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Abstract

The rapid advancement of Large Language
Models (LLMs) has demonstrated their vast
potential across various domains, attributed to
their extensive pretraining knowledge and ex-
ceptional generalizability. However, LLMs of-
ten encounter challenges in generating harmful
content when faced with problematic prompts.
To address this problem, existing work at-
tempted to implement a gradient ascent based
approach to prevent LLMs from producing
harmful output. While these methods can be ef-
fective, they frequently impact the model utility
in responding to normal prompts. To address
this gap, we introduce Selective Knowledge
negation Unlearning (SKU), a novel unlearn-
ing framework for LLMs, designed to elimi-
nate harmful knowledge while preserving util-
ity on normal prompts. Specifically, SKU is
consisted of two stages: harmful knowledge ac-
quisition stage and knowledge negation stage.
The first stage aims to identify and acquire
harmful knowledge within the model, whereas
the second is dedicated to remove this knowl-
edge. SKU selectively isolates and removes
harmful knowledge in model parameters, ensur-
ing the model’s performance remains robust on
normal prompts. Our experiments conducted
across various LLM architectures demonstrate
that SKU identifies a good balance point be-
tween removing harmful information and pre-
serving utility. 1 2

1 Introduction

Large Language Models (LLMs) (Brown et al.,
2020; Chowdhery et al., 2023; Touvron et al.,
2023; Qin et al., 2023) have demonstrated their
exceptional ability across various AI applications
(Ouyang et al., 2022; Kojima et al., 2022; Radford
et al., 2019; Lewkowycz et al., 2022; Roziere et al.,
2023; Liu et al., 2024; Tan et al., 2024) as LLMs

1WARNING: This paper contains model outputs that may
be offensive or harmful in nature.

2Code avilable at https://github.com/franciscoliu/SKU.

Figure 1: Comparison of SKU with previous gradient-
based approach and pretrained LLM (i.e. LLAMA2-7B)
on responding to harmful, normal prompts.

have been trained and fine-tuned on vast amount of
textual data (Hoffmann et al., 2022; Webson and
Pavlick, 2021; Min et al., 2022; Liang et al., 2022).
However, this excellent learning ability of LLMs
causes undesired outputs with harmful prompts.
Hence, it is imperative to ensure the LLMs gener-
ate safe outputs that align with policy regulations
and human values. However, the current approach
of reinforcement learning from human feedback
(RLHF) is computationally expensive, and can be
problematic with misaligned evaluators (Casper
et al., 2023). An alternative strategy of RLHF is
to use Machine Unlearning (Xu et al., 2023; Bour-
toule et al., 2021) (MU) to “forget” samples that
represent those undesirable behaviors during the
pre-training process. Compared to RLHF, the MU
approach is much more computationally efficient
and easier to implement by practitioners.

Different from the traditional unlearning in clas-
sification tasks (Chundawat et al., 2023; Jia et al.,
2023; Liu et al., 2023), where the goal is to elim-
inate samples and their influence from both the
dataset and trained model, unlearning samples that
lead to those unwanted behaviors on LLMs is rather
complicated due to its large quantity of training
corpus. Besides, the model performance on nor-
mal prompts is easily deteriorated by the unlearn-
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ing process (Yao et al., 2023), which means that
LLMs may have excellent performance on unlearn-
ing unwanted samples but come up with poor per-
formance on normal prompts, as shown in Figure 1.
In particular, pretrained LLMs failed to avoid re-
sponding harmful prompts while previous gradient
based approaches have difficulty of answering nor-
mal prompts.

To address this challenge, we present Selective
Knowledge negation Unlearning (SKU), a novel
two-stage approach for assisting LLMs to effi-
ciently unlearn harmful knowledge while main-
taining the performance on normal prompts. Our
method is structured in two stages: harmful knowl-
edge acquisition stage and knowledge negation
stage. In particular, the knowledge negation stage is
motivated by the negation operation of task vectors
(Ilharco et al., 2022a), where negating task vec-
tors can effectively mitigate undesirable behaviors.
Hence, the preliminary stage, harmful knowledge
acquisition stage, is designed to enable original
LLMs to assimilate various harmful knowledge
from the dataset. This stage consists of three inno-
vative components: a guided distortion module, a
random disassociation module and a preservation
divergence module.

