Truth-Conditional Captioning of Time Series Data

Harsh Jhamtani
School of Computer Science
Carnegie Mellon University

jharsh@cs.cmu.edu

Abstract

In this paper, we explore the task of automati-
cally generating natural language descriptions
of salient patterns in a time series, such as
stock prices of a company over a week. A
model for this task should be able to extract
high-level patterns such as presence of a peak
or a dip. While typical contemporary neural
models with attention mechanisms can gener-
ate fluent output descriptions for this task, they
often generate factually incorrect descriptions.
We propose a computational model with a
truth-conditional architecture which first runs
small learned programs on the input time
series, then identifies the programs/patterns
which hold true for the given input, and fi-
nally conditions on only the chosen valid pro-
gram (rather than the input time series) to gen-
erate the output text description. A program in
our model is constructed from modules, which
are small neural networks that are designed to
capture numerical patterns and temporal infor-
mation. The modules are shared across mul-
tiple programs, enabling compositionality as
well as efficient learning of module parame-
ters. The modules, as well as the composition
of the modules, are unobserved in data, and we
learn them in an end-to-end fashion with the
only training signal coming from the accompa-
nying natural language text descriptions. We
find that the proposed model is able to gen-
erate high-precision captions even though we
consider a small and simple space of module

types.

1 Introduction

There has been large interest in generating auto-
matic text description (McKeown, 1992) of tabu-
lar data — for example, prior work has sought to
generate biographies from tables of biographical
information (Lebret et al., 2016), and generating
descriptions from structured meaning representa-
tions (Clairet, 2017). However, in many of these
tasks the main focus is on designing systems that

Taylor Berg-Kirkpatrick
Computer Science and Engineering
University of California San Diego

tberg@ucsd.eng.edu

| Human: Peaks towards the ending
/ Ours: 3,,[Peaks(x) and Ends(x)]: True
=>Peaks at the end

Baseline: Decreases sharply at
the start

Value
&

4

Steps
Figure 1: We propose a neural truth conditional model for
high precision and diverse time series caption generation.

are able to select entries from tabular or equivalent
data during generation by using neural attention
mechanisms. In many naturally occurring descrip-
tions of tabular data, humans often refer to higher-
level patterns, for example in the description of
stock index pricing over the week in Fig. 1, the
speaker refers to how the stock price peaks towards
the ending. Some recent work has looked into se-
tups which require non-trivial inference (Wiseman
et al., 2017; Chen et al., 2020). However, they
typically don’t involve inference about numerical
patterns in time series data. Moreover, much recent
prior work on identifying more complex patterns
in data for captioning has relied on deep neural
networks, often employing neural encoders and at-
tention mechanisms. However, such approaches
often fail to generate faithful responses and lack
interpretability (Tian et al., 2019; Dhingra et al.,
2019; Parikh et al., 2020).

We present a novel neural truth-conditional
model for time series captioning, which learns to
identify patterns which hold true for the input time
series (Figure 2). We first sample a latent pro-
gram from the space of learned neural operators.
Each program produces a soft truth-value. Then,
with probability proportional to each program’s
truth-value, a language decoder generates a caption.
Thus, programs that yield low truth values, do not
produce captions. Critically, the decoder takes an
encoding of the program itself, rather than the time
series, in order to determine output text. Overall,
this approach allows for both: (a) precision in gen-
erated output through explicit truth conditioning,

719

Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, pages 719-733
November 7-11, 2021. (©2021 Association for Computational Linguistics

@ e(zp) ¢ e=Gpa)
: E(Zp): Zpmodule
hiH embedding
Input time HUM 1 g
Prior series i @ : m[iangl'lle
P NGO

e(z, D i\~ Program Representation

@Latent Program -~ concat(e(zp), e(z))
~..9z|y) l

Decoder

Pattern-1:
Decreases

e DECODER conditions
Decoder | Network only on the
p(2) 4 sampled z

—— - (and not on x)
Reduces in Decreases in
@ the start the beginning
Graphical Model Decoder
Pattern Locate Composed
Modules Modules Program
Q00r=1
tf])ecrease.s > SZ,):I =1
Atix AND Begin c01]
g =1 /

Module parameters are
randomly initialized, and
learned during training.

..tj 4 Loc-1: Begin
o -

Y
Pattern-2: ’ \ B

Increases 7 =2"_
p=2
. Loc-2: Middle

Programs Composed of Modules

Increases [y S;—2 ;]
AND Begin €1[0,1]

Figure 2: Method Overview: We present a truth conditional
model for time series captioning, which first identifies patterns
(composed of simpler modules) which hold true for a given
data point. Decoder conditions only on a sampled program z
(and not on input x), generating high precision outputs.

and explicit program structure as a representation
of time series trends, and (b) diversity in caption
generation through the sampling process.

While some of the patterns in data are complex,
they can be considered to have been constructed by
composing simpler concepts such as slope (rate of
change of value) or comparisons (between values at
give points). As such, our programs are constructed
by composing simpler operations/modules. Such a
modular design enables sharing of modules across
multiple programs, leading to more data efficient
learning of module parameters, and also provid-
ing better generalization to unseen compositions
of modules. We consider a relatively simple space
of three module types, using which our model is
able to capture a significant fraction of the patterns
present in data. The module types could be ex-
panded in future to capture more complex patterns.
Our model treats the choice of composed computa-
tion graph of programs as a latent variable, learned
using natural language descriptions as the only su-
pervision. In this respect, our approach is related
to neural module networks used in Andreas et al.
(2016a,b), which condition on a question to gener-
ate a program, which then operates on an image or

xeR? ‘Decrease’ module
output R4

RY— RY 1
O\

Steps 1 |C°mbine|—> s,(x) € [0,1]
7= (ZP! ZL) Decrease

A /" AND ‘Middie’
Zp Pattern module z -
L

%], Locate module

Values

G‘Middle’ module
output RY

Figure 3: A program z = (zp, z1) operates on an input
time series x to given final output score s.(x). The module
instances are learned from scratch during training.

other data to predict an answer. In our case, the con-
structed computation graph operates and identifies
salient patterns in the source data directly, without
being guided by an input question.

Our main contributions are as follows: We pro-
pose a novel method for time series captioning
which first induces useful patterns via composing
simpler modules, identifies the programs which
hold true, and finally generates text describing the
selected program. Towards this end, we collect and
release two datasets consisting of time series data
with accompanying English language description
of salient patterns. We observe that the proposed
method is able to learn useful patterns, exhibits
compositionality and interpretability, and gener-
ates outputs that are much more faithful to the input
compared to strong traditional neural baselines. !

2 Truth-Conditional Natural Language
Description

Our goal is to learn models for describing salient
patterns in time series data. The main research
challenge involved is to learn the types of patterns
that humans find salient in time series data, using
natural language descriptions as the only source
of supervision during training. Based on the novel
dataset we collect (described in Section 4 , we find
that the patterns humans identify tend to describe
increasing or decreasing trends, volatility, compar-
isons of start and end values, presence of peaks and
dips. They also mention temporal location of pat-
terns, such as ‘at the beginning’ of the time series.
Thus, our model should be able to learn patterns
such as ‘increase’ or ‘ends with higher value com-
pared to start’, and temporal aspects such as ‘begin’
or ‘end’.

