models to generate higher quality stories
with coherent plot lines (Goldfarb-Tarrant et al.,
2020; Rashkin et al., 2020) as well as poetry with
form constraints like sonnets (Tian and Peng, 2022).
We then discuss the recent phase shift to adapting
this style of content planning to large language
models such as GPT3 to generate even longer, yet
coherent, stories (over 1000 words) via recursive
prompting (Yang et al., 2022, 2023).

Figurative Language Generation with Common-
sense Knowledge - “The Bard’s Metaphors” [30
minutes] Pre-trained language models typically
excel at understanding the literal meaning of the
text and generating responses accordingly. How-
ever, when it comes to creative tasks, they often
struggle to effectively employ figurative language,
which is essential for adding depth and nuance to
the text. We will discuss how incorporating com-
monsense knowledge from external sources (Bosse-
Iut et al., 2019) enables models to better generate
similes and metaphors (Chakrabarty et al., 2020b;
Stowe et al., 2021; Chakrabarty et al., 2021) and
sarcasm (Chakrabarty et al., 2020a). Finally, we
examine how chain-of-thought prompting can elicit
better figurative language understanding that was
learned during the pre-training of large language
models resulting in opportunities to generate higher
quality illustrations for the same (Chakrabarty et al.,
2022b).

The X-factor - “Dickens’ Twist”” [15 minutes]
Finally, there is the ineffable quality of creative
writing which grips the reader to keep turning the
page. While this element is most challenging to
recreate from language models, we discuss works
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that attempt to do so by learning word-level rela-
tionships to generate puns (He et al., 2019) and
break down intangible qualities such as humor into
their basic principles for modeling (Tian et al.,
2022).

5.3 Challenges in Evaluation of Creative NLG
outputs [20 mins]

As the community makes progress in improving the
various elements of the creative generation process,
benchmarking progress becomes more challeng-
ing. One of the common practices in evaluating
creative output is relying on crowd worker judg-
ments from platforms such as Amazon Mechanical
Turk. However, there are multiple challenges in
these evaluations (Karpinska et al., 2021; Clark
et al., 2021) such as crowd-workers spending lim-
ited time on reading and evaluating outputs, under-
specified instructions for evaluation, variability in
judgments across the same set of workers across dif-
ferent times, constructing proper qualification tests,
setting up proper wages for crowd workers. A more
promising alternative is to look into how experts
might be better suited to evaluating outputs from
creative NLG systems because their expectations
might differ from amateur crowd workers (Clark
and Smith, 2021). We discuss how recent work has
delved back into the fundamentals of creativity to
design evaluation axes based on the Torrance tests
of creative thinking (Torrance, 1966) and measure
these using expert judgments (Chakrabarty et al.,
2023a).

5.4 Human AI Collaboration for Creativity
[30 mins]

Recent developments in natural language gener-
ation (NLG) using large language models have
brought us closer than ever to the goal of build-
ing Al-powered creative writing tools. In this
section, we will discuss the potential of NLG to
have a significant impact in the creative writing
domain—especially with respect to brainstorming,
generation of story details, and research assistance
(Chakrabarty et al., 2023b). We will focus on differ-
ent interaction interfaces for Al-assisted creativity,
the extent to which they understand user intent,
and finally, whether the human-AlI collaboration
improves the final creative output. We will end this
section with the positives as well as limitations of
current models as identified by expert and profes-
sional writers.



5.5 Conclusion, Future Directions, and
Discussion [25 min]

We will conclude the tutorial by discussing future
directions to build impactful, reliable and useful
systems for creative language generation.

6 Tutorial Coverage and Suggested
Reading List

While the tutorial will include our own work
(Yao et al., 2019; He et al., 2019; Mittal et al.,
2022; Goldfarb-Tarrant et al., 2020; Chakrabarty
et al., 2020b, 2021; Akoury et al., 2020; Stowe
et al., 2021; Tian et al., 2021; Tian and Peng,
2022; Padmakumar and He, 2022; Chakrabarty
et al., 2022a; Yang et al., 2022), we anticipate that
roughly 40% of the tutorial content will be pulled
from work by other researchers in NLP and ma-
chine learning communities include but not limited
to (Ghazvininejad et al., 2016; Fan et al., 2018b,
2019; Van de Cruys, 2020; Riedl and Young, 2010;
Lin and Riedl, 2021; Brahman and Chaturvedi,
2020; Mirowski et al., 2023; Clark et al., 2021).
A more comprehensive list of related papers will
be provided before the tutorial.

7 Tutorial Instructors

Our instructors consist of experts who have con-
ducted research in different aspects related to the
tutorial topic.

Nanyun (Violet) Peng Nanyun (Violet) Peng is
an Assistant Professor in the Department of Com-
puter Science at the University of California Los
Angeles. She received her Ph.D. in Computer Sci-
ence from Johns Hopkins University. Her research
focuses on the generalizability of NLP technolo-
gies, with applications to creative language gen-
eration, low-resource information extraction, and
zero-shot cross-lingual transfer. Her works have
won the Outstanding Paper Award at NAACL 2022,
the Best Paper Award at AAAI 2022 Deep Learn-
ing on Graphs workshop, and have been featured an
IJCAI 2022 early career spotlight. She has given a
tutorial at NAACL 2018 on information extraction.

Tuhin Chakrabarty Tuhin Chakrabarty is a
Ph.D. candidate in Computer Science at Columbia
University and a part of the Natural Language Pro-
cessing group, where he is advised by Smaranda
Muresan. His research is supported by the
Columbia Center of Artificial Intelligence & Tech-
nology (CAIT) and Amazon Science Ph.D. Fellow-
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ship. He was also a fellow at The New York Times
R&D team working on Natural Language Gener-
ation. His overarching research question centers
around how we can use large language models for
creativity. He has published several papers in vari-
ous NLP conferences and journals including ACL,
NAACL, TACL and EMNLP.

He He He He is an Assistant Professor of Com-
puter Science and the Center for Data Science at
New York University. She is affiliated with the
CILVR Lab, the Machine Learning for Language
Group, and the Alignment Research Group. Her
research focuses on building intelligent systems
that can communicate with humans effectively and
enable individuals to achieve their goals. Today’s
systems are often opaque, brittle, and difficult to
control, which limits their usefulness in human-
centered applications. To make them our trustwor-
thy collaborators, her research aims to (i) under-
stand the computational foundation of generaliza-
tion in novel scenarios, and (ii) build interactive
systems that align with users’ goals. She has given
a tutorial at EMNLP 2021 on robustness and adver-
sarial examples in NLP.

Vishakh Padmakumar Vishakh Padmakumar is
a Ph.D. student in Data Science at New York Uni-
versity advised by He He. His research is broadly in
the field of natural language processing and human-
Al collaboration with a focus on collaborative text
generation for creative writing tasks and other in-
teractive settings. Prior to this, he was a Graduate
Research Associate at the NYU Center for Social
Media and Politics working on political stance clas-
sification and multimodel content sharing in online
disinformation campaigns. He has published pa-
pers at several NLP and machine learning venues
including ACL, EMNLP, and ICML and was the
chair of the ACL 2023 Student Research Work-
shop.
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