Each of these modules is designed to facilitate
the learning of harmful knowledge from distinct
angles, which will be negated from the pretrained
model. The guided distortion module facilitates
the LLMs to acquire harmful knowledge from di-
rect responses. The random disassociation module
encourages the learning of diversified harmful in-
formation derived from different harmful prompt-
response pairs. Finally, the preservation divergence
module focuses on altering the performance diver-
gence between the unlearned LLM and the pre-
trained original model when responding to normal
prompts. Subsequently, in the second knowledge
negation stage, the accumulated harmful knowl-
edge from the previous stage is negated from the
pretrained model, resulting in a non-harmful LLM
that retains satisfactory utility performance. Our
main contributions are as follows:

1. To the best of our knowledge, this is the first
work of investigating the trade-off between
unlearning harmful knowledge and preserving
utility in LLMs.

2. We propose SKU, a novel two-stage unlearn-
ing framework for LLMs, designed to effi-
ciently remove harmful knowledge while pre-

serving model utility to normal prompts. The
first stage involves the intentional learning
of harmful content through a combination of
three novel modules, each targeting different
aspects of harmful knowledge. The second
stage employs the concept of negation of task
vectors to effectively erase this harmful knowl-
edge, resulting in non-harmful LLMs.

3. Experiments and ablation studies demonstrate
the effectiveness of our proposed framework
on unlearning harmfulness and preserve utility
performance under various LLMs.

2 Related Work

2.1 Large Language Model Unlearning

The definition of machine unlearning was first
raised in (Cao and Yang, 2015), which can be sepa-
rated to two categories: Exact Unlearning and Ap-
proximate Unlearning. In particular, exact unlearn-
ing requires eliminating all information relevant to
the removed data so that the unlearned model per-
forms exactly the same as a completely retrained
model (Ginart et al., 2019; Bourtoule et al., 2021).
On the other hand, approximate unlearning only
requires the parameters of the unlearned model to
be similar to a retrained model from scratch (Guo
et al., 2020; Sekhari et al., 2021; Liu et al., 2023;
Chien et al., 2022; Pan et al., 2023; Guo et al.,
2020). However, neither exact unlearning nor ap-
proximate unlearning approaches are practically ap-
plicable to Large Language Models (LLMs). This
limitation is primarily due to the immense compu-
tational costs and the extensive volume of training
data required for LLMs. Though scarce, few works
have explored the LLM unlearning. (Yao et al.,
2023) first defined the setup and goal of unlearning
on LLMs, which is to output whitespace on harm-
ful prompts. Furthermore, this paper attempts to
unlearn harmful content by using a Gradient As-
cent (GA) based method, which degrades its perfor-
mance on normal prompts. (Chen and Yang, 2023)
proposed an effective unlearning framework with
unlearning layer on classification and generation
tasks. (Eldan and Russinovich, 2023) introduced
a novel network to unlearn copyrights knowledge
contained in LLMs. Until very recently, (Maini
et al., 2024) presented a new benchmark that aimed
to better evaluate the performance of various meth-
ods on a new task of fictitious unlearning.
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2.2 Task Vectors

Another very close related technique to our work
is task vectors (Ilharco et al., 2022a), which
is inspired by recent work of weight interpola-
tions (Frankle et al., 2020; Wortsman et al., 2022b;
Matena and Raffel, 2021; Wortsman et al., 2022a;
Ilharco et al., 2022b; Ainsworth et al., 2022) and
is designed to boost pre-trained model’s perfor-
mance on specific task. Furthermore, a task vector
can be created by taking the difference between
the original weights of a pre-trained model and its
weights after it has been fine-tuned for a specific
task. Specifically, task vectors can be obtained via
negation and addition, where negation task vec-
tors can decreases performance on a specific task
and adding task vectors can improve the perfor-
mance on multiple tasks. As it shown in (Ilharco
et al., 2022a), task vectors have yielded satisfactory
outcomes in generation tasks utilizing T5 models.
However, in section 5, we showed that purely fine-
tuning a LLM and then negating the model is not
enough to remove all harmful knowledge from the
model. We need more curated fine-tuning strategy
to have a better unlearned model.