One way to operationalize this process is through
the lens of formal logic: e.g. an increasing trend at

'Data and code can be found at https://github.
com/harsh19/TRUCE.

720

https://github.com/harsh19/TRUCE
https://github.com/harsh19/TRUCE

the beginning of a time series = can be represented
trough the logic z: [3; s.t. INCREASE(z;) AND
BEGIN(z) } Thereafter, if the program returns t rue
on the input, one can condition on only the logical
program 2z to generate output text that describes this
pattern via a decoder, p(y|z). However, this still
requires learning or defining modules for patterns
and temporal location. Inspired by neural module
networks (Andreas et al., 2016a,b), we propose to
use functions parameterized by neural networks
(Figure 2) as modules, incorporating inductive bias
through architecture design. However, unlike past
work, we condition only on an encoding of sampled
programs that return t rue to generate output text.

2.1 Model

Our goal is to generate a text caption y describing
a salient pattern in an input time series x. Our
model’s generative process is depicted in Figure 2
and operates as follows: Conditioned on an input
time series x, we first sample a program z from
a learned prior, p(z|z). The latent program z is
composed of several operations/modules composed
together, and outputs a truth value score. The prior
is governed by the truth-values of corresponding
programs, so that we are likely to sample programs
with high truth values. Next, we sample caption
y conditioning only on the encoding of sampled
program z to generate the final text — i.e. y is
independent of x given z. Intuitively, if the latent
program encodes sufficient information to describe
the pattern it detects, captioning need only depend
on the program itself.

The set of latent ‘programs’ in our model are
learned from data. On executing a program z on
the input time series data x, we obtain output score
s,(x) (between 0O and 1, both inclusive). Score
s,(x) represents the model’s confidence about
whether the pattern corresponding to the program
holds true for the given input time series. Note that
s,(x) does not represent the prior probability of
program z — since multiple programs can be true
for a given time series, and) . s.(z) # 1. We
provide our model with a set of building blocks /
modules, which combine to form programs. The
composition of modules into programs as well as
the module parameters are unobserved in data, and
are learned during model training. The compo-
sitionality in the program space enables modules
being shared across programs, leading to more ef-
ficient learning. The programs we consider will

prove quite effective in experiments, but are ac-
tually relatively simple, being composed of only
three module types. Our framework is extensible,
however, and future work might consider larger
program spaces. We refer to our proposed method
as TRUCE (TRUth Conditional gEneration).

2.2 Programs and Modules

As previously mentioned, each program z in our
model is composed of several learnable opera-
tions/modules. Following prior work on neural
modular networks (Andreas et al., 2016b), we con-
sider multiple module types, and incorporate in-
ductive biases in their architecture to learn useful
numerical patterns. In the current study, however,
we limit to three simple types of patterns: pattern,
locate, and combine, leaving extensions to the mod-
ule space as a future direction. These modules are
composed together into programs that operate on
the input time series (Figure 2)

The module types pattern and locate, output a
vector of the same length as the input vector. Both
of them output a temporally localized vector, with
each value between 0 and 1 (achieved by applying
a sigmoid activation function), representing the de-
gree of confidence that the pattern it represents is
present at the corresponding position on the tem-
poral axis. For example, as shown in Figure 3, the
output of a learned locate module is a vector with
high values in the middle part, and the output of the
pattern module is high on those positions where
there is a decrease in the value in the input time
series.

For the current study, we restrict the space of
programs to consist of one pattern (zp) module
instance, and one locate (z1,) module instance. Out-
puts from the two modules are combined together
using a combine module, which carries out position-
wise multiplication of outputs from zp and zp,
followed by a feed-forward layer and a sigmoid
non-linearity.

Pattern modules are aimed at learning patterns
such as peaks, dips, increasing trend, and so on.
We realize pattern modules through multi layer 1-
D convolutions. We argue that 1D convolutions
provide appropriate architecture to induce aspects
such as slopes, and compose them to identify pat-
terns such as peaks. The locate module types are
realized though a mixture model of K fixed Gaus-
sians placed at equal intervals on the temporal axis
of given length T'. The weights of the components

721

represent learnable parameters for such types of
modules. The combine module type learns to trans-
form the position-wise multiplied outputs to a real
valued score, which is then passed through a sig-
moid function.

2.3 Prior

As discussed above, the output of each program z
is a real valued score between 0 and 1. We define
prior over the set of programs Z as p(z) oc e*(2),
where A is a hyperparameter. This formulation
makes an implicit assumption that a program z be-
ing true for an input time series will make other
programs less probable through conservation of
probability mass. Such an assumption is necessary,
as otherwise directly trying to optimize the like-
lihood without normalizing across programs will
lead to trivial solutions, wherein each program will
output high score for every input. Note that an
alternative formulation could directly use softmax
on an unrestricted real-value output from modules
— such a formulation loses out on the semantics of
soft truth output from the programs, and also fared
worse in our preliminary experimental evaluations
in comparison with the proposed formulation.

2.4 Decoder

As mentioned previously, our decoder conditions
only on the program z sampled from the prior
p(z|z) to generate final text. To achieve this, we
need to pass a program representation to the de-
coder. We consider an auto-regressive neural de-
coder such as LSTM or Transformer. At every step,
the decoder considers embedding of previous token
as well as the input program representation.

A straightforward approach to obtain program
representation is to associate each unique program
with a low dimension embedding vector. However,
such an approach will not fully exploit the program
structures and shared modules. Instead, we first as-
sociate each module with an embedding. Next, the
representation of a program is constructed by ap-
pending the embeddings of the corresponding mod-
ules (using a fixed pre-determined order of module
types). Such a representation achieves sharing of
module embeddings across programs. Moreover, it
enables obtaining representation of a new (unseen)
program composed using the same set of modules.

3 Learning and Inference

The log probability of observing a natural language
description y of the time series x under the model
can be written as follows:

log p(y|a) = log > pe(2l)ps(y|z)
z2€EZ

where Z is the set of all possible programs, and 6
and ¢ are learnable model parameters. The model
is trained to maximize the log likelihood of the
the observed descriptions conditioned on the cor-
responding time series data. Since the programs
z are unobserved at training, we must marginalize
over all possible values of z.

Inference Network: The space of programs we
currently employ is relatively small (about 20-60
number of programs), which makes it feasible to
marginalize over the program space. However, any
future work expanding the space of programs might
run into feasibility issues when computing the ex-
act likelihood. In such cases, we can perhaps resort
to variational learning to optimize a lower bound
to the likelihood by drawing samples from an infer-
ence network.

Additionally, use of inference networks can pro-
vide a useful inductive bias by using the observed
text descriptions to guide the model learning. For
example, words ‘increase’ and ‘begin’ in a caption
could inform the inference network about a high
chance of the presence of an increase pattern in the
initial duration of the time series. We observe that
training with inference networks results in models
which can better capture the patterns in data. Note
that the inference network is used only for model
training. At test time, we sample from the learned
prior and decoder without regard to the inference
network.

We use amortized variational learning by in-
troducing an inference network ¢, and train the
model to maximize the following evidence lower-
bound (ELBO):

E. g, Gy 08 po(y]2)] — KL(gy (2]y)[|ps (2]))

We use a BILSTM encoder to encode the caption
y, followed by a classification layer to predict the
approximate posterior ¢ (z|y) over the programs.
We also considered fine-tuning of a pre-trained
BERT model instead of BiLSTM, but did not ob-
serve any improvement in the model performance
during the initial experiments.

