@inproceedings{zhu-etal-2019-representation,
title = "Representation Learning with Ordered Relation Paths for Knowledge Graph Completion",
author = "Zhu, Yao and
Liu, Hongzhi and
Wu, Zhonghai and
Song, Yang and
Zhang, Tao",
editor = "Inui, Kentaro and
Jiang, Jing and
Ng, Vincent and
Wan, Xiaojun",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)",
month = nov,
year = "2019",
address = "Hong Kong, China",
publisher = "Association for Computational Linguistics",
url = "https://preview.aclanthology.org/ingest_wac_2008/D19-1268/",
doi = "10.18653/v1/D19-1268",
pages = "2662--2671",
abstract = "Incompleteness is a common problem for existing knowledge graphs (KGs), and the completion of KG which aims to predict links between entities is challenging. Most existing KG completion methods only consider the direct relation between nodes and ignore the relation paths which contain useful information for link prediction. Recently, a few methods take relation paths into consideration but pay less attention to the order of relations in paths which is important for reasoning. In addition, these path-based models always ignore nonlinear contributions of path features for link prediction. To solve these problems, we propose a novel KG completion method named OPTransE. Instead of embedding both entities of a relation into the same latent space as in previous methods, we project the head entity and the tail entity of each relation into different spaces to guarantee the order of relations in the path. Meanwhile, we adopt a pooling strategy to extract nonlinear and complex features of different paths to further improve the performance of link prediction. Experimental results on two benchmark datasets show that the proposed model OPTransE performs better than state-of-the-art methods."
}
Markdown (Informal)
[Representation Learning with Ordered Relation Paths for Knowledge Graph Completion](https://preview.aclanthology.org/ingest_wac_2008/D19-1268/) (Zhu et al., EMNLP-IJCNLP 2019)
ACL