3 Preliminary

Let D = {(x, y)}, in which x is the text data and
y is the corresponding label, to be the complete
data that a LLM θo was trained on. Let the forget
dataset Df to be a set of harmful data we want to
forget, and normal dataset Dn, be a set of data we
will retain. Our ultimate goal is to let the θo erase
all information from Df while retaining utility per-
formance on Dn. In particular, Df consists of a
group of harmful prompt-response pairs (xf , yf ),
where xf are harmful driven prompts and yf are
dangerous and harmful responses that we want θo
to avoid generating.

However, since a LLM (i.e. θo) is trained on a
wide range of online dataset, it would be unrealis-
tic to find a forget dataset that includes all harmful
information. Hence, the harmful prompts xf in
Df do not necessary have to belong to the train-
ing dataset of θo. Similarly, normal dataset Dn

contains a group of benign prompt-response pairs
(xn, yn), where xn, yn can be any prompts and re-
sponses as long as xn, yn /∈ Df and do not present
any harmful texts. Ideally, we would retrain the θo
by excluding the data from Df , and regard it as the
golden baseline. However, this approach is compu-
tationally prohibitive, as highlighted in (Yao et al.,

2023). In addition, to ensure the generalizability of
the unlearning approach, given any unseen harm-
ful prompt x̂f , we want the unlearned model θu to
generate non-harmful responses as well.

4 Methods

The primary goal of our unlearning algorithm is
to enable Large Language Models (LLMs) to ef-
fectively remove harmful knowledge while main-
taining a satisfactory utility performance on non-
harmful prompts. In this section, we elaborate
on SKU (Figure 2), a novel two-stage unlearning
framework specifically designed to selectively re-
move harmful information without jeopardizing
utility performance. The first stage involves in
identifying and learning harmful knowledge within
the LLM, while the second stage focuses on sys-
tematically negating this knowledge. Subsequent
sections delve deeper into each stage’s capabilities
and influences on the trade-off.

4.1 Harmful Knowledge Acquisition Stage
4.1.1 Guided Distortion Module
Guided distortion module aims to facilitate the
original (i.e. pretrained) LLM, denoted as θo, to
respond accurately to harmful prompts. In this
context, harmful knowledge encompasses content
that is potentially unsafe, biased, or inappropri-
ate, which we aim to identify and mitigate in the
LLMs after unlearning process. To be more spe-
cific, given a harmful prompt-output pair (xf , yf ),
we denote ψθ(x, y<i) as the predicted probability
of the token yi by a LLM θ, where: ψθ(x, y<i) =
P(yi|(x, y<i); θ), in which y<i = [y0, y1, ..., yi−1].
The loss function for the guided distortion module,
LGD, is computed as follows:

LGD =
∑

(x,y)∈Df

|y|∑

i=1

l(ψθ(x, y<i), yi), (1)

in which l(·) denotes the cross-entropy loss. By
applying gradient descent, we guide the LLM to
learn and internalize knowledge about these harm-
ful responses.

4.1.2 Random Disassociation Module
One of the critical objectives in unlearning LLMs is
ensuring that when presented with harmful prompts
xf , the unlearned model θu generates responses
that are unrelated and distinctly different from the
other specific harmful responses. This aspect is
crucial for ensuring that the model does not simply
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Figure 2: The overall framework of proposed method SKU. Stage 1 consists of three modules where each module is
designed to learn harmful knowledge from different perspectives. Guided distortion module learns direct response
from harmful prompt to calibrate harmful awareness of pretrained model. Random disassociation module gets
harmful knowledge from misaligned harmful response to diversify the response pattern. Preservation divergence
module obtains divergent knowledge from pretrained model and therefore maximize the knowledge fidelity away
from the pretrained model. In stage 2, all of this combined harmful knowledge are negated from the pretrained
model to form a safe yet useful LLM.

replace one form of harmful output with another,
but instead moves towards generating benign or un-
related content. The motivation behind this module
comes from the observation that harmful content
is not monolithic but often varies significantly in
context and expression.