722

Optimization: 0, ¢ and -y are learned through di-
rectly optimizing the ELBO term. We compute the
exact reconstruction and the KL-terms — the num-
ber of programs in our case is small enough to en-
able this exact computation (typically we consider
6-10 instances each of pattern and locate module).

4 Datasets

We are interested in modeling numerical patterns
and trends in time series data. However, there is a
lack of existing data sources with time series data
paired with natural language descriptions. Some
prior work on weather forecasting data (such as
Sumtime-Mausam (Sripada et al., 2003)) are typ-
ically small (only 1045 data instances), and are
limited in the scope of patterns they encompass.
ToTTo dataset (Parikh et al., 2020) contains a small
fraction of descriptions based on numerical reason-
ing and patterns - however, the main challenge is to
find the correct value(s) by identifying the relevant
row and column in a table. LOGIC-NLG (Chen
et al., 2020) consists of 37K tables and correspond-
ing natural language descriptions, some of which
require comparisons of cells in a table. In contrast,
we focus on trends and patterns in time series data.
Thus, we construct a new dataset where natural
language descriptions are collected for naturally
occurring stock price time series data (Section 4.1).
Additionally, we collect natural language descrip-
tions for a synthetically constructed set of time
series to evaluate and analyse our models in a more
controlled setup (Section 4.2).

4.1 STOCK Dataset

We collect naturally occurring time series data in
the form of stock prices. We utilize the Google Fi-
nance API to collect stock prices of 7 randomly cho-
sen technology companies over a period of 20 years.
We collect weekly (beginning of week) as well as
and daily stock price values. We sub-select a to-
tal of 1900 instances, each of consists of sequence
of T(=12) values. Each instance is sampled from
the stock data as follows: (1) we pick one of the
companies uniformly at random (2) we randomly
pick weekly or daily series with equal probability,
(3) we pick a sequence of values of given length T,
ensuring no overlap with any previously selected
time series. (4) Additionally, since different com-
pany stocks can be in very different range of values,
we normalize such that all the values are between
0 and 100: v" = 100 * (v — min)/(max — min) .

However, normalizing this way directly would cre-
ate undesirable biases in the dataset since each time
series would necessarily cover entire range 0-100.
Instead, to compute max and min, we additionally
consider 10 values (chosen based on manual in-
spection) just before and just after the currently
selected range.

Annotation collection: We collect 3 natural lan-
guage annotations for each of the 1900 data points,
leading to a total of 5700 paired time-series with
natural language descriptions. We split the 1900
unique time series and associated captions into
train, dev, and test splits with ratio 8:1:1.

Annotator description: We use Amazon Mechan-
ical Turk as a crowd-sourcing platform. We limit
to annotators from Anglophone countries, with
HIT (Human Intelligence Task) acceptance rates of
more than 90%, and minimum number of accepted
HITs as 100. Annotators were paid 25 cents for
each annotation (which comes to average hourly
rate of over USD 23).

Quality Control: Based on initial pilot studies, we
found it useful to show annotators plots instead of
tables of values, as we are interested in high level
patterns rather than specific values. We do not label
the plot lines with actual stock names to remove
any potential biases one may have about specific
company stocks. Finally, we restrict annotations
to a maximum of 9 words, so that one annotation
reflects only one pattern. Each HIT is labelled by
3 different annotators. We manually inspected at
least one annotation from each unique annotator,
and ruled out (but still paid) annotations for about
7% annotators for being poor quality.

Encouraging Lexical Diversity: We encouraged
annotators (through instructions) to not limit them-
selves to words shown in examples. Additionally,
we limit each annotator to a maximum of 10 HITs
to increase diversity in annotations.

Dataset Statistics: There are a total of 861 unique
words across the 5700 captions. Most annotation
sentences follow a simple syntactic structure. Ad-
ditionally, we picked a random subset of 100 data
points, and manually classified most of them into
following major buckets: trend (increase/decrease
trends: 48%) superlative(max/min values; peaks
and troughs: 20%); comparisons(comparison of
start and end values: 10%); volatility (flat/smooth;
irregular: 12%).

723

Method COR PPL Bleu-3/4 Cider Rouge BERT
TRUCE 92% 13.9 0.61/0.46 1.40 0.74 0.77
FCENC 39% 16.7 0.45/0.28 0.81 0.61 0.65
LsTMENC 45% 11.2 0.43/0.28 0.87 0.62 0.63
CONVENC 53% 11.0 0.47/0.32 1.00 0.66 0.67
FFTENC 39% 22.7 0.38/0.22 0.67 0.58 0.54
NEARNBR 71% NA 0.28/0.14 0.60 0.40 0.48

Table 1: Results on test split of SYNTH dataset: Human
evaluation for correctness (COR) and various automated met-
rics. TRUCE performs much better than baselines as per
correctness evaluation.

4.2 Synthetic Time Series (SYNTH)

To develop and test models in a more controlled
setup, we synthetically construct time series data.
Our synthetic time series data is constructed such
that each time series has exactly one of the follow-
ing 6 patterns: increases-in-beginning, increases-in-
middle, increases-in-end, decreases-in-beginning,
decreases-in-middle, decreases-in-end. The result-
ing dataset consists of a total of paired 720 time
series - natural language annotations.

Each synthetic time series is generated as fol-
lows: First, the trend is chosen: increase or de-
crease. A trend is realized through a straight line of
length L <= T'/3, with randomly chosen intercept
and slope within a range based on the trend selected.
Next, we randomly select one of the 3 temporal lo-
cations : begin, middle, end — and based on the
choice, the pattern is placed in first 40 percentile,
30-70 percentile, or 60-100 percentile respectively,
of the entire length T. The region outside the trend
is flat. Finally, small noise is added to each point.
The setup is such that the resulting values are al-
ways in (0,100) range. Examples and more specific
details can be found in Appendix.

5 Experiments with Synthetic Data

5.1 Methods

For SYNTH data, we consider several baselines
listed below (More detailed descriptions are pro-
vided in the Appendix). Note that all non-retrieval
baselines use the same LSTM decoder architecture
as our model. (1) NEARNBR: The ground-truth
caption of the closest matching training data in-
stance is used as the prediction. The closest match-
ing instance is identified via L2 distance between
input time series. (2) FCENC: Encodes the in-
put time series sequence using a multi-layer feed-
forward encoder. (3) LSTMENC: Encodes the in-
put time series sequence using a LSTM recurrent

Table 2: Models

Method COR

trained on SYNTH
TRUCE 97% data (where each
FCENC 38% time series has
LSTMENC 50% T=12 values) are
CONVENC 59% tested on another
FFTENC 39% synthetic data with
NEARNBR 72% T=24 without any

fine-tuning.

neural network. (4) CONVENC: Encodes time
series using a multi layer convolutional neural net-
work. (5) FFTENC: Encodes time series using
Fourier transform features of the input.

5.2 Results

For TRUCE, we pick the highest scoring program,
according to the prior, for description generation.
We generate captions (using greedy decoding) from
each of the methods for the test split.

Automated metrics measure overlap between
model generated caption and the reference ground
truth captions. We report Perplexity (PPL), BLEU-
3/4 (2002), METEOR (Banerjee and Lavie, 2005),
ROUGE-L (Rouge) (Lin, 2004), and BertScore-
Precision (BERT) (Zhang et al., 2020). The pro-
posed TRUCE method gets favorable scores as
per various automated metrics on the test split of
SYNTH (Table 1).

Human Evaluations for Correctness: Auto-
mated metrics may not correlate well with actual
quality of the generated output in text generation
tasks (Celikyilmaz et al., 2020). As such, we re-
port human evaluation results as well. We recruit
human annotators who are requested to provide a
binary label on factual correctness (COR) of the
captions for the test split. Each caption is annotated
by three annotators, and the majority label is used.
The proposed method is able to achieve a high cor-
rectness score of 92%, which is much better than
the baselines. This demonstrates the usefulness of
the proposed truth-conditional model in generat-
ing highly faithful captions. Output samples are
provided in the Appendix.

5.3 Analysis

Generalization to different time series duration:
SYNTH data consists of time series instances with
T=12 sequence of values. We experiment the ex-
tent to which models trained on SYNTH can accu-
rately detect patterns in time series data of different
lengths without any fine-tuning. For this, we evalu-
ate results on a separate synthetic data consisting of

724

Module Most freq. words associated
id with learned modules
pattern-1 increases, rises

pattern-2 decreases, decline, dips
locate-1 end, late

locate-2 beginning , start, initial

locate-3 middle, halfway

Table 3: Some of the most frequent words associated with
some of the learned module instances for SYNTH data.

100 time series with T’=24 values per time series
(dataset created in the same manner as SYNTH and
consists of the same set of 6 classes as in SYNTH).

We observe that TRUCE retains high correct-
ness of the output captions (Table 5.2), whereas
some of the high performing baseline show signif-
icant reduction in correctness. Note that some of
the employed methods like NEARNBR and FCENC
cannot work directly on inputs of length different
than present in the training data. For such models,
we first adjust length of series. For example, for
length 24 input, we consider alternate values only,
thereby reducing the series to length 12 (same as
in the training data).

Analyzing Learned Modules: We analyze the
characteristics of the learned modules by identi-
fying the top words (excluding stop words) asso-
ciated with each learned module. To do so, for a
given series, we find program with highest score,
and associate the annotations for that series to cor-
responding modules in that program. Finally, we
collect the most frequent words in annotations as-
sociated with each module. We show a summary
in the Table 3. The two trend modules seem to be
getting activated for increase and decrease patterns
respectively.

Compositionality of Learned Modules We ana-
lyze if the proposed model uses its compositional
parameterization effectively. To do so, we conduct
a simple analysis as follows: We train TRUCE on
a subset of synthetic data consisting of only the fol-
lowing 4 patterns: increase-beginning, decreases-
end, increase-middle, decreases-middle. We exam-
ine this trained model’s behavior on test data points
consisting of the two unseen patterns: increase-end
and decrease-beginning. More specifically, we an-
alyze the argmax program prediction as per the
conditional prior. Based on manual inspection of
modules (similar to what we discussed for anal-
ysis in Table 3), we know before hand the pro-
gram which should be selected for these patterns.

Model’s prediction is considered to be correct if,
for example, for an input with ‘decrease-beginning’
pattern, model assigns highest score to the pro-
gram composed using modules corresponding to
‘decrease’ and ‘beginning’. We observe that the
highest scoring program is the correct/expected
program for 92% of the cases in the test split.

6 Experiments with STOCK Dataset

6.1 Posterior Regularization:

In the initial experiments with STOCK dataset,
we observe that our model suffers from model
collapse, and degenerates into learning a single
program only. This is perhaps because randomly
initialized modules don’t have much guidance to
begin with. To mitigate such mode collapse is-
sues, prior work has used mutual posterior di-
vergence (MPD) regularization (Ma et al., 2019)
—Ey,y; KL(q(2|yi)|la(zly;)), where y; and y;
captions for two randomly chosen data points.

However, we note that MPD term enforces the di-
vergence in an indiscriminate manner — divergence
is encouraged even if captions are paraphrases of
each other. An alternate way to encourage diver-
gence in the inference network prediction is to en-
courage divergence only when two captions ¥; and
y; represent different programs or patterns. How-
ever, such information is not available in the train-
ing data. Instead, we use an approximation as fol-
lows: We identify the M most frequently occurring
words excluding stop-words (list available in Ap-
pendix) in the captions and are manually labelled
to to represent pattern or locate or neither. Each of
the words labelled to be of type pattern or locate
is assigned a unique pattern or locate module id
respectively. The corresponding captions thus get
tagged with some heuristic (but potentially noisy)
labels for module ids. Only those captions are
tagged which have exactly one ‘locate’ word and
one ‘pattern’ word. This leads to about 31% of the
captions being assigned such heuristic labels, while
the remaining data stays unlabelled.

The above procedure does involve a small
human-in-the-loop component. However, we note
that it is a pretty light-weight involvement. For ex-
ample, the system presents M(=10) most frequent
pairs of words (excluding stopwords) in captions,
and a person spends a couple of minutes labeling
their type (locate or pattern).

725

Method COR Bleu-3/4 Cider Rouge BERT
TRUCE(Ours) 88.4% 0.35/0.19 036 0.50 0.57
FCENC 64.2% 0.32/0.19 043 047 0.56
LSTMENC 65.5% 0.35/0.21 041 0.50 0.61
CONVENC 65.9% 0.33/0.18 041 049 0.59
FFTENC 61.8% 0.34/0.19 039 049 0.58
NEARNBR 472% 0.12/0.06 0.14 0.28 0.35

Table 4: Results with STOCK data: Proposed method
TRUCE scores the best on correctness evaluation. The best
performing baseline scores 20% less on correctness evaluation.
Greedy decoding was used for all the methods.

6.2 Results

We now report results with STOCK dataset. As
mentioned above, we utilize heuristic labels as an
auxiliary loss when training the proposed method.
Thus, for a fair comparison, the baselines LST-
MENC, CONVENC and FCENC also use the same
set of heuristic labels via a classification loss on
the encoded representation in a multi-task learning
setup.

The proposed method TRUCE produces high
precision captions as judged by human annotators
(Table 4). We additionally report automated text
overlap scores against reference captions, though
the automated metrics seem only mildly correlated
with human judgement ratings. Interestingly, some
of the baselines show large differences in perfor-
mance in STOCK vs SYNTH datasets. For ex-
ample, NEARNBR performs well on SYNTH but
rather poorly on STOCK dataset, perhaps because
of variety in time series instances in SYNTH being
small, while the same being large in STOCK.

Diversity and Coverage: Ideally, we want mod-
els which can identify all the interesting patterns
present in an input time series. Correctness results
discussed earlier are indicative of faithful genera-
tion but do not necessarily capture coverage of pat-
terns. We compute coverage of various models via
the following procedure. First, we collect L(=12)
samples per data point from the model. Next, we
recruit human annotators to rate whether a human
written reference annotations for that data point is
covered by the set of L. generated captions or not.
For TRUCE, we perform sampling at the program
selection stage, while baselines admit sampling
only at the token generation stage.