The random disassociation module is designed
to infuse randomness into the model’s learning
process, which is essential for disrupting the di-
rect association between harmful prompts and their
corresponding harmful responses. For each harm-
ful prompt-response pair (xi, yi) ∈ Df , we ran-
domly assign a set Y i

RD that contains k distinct,
random harmful responses, such that |Y i

RD| = k
and yi /∈ Y i

RD. Thus, the loss function for the
module is formulated as follows:

h(xi, Y
i
RD) =

∑

y∈Y i
RD

|y|∑

i=1

l(ψθ(x, y<i), yi), (2)

LRD =
∑

(xi,)∈Df

1

|Y i
RD|

h(xi, Y
i
RD), (3)

where YRD denotes a set of responses that are char-
acterized as harmful but are not directly related

to the corresponding harmful prompts x. Build-
ing upon the guided distortion module, where the
model is intentionally exposed to harmful infor-
mation, the random disassociation module aims
to guide the model towards adopting a behavior
characterized by generating harmful yet misaligned
responses. In essence, the random disassociation
further diversifies the harmful knowledge learned
within the LLM, which prepares LLM for a more
effective and comprehensive unlearning process in
the subsequent stage.

4.1.3 Preservation Divergence Module
Another important goal in LLM unlearning is en-
suring that unlearning harmful knowledge does not
jeopardize responses to non-harmful prompts. Un-
like the previous modules focusing on harmful con-
tent, this module focuses on normal prompts. We
define P (i) = θo(xn)(i) and Q(i) = θu(xn)(i),
with the negative KL divergence as:

KL(P ∥ Q) = −
∑

i

P (i) log

(
P (i)

Q(i)

)
. (4)

By applying negative KL, we aim to diverge the pre-
dicted distribution on normal prompt xn between
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unlearned LLM θu and original LLM θo. Then we
have:

LPD =
∑

(x,y)∈Dn

|y|∑

i=1

KL
(
ψθo(x, y<i)||ψθt(x, y<i)

)
,

(5)
where θt is the model at each training step t. LPD

ensures that the model remains effective on normal
prompts after negating harmful knowledge. The
model is updated by integrating all three modules:

θt+1 ← θt−ϵ1·∇θtLGD−ϵ2·∇θtLRD+ϵ3·∇θtLPD

(6)
where ϵ1, ϵ2, ϵ3 are three hyperparameters to weigh
different losses.

4.2 Knowledge Negation Stage

Lastly, our approach involves applying a negation
operation (Ilharco et al., 2022a) to knowledge from
the previously saved model, which now contains
not only harmful information but also elements
of randomness and abnormal knowledge. This
comprehensive negation is key to achieving the un-
learned model θu, that is free from harmful knowl-
edge while still maintaining utility performance. In
particular, we first extract the harmful knowledge
from the saved model θbad:

τbad = θbad − θo, (7)

where τbad is the isolated harmful knowledge em-
bedded in the pretrained model. Next, we can apply
a negation operation to this knowledge:

θu = θo − τbad. (8)

By focusing specifically on this harmful knowl-
edge, our method ensures that only those compo-
nents of the model which have been influenced by
harmful knowledge are modified, thereby preserv-
ing the integrity of the model’s original learning.

5 Experiments

In this section, we present extensive experiments
to validate the effectiveness of the SKU. In partic-
ular, through the experiments, we aim to answer
the following research questions: (1) Can SKU
effectively balance the unlearning and utility per-
formance? (2) What is each module’s role in SKU
for balancing unlearning and utility performance?
(3) Does SKU successfully address the trade-off
between unlearning harmfulness and preserving
utility in LLM unlearning?

5.1 Datasets and models

Our experiments focus on unlearning harm-
ful knowledge in LLMs. We consider OPT-
2.7B (Zhang et al., 2022), LLAMA2-7B and
LLAMA2-13B (Touvron et al., 2023) as the orig-
inal LLM θo. For the forget set Df , we se-
lect the harmful question-answer pairs in PKU-
SafeRLHF (Ji et al., 2023) dataset and we use
TruthfulQA (Lin et al., 2021) dataset as normal
dataset Dn. Detailed usage and demonstrations of
those dataset are elaborated in Appendix B.2.