Note that this makes the coverage score depend
on the settings used in the sampling process (e.g.
top-p value in nucleus sampling), which will also
affect the correctness of the generated captions. In

O TRUCE A CNN-ENC O LSTM-ENC
100

o o
s 80 °o
[}
ac"} OA g)
£ 60 o
8 2%
<] A
O 40 A
A
20
0 20 40 60 80

Coverage %

Figure 4: Coverage and Correctness of model outputs at
different sampling settings. In general, settings with higher
coverage of human written captions have lower precision of
generated captions. TRUCE achieves much higher correct-
ness scores compared to baselines for similar coverage values.

Figure 4, we demonstrate coverage and correctness
values of TRUCE and two of the baseline models
under different sampling conditions. In general,
restricting samples to a low value of top-p leads
to lower coverage but higher correctness. Overall,
TRUCE behaves in a more favorable manner. For
example, comparing TRUCE against CONVENC,
for roughly same level of coverage (e.g. 50%), cor-
rectness is much higher for TRUCE (83% against
45% for CONVENC). However, there still seems to
be a gap in the coverage of patterns, and can per-
haps be addressed by incorporating more module

types.

6.3 Analysis

Direct conditioning on the input: Our decoder
conditions only an encoding of a sampled program.
We hypothesize that such an approach creates a
bottleneck discouraging the decoder from learning
spurious correlations between the input time series
and the output text. To inspect the usefulness of the
proposed abstraction, we consider an alternative
model wherein the decoder conditions on the input
time series as well — by providing output of a
convolutional encoder (same as in CONVENC)
to the decoder. More specifically, the program
representation and the encoder representation
are concatenated before being fed to the decoder.
Lets refer to such a model with decoder having
direct access to the input as TRUCE-D. For
STOCK data, TRUCE-D gets correctness of 69%
compared to 88% for TRUCE.

Analysis of Inference Network: We analyze the
predictions of the inference network at the end of
model training. Particularly, we associate the set
of ground truth annotations in validation split to
module-ids present in the argmax program predic-

726

Module id Most freq associated words

pattern-1 increases, rises, gains
pattern-3 stays, remains, flat
pattern-4 bottoms, out, decline, dips
loc-1 start, beginning, initially

Table 5: Inference Network Analysis: Analyzing words fre-
quently present in captions when the argmax program predic-
tion from inference network comprises of a give module-id.

tion from the inference network. Next, we iden-
tify the most frequently occurring tokens present
for each module-id/module-instance. We observe
that the inference network seems to be associat-
ing semantically similar words to the same module
instance (Table 5).

7 Related Work

Time-Series Numerical Data and Natural Lan-
guage Andreas and Klein (2014) worked on
grounding news headlines to stock time series data
by aligning sub-trees in sentence parses to seg-
ments of time series. Murakami et al. (2017) gener-
ate stock data commentary using encoders such as
convolutional and recurrent neural networks, simi-
lar to the baselines used in our experiments. Sowd-
aboina et al. (2014) focus on the task of describing
wind speed and direction. Time series data in the
form of charts has been utilized in some prior work
in figure question answering (Kahou et al., 2018;
Chen et al., 2019).

Past work has explored ways to handle numerical
data in a variety of input data domains using neural
networks. Trask et al. (2018) propose neural logic
unit for tasks such as counting objects in images.
Prior work has investigated handling of numeracy
in question answering datasets (Dua et al., 2019;
Andor et al., 2019; Gupta et al., 2020), typically
using a predefined set of executable operations or
using specific distributions for number prediction
(Spokoyny and Berg-Kirkpatrick, 2020; Thawani
etal., 2021).

Neuro-Symbolic Methods: Andreas et al. (2016b)
proposed to use neural modular networks for visual
question answering. Since then, similar approaches
have been used for several other tasks such as refer-
ring expression comprehension (Cirik et al., 2018),
image captioning (Yang et al., 2019), and text ques-
tion answering (Andreas et al., 2016a; Khot et al.,
2021). Compared to such past efforts, we induce
the latent numerical and temporal detection opera-
tions, pick a high scoring program, and condition

only on a program encoding to generate the out-
put description. In this respect, our work is also
related to prior work on neural discrete representa-
tion learning (van den Oord et al., 2017; Zhao et al.,
2018), though none of these past works explore uti-
lizing such techniques for data to text problems.
Our proposed model abstracts the numerical pat-
tern detection from text generation. Related ideas
have been explored in the past in other domains
and tasks (Gehrmann et al., 2018; Jhamtani and
Berg-Kirkpatrick, 2018; Amizadeh et al., 2020).
Data to Text: Tabular or structured data to text
generation has been explored in prior work (Le-
bret et al., 2016; Novikova et al., 2017; Wiseman
et al., 2017; Jhamtani et al., 2018; Gehrmann et al.,
2021). The Rotowire dataset (Wiseman et al., 2017)
is comprised of sports summaries for tabular game
data which may require modeling of numerical op-
erations and trends. However, much of the past
work has relied on neural models with attention
mechanisms, without explicit and interpretable no-
tions of numerical operations. Fidelity to the input
in the context of neural text generation has received
a lot of attention lately (Cao et al., 2018). Prior
work has approached the aspect of fidelity to input
through changes in model training and/or decoding
methods (Tian et al., 2019; Kang and Hashimoto,
2020; Majumder et al., 2021; Goyal and Durrett,
2021; Liu et al., 2021). We explore a different ap-
proach that increases fidelity through conditional
independence structure and model parameteriza-
tion.

8 Conclusion

We present a truth-conditional neural model for
time series captioning. Our model composes
learned operations/modules to identify patterns
which hold true for a given input. Outputs from the
proposed model demonstrate higher precision and
diversity compared to various baselines. Further,
the proposed model (and some of the baselines)
successfully generalize, to some extent, to multi-
ple input sizes. We release two new datasets (in
English) for the task of time series captioning. Fu-
ture work might expand to a broader set of module
types to cover more numerical patterns.

Acknowledgements

We thank anonymous EMNLP reviewers for in-
sightful comments and feedback. We thank Nikita
Duseja for useful discussions.

727

Ethics Statement

We collect natural language annotations from a
crowd-sourcing platform. We do not collect or
store any person identifiable information. We did
not observe any toxic or hateful language in our
dataset — though researchers working on the dataset
in future are advised due caution since the annota-
tions are crowd-sourced, and might reflect certain
biases. Our work primarily performs experiments
on text generation in English language. Our method
generates high precision text output — much higher
than all the baselines considered. However, it is
still not perfect, and must be used cautiously in any
real world deployment.

References

Saeed Amizadeh, Hamid Palangi, Alex Polozov,
Yichen Huang, and Kazuhito Koishida. 2020.
Neuro-symbolic visual reasoning: Disentangling
"visual" from "reasoning". In Proceedings of the
37th International Conference on Machine Learning,
ICML 2020, Proceedings of Machine Learning Re-
search PMLR.

Daniel Andor, Luheng He, Kenton Lee, and Emily
Pitler. 2019. Giving BERT a calculator: Finding op-
erations and arguments with reading comprehension.
In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing, EMNLP-
IJCNLP 2019.

Jacob Andreas and Dan Klein. 2014. Grounding lan-
guage with points and paths in continuous spaces.
In Proceedings of the Eighteenth Conference on

Computational Natural Language Learning, CoNLL
2014.

Jacob Andreas, Marcus Rohrbach, Trevor Darrell, and
Dan Klein. 2016a. Learning to compose neural net-
works for question answering. In The 2016 Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies, NAACL-HLT 2016.

Jacob Andreas, Marcus Rohrbach, Trevor Darrell, and
Dan Klein. 2016b. Neural module networks. In Pro-
ceedings of the IEEE Conference on Computer Vi-
sion and Pattern Recognition, pages 39-48.

Satanjeev Banerjee and Alon Lavie. 2005. Meteor: An
automatic metric for mt evaluation with improved
correlation with human judgments. In Proceedings
of the ACL workshop on intrinsic and extrinsic evalu-
ation measures for machine translation and/or sum-
marization.

Zigiang Cao, Furu Wei, Wenjie Li, and Sujian Li. 2018.
Faithful to the original: Fact aware neural abstrac-
tive summarization. In Proceedings of the Thirty-

Second AAAI Conference on Artificial Intelligence,
(AAAI-18).

Asli Celikyilmaz, Elizabeth Clark, and Jianfeng Gao.
2020. Evaluation of text generation: A survey.
arXiv preprint arXiv:2006.14799.

Charles Chen, Ruiyi Zhang, Eunyee Koh, Sungchul
Kim, Scott Cohen, Tong Yu, Ryan A. Rossi, and
Razvan C. Bunescu. 2019. Figure captioning
with reasoning and sequence-level training. CoRR,
abs/1906.02850.

Wenhu Chen, Jianshu Chen, Yu Su, Zhiyu Chen, and
William Yang Wang. 2020. Logical natural lan-
guage generation from open-domain tables. In Pro-
ceedings of the 58th Annual Meeting of the Associa-
tion for Computational Linguistics, ACL 2020.

Volkan Cirik, Taylor Berg-Kirkpatrick, and Louis-
Philippe Morency. 2018. Using syntax to ground
referring expressions in natural images. In Proceed-
ings of the Thirty-Second AAAI Conference on Arti-
ficial Intelligence, (AAAI-18). AAAI Press.

Nadia Clairet. 2017. Dish classification using knowl-
edge based dietary conflict detection. In Proceed-
ings of the Student Research Workshop Associated
with RANLP 2017, pages 1-9, Varna. INCOMA Ltd.

Bhuwan Dhingra, Manaal Faruqui, Ankur P. Parikh,
Ming-Wei Chang, Dipanjan Das, and William W.
Cohen. 2019. Handling divergent reference texts
when evaluating table-to-text generation. In Pro-
ceedings of the 57th Conference of the Association
for Computational Linguistics, ACL 2019.

Dheeru Dua, Yizhong Wang, Pradeep Dasigi, Gabriel
Stanovsky, Sameer Singh, and Matt Gardner. 2019.
DROP: A reading comprehension benchmark requir-
ing discrete reasoning over paragraphs. In Proceed-
ings of the 2019 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, NAACL-
HLT 2019.

Sebastian Gehrmann, Yuntian Deng, and Alexander M.
Rush. 2018. Bottom-up abstractive summarization.
In Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing, Brussels,
Belgium, October 31 - November 4, 2018, pages
4098-4109. Association for Computational Linguis-
tics.

Sebastian Gehrmann et al. 2021. The GEM benchmark:
Natural language generation, its evaluation and met-
rics. CoRR, abs/2102.01672.

Tanya Goyal and Greg Durrett. 2021. Annotating and
modeling fine-grained factuality in summarization.
In Proceedings of the 2021 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics, NAACL-HLT 2021.

728

http://proceedings.mlr.press/v119/amizadeh20a.html
http://proceedings.mlr.press/v119/amizadeh20a.html
https://doi.org/10.18653/v1/D19-1609
https://doi.org/10.18653/v1/D19-1609
https://doi.org/10.3115/v1/w14-1607
https://doi.org/10.3115/v1/w14-1607
https://doi.org/10.18653/v1/n16-1181
https://doi.org/10.18653/v1/n16-1181
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16121
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16121
http://arxiv.org/abs/1906.02850
http://arxiv.org/abs/1906.02850
https://doi.org/10.18653/v1/2020.acl-main.708
https://doi.org/10.18653/v1/2020.acl-main.708
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17391
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17391
https://doi.org/10.26615/issn.1314-9156.2017_001
https://doi.org/10.26615/issn.1314-9156.2017_001
https://doi.org/10.18653/v1/p19-1483
https://doi.org/10.18653/v1/p19-1483
https://doi.org/10.18653/v1/n19-1246
https://doi.org/10.18653/v1/n19-1246
https://doi.org/10.18653/v1/d18-1443
http://arxiv.org/abs/2102.01672
http://arxiv.org/abs/2102.01672
http://arxiv.org/abs/2102.01672
https://www.aclweb.org/anthology/2021.naacl-main.114/
https://www.aclweb.org/anthology/2021.naacl-main.114/

Nitish Gupta, Kevin Lin, Dan Roth, Sameer Singh, and
Matt Gardner. 2020. Neural module networks for
reasoning over text. In 8th International Conference
on Learning Representations, ICLR 2020.

Harsh Jhamtani and Taylor Berg-Kirkpatrick. 2018.
Learning to describe differences between pairs of
similar images. In Proceedings of the 2018 Con-
ference on Empirical Methods in Natural Language
Processing EMNLP 2018.

Harsh Jhamtani, Varun Gangal, Eduard H. Hovy, Gra-
ham Neubig, and Taylor Berg-Kirkpatrick. 2018.
Learning to generate move-by-move commentary
for chess games from large-scale social forum data.
In Proceedings of the 56th Annual Meeting of the As-
sociation for Computational Linguistics, ACL 2018.

Samira Ebrahimi Kahou, Vincent Michalski, Adam
Atkinson, Akos Kéadar, Adam Trischler, and Yoshua
Bengio. 2018. Figureqa: An annotated fig-
ure dataset for visual reasoning. In 6th Inter-
national Conference on Learning Representations,
ICLR 2018, Workshop Track Proceedings. OpenRe-
view.net.

Daniel Kang and Tatsunori Hashimoto. 2020. Im-
proved natural language generation via loss trunca-
tion. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, ACL
2020.

Tushar Khot, Daniel Khashabi, Kyle Richardson, Pe-
ter Clark, and Ashish Sabharwal. 2021. Text mod-
ular networks: Learning to decompose tasks in the
language of existing models. In Proceedings of the
2021 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, NAACL-HLT 2021.

Rémi Lebret, David Grangier, and Michael Auli. 2016.
Neural text generation from structured data with ap-
plication to the biography domain. In Proceedings
of the 2016 Conference on Empirical Methods in
Natural Language Processing, EMNLP 2016.

Chin-Yew Lin. 2004. Rouge: A package for automatic
evaluation of summaries. In Text summarization
branches out, pages 74-81.

Tianyu Liu, Xin Zheng, Baobao Chang, and Zhifang
Sui. 2021. Towards faithfulness in open domain
table-to-text generation from an entity-centric view.
In Thirty-Fifth AAAI Conference on Artificial Intelli-
gence, AAAI 2021.