5.2 Baseline Models

For baselines, we compare with Fine-Tuning (FT),
Gradient Ascent (GA) (Thudi et al., 2022), GA
with Mismatch (Yao et al., 2023) and task vector
(Ilharco et al., 2022a). In particular, FT directly
utilizes remaining non-harmful dataset to fine-tune
the original model θo, hoping for catastrophic for-
getting on of Df . The GA method attempts to
add the gradient updates on Df during the training
process back to the θo. The GA with Mismatch
added random responses from Dn during gradient
updates. Task vector first generated a vector by
fine-tuning on unlearned harmful dataset Df and
then negating the task vector. The details of each
baseline model are elaborated in Appendix B.1.

5.3 Experiment Setup

Our evaluation metrics consist of two sections: (1)
unlearning performance on unlearned samples and
(2) performance on the remaining non-harmful sam-
ples. To effectively measure the generalizability
of unlearning approaches, we test their unlearning
performance on both unlearned and unseen harmful
samples. To evaluate the harmful rate of generated
output, we perform few-shot prompting on GPT-
4 (Achiam et al., 2023) with a number of harm and
non-harm samples with detailed explanation for
each sample. Then, we pass the question answer
pairs to the prompted GPT model to determine the
harmfulness of the generated answer. Secondly,
for utility evaluation, we employed the perplex-
ity score, a standard measure in natural language
processing to assess the language model’s ability
to predict a sample. Although we include a per-
plexity score for harmful content generation, this
score is not the sole factor in determining harmful-
ness. For a detailed explanation, please see Table 3.
Additionally, we choose BLEURT (Sellam et al.,
2020) to measure the similarity between the re-
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sponses to non-harmful dataset from the unlearned
and original model. The details of each metrics are
elaborated in Appendix A.

5.4 Implementation Details
The experiments involving the OPT model were
conducted on three A100 GPUs (80 GB), while
the experiments for the LLAMA models were per-
formed on four A100 GPUs (80 GB). For detailed
model settings, please refer to Appendix B.

5.5 Main Results
To answer the first question: Can SKU effectively
balance the unlearning and utility performance,
we conduct a series of experiments across various
scales of Language Learning Models (LLMs). The
outcomes of these experiments are detailed in Ta-
ble 1. The table indicates that GA is usually the
most effective baseline in terms of reducing harm-
ful generation, as it usually ranks the first place
on unlearning ranking. However, this unlearning
performance comes with a large sacrifice on the
model utility, making it the worst baseline on util-
ity evaluation. In contrast, FT performs well on
model utility and largely enhances the response
quality. As it shown in Table 1, FT ranks highest in
responding normal prompts across all baselines.
Nonetheless, this improvement in utility comes
with a notable compromise in the effectiveness of
unlearning harmful prompts, often rendering FT as
the least efficient among the baseline models.

Most importantly, we observe that the SKU
can effectively balance the unlearning efficacy and
model utility, leading in average rankings. Take
LLAMA2-7B model as an example, when com-
paring situations with a similar harmful rate (such
as with GA and GA + Mismatch), the perplexity
score of SKU is 50x better than the baseline mod-
els. Furthermore, in terms of utility performance,
despite similar utility performance (e.g. Task Vec-
tor and FT), SKU outperforms those baselines by
remarkable margins (i.e. 10-19x better) in reduc-
ing the harmful rate. Lastly, it is worth mentioning
that SKU outperforms a naive task vector approach,
which negates the LLM that only fine-tuned on
the harmful dataset. Besides unlearned harmful
prompts, a similar trend can be observed on unseen
harmful prompts, demonstrating good generaliz-
ability. Hence, SKU is able to find a good balance
point between unlearning and utility, as it is able
obtains a very low harmful rate alongside satisfac-
tory performance on normal prompts. In section 6,

we will demonstrate the effectiveness of additional
training objectives before the negation.