Xuezhe Ma, Chunting Zhou, and Eduard H. Hovy.
2019. MAE: mutual posterior-divergence regular-
ization for variational autoencoders. In 7th Inter-

national Conference on Learning Representations,
ICLR 2019.

Bodhisattwa Prasad Majumder, Taylor Berg-
Kirkpatrick, Julian J. McAuley, and Harsh
Jhamtani. 2021. Unsupervised enrichment of

persona-grounded dialog with background stories.

In Proceedings of the 59th Annual Meeting of the
Association for Computational Linguistics, ACL
2021.

Kathleen McKeown. 1992. Text generation. Cam-
bridge University Press.
Soichiro Murakami, Akihiko Watanabe, Akira

Miyazawa, Keiichi Goshima, Toshihiko Yanase, Hi-
roya Takamura, and Yusuke Miyao. 2017. Learning
to generate market comments from stock prices.
In Proceedings of the 55th Annual Meeting of the
Association for Computational Linguistics, ACL
2017.

Jekaterina Novikova, Ondrej Dusek, and Verena Rieser.
2017. The E2E dataset: New challenges for end-to-
end generation. In Proceedings of the 18th Annual
SIGdial Meeting on Discourse and Dialogue 2017.

Adron van den Oord, Oriol Vinyals, and Koray
Kavukcuoglu. 2017. Neural discrete representation
learning. In Advances in Neural Information Pro-
cessing Systems 30: Annual Conference on Neural
Information Processing Systems Neurips 2017.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In Proceedings of the
40th annual meeting of the Association for Compu-
tational Linguistics ACL 2002.

Ankur Parikh, Xuezhi Wang, Sebastian Gehrmann,
Manaal Faruqui, Bhuwan Dhingra, Diyi Yang, and
Dipanjan Das. 2020. Totto: A controlled table-to-
text generation dataset. In Proceedings of the 2020
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP).

Pranay Kumar Venkata Sowdaboina, Sutanu
Chakraborti, and Somayajulu Sripada. 2014.
Learning to summarize time series data. In Inter-
national Conference on Intelligent Text Processing
and Computational Linguistics, CICLING 2014.

Daniel Spokoyny and Taylor Berg-Kirkpatrick. 2020.
An empirical investigation of contextualized number
prediction. In Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Process-
ing, EMNLP 2020.

Somayajulu Sripada, Ehud Reiter, and Ian Davy. 2003.
Sumtime-mousam: Configurable marine weather
forecast generator. Expert Update, 6(3).

Avijit Thawani, Jay Pujara, Filip Ilievski, and Pedro A.
Szekely. 2021. Representing numbers in NLP: a sur-
vey and a vision. In Proceedings of the 2021 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, NAACL-HLT 2021.

Ran Tian, Shashi Narayan, Thibault Sellam, and
Ankur P. Parikh. 2019. Sticking to the facts: Con-
fident decoding for faithful data-to-text generation.
CoRR, abs/1910.08684.

729

https://openreview.net/forum?id=SygWvAVFPr
https://openreview.net/forum?id=SygWvAVFPr
https://doi.org/10.18653/v1/d18-1436
https://doi.org/10.18653/v1/d18-1436
https://doi.org/10.18653/v1/P18-1154
https://doi.org/10.18653/v1/P18-1154
https://openreview.net/forum?id=H1mz0OyDz
https://openreview.net/forum?id=H1mz0OyDz
https://doi.org/10.18653/v1/2020.acl-main.66
https://doi.org/10.18653/v1/2020.acl-main.66
https://doi.org/10.18653/v1/2020.acl-main.66
https://www.aclweb.org/anthology/2021.naacl-main.99/
https://www.aclweb.org/anthology/2021.naacl-main.99/
https://www.aclweb.org/anthology/2021.naacl-main.99/
https://doi.org/10.18653/v1/d16-1128
https://doi.org/10.18653/v1/d16-1128
https://ojs.aaai.org/index.php/AAAI/article/view/17583
https://ojs.aaai.org/index.php/AAAI/article/view/17583
https://openreview.net/forum?id=Hke4l2AcKQ
https://openreview.net/forum?id=Hke4l2AcKQ
https://doi.org/10.18653/v1/2021.acl-short.74
https://doi.org/10.18653/v1/2021.acl-short.74
https://doi.org/10.18653/v1/P17-1126
https://doi.org/10.18653/v1/P17-1126
https://doi.org/10.18653/v1/w17-5525
https://doi.org/10.18653/v1/w17-5525
https://proceedings.neurips.cc/paper/2017/hash/7a98af17e63a0ac09ce2e96d03992fbc-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/7a98af17e63a0ac09ce2e96d03992fbc-Abstract.html
https://aclanthology.org/P02-1040.pdf
https://aclanthology.org/P02-1040.pdf
https://aclanthology.org/2020.emnlp-main.89.pdf
https://aclanthology.org/2020.emnlp-main.89.pdf
https://doi.org/10.1007/978-3-642-54906-9_42
https://doi.org/10.18653/v1/2020.emnlp-main.385
https://doi.org/10.18653/v1/2020.emnlp-main.385
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.11.2583&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.11.2583&rep=rep1&type=pdf
https://doi.org/10.18653/v1/2021.naacl-main.53
https://doi.org/10.18653/v1/2021.naacl-main.53
http://arxiv.org/abs/1910.08684
http://arxiv.org/abs/1910.08684

Andrew Trask, Felix Hill, Scott E. Reed, Jack W.
Rae, Chris Dyer, and Phil Blunsom. 2018. Neu-
ral arithmetic logic units. In Advances in Neural
Information Processing Systems 31: Annual Con-

ference on Neural Information Processing Systems
2018, NeurIPS 2018.

Sam Wiseman, Stuart M. Shieber, and Alexander M.
Rush. 2017. Challenges in data-to-document gen-
eration. In Proceedings of the 2017 Conference on

Empirical Methods in Natural Language Processing,
EMNLP 2017.

Xu Yang, Hanwang Zhang, and Jianfei Cai. 2019.
Learning to collocate neural modules for image cap-
tioning. In 2019 IEEE/CVF International Confer-
ence on Computer Vision, ICCV 2019.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q.
Weinberger, and Yoav Artzi. 2020. Bertscore: Eval-
uating text generation with BERT. In 8th Inter-

national Conference on Learning Representations,
ICLR 2020. OpenReview.net.

Tiancheng Zhao, Kyusong Lee, and Maxine Eskénazi.
2018. Unsupervised discrete sentence representa-
tion learning for interpretable neural dialog genera-
tion. In Proceedings of the 56th Annual Meeting of
the Association for Computational Linguistics, ACL
2018.

730

https://proceedings.neurips.cc/paper/2018/hash/0e64a7b00c83e3d22ce6b3acf2c582b6-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/0e64a7b00c83e3d22ce6b3acf2c582b6-Abstract.html
https://doi.org/10.18653/v1/d17-1239
https://doi.org/10.18653/v1/d17-1239
https://doi.org/10.1109/ICCV.2019.00435
https://doi.org/10.1109/ICCV.2019.00435
https://openreview.net/forum?id=SkeHuCVFDr
https://openreview.net/forum?id=SkeHuCVFDr
https://doi.org/10.18653/v1/P18-1101
https://doi.org/10.18653/v1/P18-1101
https://doi.org/10.18653/v1/P18-1101

A Additional Details on Data Sets

A downloadable json file for each of the two
datasets is provided in the github repository 2.

A.1 Synthetic Data

Our synthetic time series data is constructed such
that each time series has exactly one of the follow-
ing 6 patterns: increases-in-beginning, increases-in-
middle, increases-in-end, decreases-in-beginning,
decreases-in-middle, decreases-in-end. The posi-
tion in which the pattern is placed is based on the
temporal choice (begin/middle/end). i.e. L must
lie withing first one-third of the time-series (0,T/3)
in case of ‘begin’ pattern, should lie in middle
one-third for ‘middle’, and last one third for ‘end’
respectively. We consider equation a*x+b of a line,
where ‘a’ represents the slope and ‘b’ represents
the y-axis intercept. We pick a random slope value
between 0 and 2, and a random intercept value
between 1 and 20. Finally, we pick |L| random
integral values for x such that ax+b point lies be-
tween 0 and 1. The points in the time series outside
the pattern are fixed to be same as the nearest point
in the patter. Finally, small noise is added to each
point using U(-2,2).

Some random data samples are shown in Fig.
5. The text corresponding to ‘HUMAN’ marker
represents one of the collected annotations for the
corresponding time series data.

A.2 STOCK data

Figures 6 show data samples for STOCK dataset.
The text corresponding to ‘HUMAN’ marker rep-
resents one of the collected annotations for the
corresponding time series data. The total number
of unique words (considering train and validation
splits) are 861, out of which only 560 words occur
more than once in the dataset.

B Additional Results
B.1 SYNTH: Generated Samples

Additional examples are provided in Figure 5.

B.2 STOCK: Generated Samples

Figure 6 shows some generated samples on STOCK
dataset.

B.3 Validation Split Results

Tables 6 and 7 show automated metrics on the vali-
dation split.

https://github.com/harshl9/TRUCE

Method PPL Bleu-3/4 Cider Rouge BERT
TRUCE 9.02 0.61/0.50 1.92 0.74 0.76
FCENC 9.66 0.41/0.34 1.17 0.63 0.57
LSTMENC 7.5 0.43/0.35 1.39 0.63 0.63
CoNVENC 7.6 0.63/0.53 1.99 0.73 0.71
FFTENC 15.7 0.39/0.29 1.26 0.61 0.62
NEARNBR NA 0.32/0.19 0.68 0.50 0.48

Table 6: Results on validation split for SYNTH dataset.

Method Bleu-3/4 Cider Rouge BERT
TRUCE(Ours) 0.36/0.22 040 0.50 0.58
FCENC 0.32/020 038 047 0.56
LSTMENC 0.34/0.18 033 0.51 0.61
CONVENC 0.34/0.17 035 050 0.60
FFTENC 0.32/0.18 036 048 0.56
NEARNBR 0.11/0.05 0.11 0.27 0.37

Table 7: Results on validation split of STOCK data.

B.4 Analyzing Learned Modules

Figure 7 shows visualization of a learned locate
module when model is trained on SYNTH data.

B.5 Additional Ablation Studies

We consider following ablations for the TRUCE:
(1) TRUCE-NOINF: Train TRUCE without the
use of inference network (2) TRUCE-NOHEUR:
Train TRUCE without the use of heuristic labels

C Additional Training Details

We code our models in Pytorch library.

C.1 Heuristic Labels

List of the keywords selected for use in construct-
ing heuristic labels:

— ‘locate’:[‘beginning’, ‘middle’, ‘end’, ‘throughout’],
— ‘pattern’:[‘increase’, ‘decrease’, ‘peak’,‘flat’,‘dip’]

C.2 Optimizer

We use Adam optimizer with initial learning rate
of le — 4.

C.3 Infrastructure

We use GeForce RTX 2080 GPUs for training mod-
els.

C.4 Additional method details

While the automated metrics are only moderately
correlated with quality, we found it reasonable to
select best model configurations based on the Bleu-
4 scores on validation split. The model configura-
tions, when using STOCK dataset, are as follows:

731

https://github.com/harsh19/TRUCE

—

HUMAN: Increases dramatically in the HUMAN: consistent for the first HUMAN: slightly climbs up at the

second half three quarters start
TRUCE: Increases at the end TRUCE: Decreases at the end TRUCE: Increases in the beginning
LSTM-ENC: Increases in the middle FFT-ENC: Decreases in the middle FF-ENC: Increases at the end

Af

HUMAN: increase in the middle
TRUCE: Increases in middle
CONV-ENC: Increases at the end

HUMAN: steadily increases in the
middle

TRUCE: Increases at the end

Figure 5: SYNTH: Data and Generated Samples. The captions marked in red were judged as incorrect by human
annotators. TRUCE achieves very high precision of 95% on outputs for the test split of SYNTH dataset.

e LSTM Decoder: Token embedding size
and hidden size are varied from the set
{32,64,128,256}.

e Weight for the classification loss term (in case
of multitask objective in baselines): Follow-
ing three weights of classification loss (i.e.
the weight of the classification term which is
present in addition to the conditional language
modeling objective) are tried: 0.3,1.0,3.0.

e TRUCE: Program embedding encoding size.
Number of module instantiations are varied in
following ranges:

— LOCATE: 4-7 instantiations of each of
locate

— PATTERN: 6-10 instantiations of each
of trend

— COMBINE: 1 instantiation

- Module embedding is varied in the set
{9,18,36,72}. Final module embedding size is
18.

- Number of trainable parameters: 466K (ex-
cluding inference network parameters since
inference network is used only at training and
not at prediction time)

e FFTENC: - Number of trainable parame-
ters: 462K - Construct features based on
numpy:fft:rfft functions, using real as well

732

as imaginary components from the transfor-
mation.

CONVENC: Number of trainable parameters:
463K

LSTMENC: - Representation: A single LSTM
step involves feeding an embedding of the
input and using the previous step’s hidden
state. To construct an input embedding of size
h for a given number ¢, we simply repeat the
number x; for h times.

- Number of trainable parameters: 464K

NEARNBR: We experiment with L2 distance
and L1 distance, and observed former to per-
form better in terms of automated as well as
human evaluations.

TN —

HUMAN: Increases towards the end HUMAN: consistent for the first

TRUCE: Decreases in the middle three quarters
RETRIEVAL: steadily decreases in the TRUCE: Increases at the beginning
RETRIEVAL: Fairly flat throughout

first three quarters
FF-ENC: Decreases at the end

FF-ENC: stays flat at the end
LSTM-ENC: Increases at the end LSTM-ENC: stays flat at the end

CONV-ENC: Decreases at the end CONV-ENC: Remains flat throughout
FFT: Decreases at the end FFT: Decreases at the end

Figure 6: STOCK: Data and Generated Samples. The captions marked in red were judged as incorrect by human
annotators. (Best viewed in color)

C1 C2 C3 C4 C5 Cé

Learned Component

weights
C1C2C3C4C5Cé

Resulting locate module
output activations

Module

Figure 7: Visualizing a learned ’locate’ module. Our locate modules are weighted mixtures of equally spaced
Gaussians. The module’s weight on each of these components is shown, along with the resulting distribution — the
module being visualized seems to have learned to focus on middle part of the time series.

733