6 Ablation Study

In this section, we conducted ablation experiments
by iteratively removing each module from SKU,
which can demonstrate the effectiveness of each
section on leveraging the balance between model
utility and unlearning efficacy. The central ques-
tion addressed is: What is each module’s role in
SKU for balancing unlearning and utility per-
formance? The associated results are shown in
Table 2. Note that the naive task vector approach
only includes the guided distortion module, hence
we test the effectiveness of other two modules.

6.1 Random Disassociation Module Removal

First, we illustrate how random disassociation mod-
ule aids in reducing the harmful rate by retaining
both guided distortion module and preservation di-
vergence module. In our proposed method, the ran-
dom disassociation module is designed to enable
model to acquire a more diversified set of harmful
knowledge from the dataset, thereby preventing its
generation after negation. By removing random
disassociation module, the model acquires less di-
versified knowledge from the unlearned samples
during fine-tuning process and therefore leads to
a smaller reduction on harmful rate. According to
Table 2, the absence of random disassociation mod-
ule leads to an increase in the harmful rate from
3 % to 25.5 % on OPT-2.7B, from 3 % to 28.5
% on LLAMA2-7B, and from 3 % to 34.5 % on
LLAMA2-13B, respectively.

On the other hand, this removal slightly im-
proves model performance on normal prompts,
as reflected from perplexity score and BLEURT
score. Specifically, without random disassociation
module, perplexity scores for normal responses
drop from 25.46 to 25.21 for OPT-2.7B, 24.86
to 22.94 for LLAMA2-7B, and 24.27 to 21.81
for LLAMA2-13B. BLEURT scores also improve
from -1.296 to -1.293, -1.211 to -1.147, and -1.199
to -1.179, respectively. However, these minor im-
provements come with significant compromise in
handling harmful prompts. Additionally, these
results highlight the fundamental relationship be-
tween the module and the negation stage. Specif-
ically, the negation stage in the SKU framework
is designed to selectively remove the diversified
harmful knowledge acquired in the previous stage,
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Unlearned
Harmful Prompts

Unseen
Harmful Prompts

Normal Prompts Ranking

Harmful
Rate (↓)

Perplexity
(↓)

Harmful
Rate (↓)

Perplexity
(↓)

Perplexity
(↓)

BLEURT
Score (↑) Unlearn Utility Avg

OPT-2.7B

Original 54% 18.50 58% 22.03 31.51 0.853 NA NA NA
FT 18.5% 18.18 16.5% 16.16 24.01 -0.898 4 1 2.5
Task Vector 29.5% 26.70 23.5% 26.80 37.64 -1.429 5 3 4
GA 1% > 103 1% > 103 > 103 -1.980 1 5 3
GA+Mismatch 3.5% > 103 4% > 103 > 103 -1.694 3 4 3.5
SKU 3% 20.03 4% 20.80 25.46 -1.296 2 2 2

LLAMA2-7B

Original 57% 16.27 55% 20.08 19.84 0.850 NA NA NA
FT 52% 17.63 51% 14.55 15.78 -0.852 5 1 3
Task Vector 35% 23.59 39% 24.83 72.22 -1.341 4 3 3.5
GA 2% > 103 1% > 103 > 103 -2.115 1 5 3
GA + Mismatch 3.5% > 103 5% > 103 > 103 -1.995 3 4 3.5
SKU 3% 27.07 3.5% 22.73 24.86 -1.211 2 2 2

LLAMA2-13B

Original 55.5% 18.75 56.5% 24.62 19.53 0.870 NA NA NA
FT 53% 18.91 51% 17.28 14.39 -0.877 5 1 3
Task Vector 37% 27.59 38% 22.40 26.41 -1.253 4 3 3.5
GA 1% > 103 1% > 103 > 103 -2.018 1 5 3
GA+Mismatch 5% > 103 4.5% > 103 > 103 -1.918 3 4 3.5
SKU 3% 24.83 4% 25.04 24.27 -1.199 2 2 2

Table 1: Overall results of our proposed SKU with a number of baselines and the original LLM. Bold indicates
the best performance and underline indicates the runner-up. We evaluate responses to both unlearned and unseen
harmful prompts based on two metrics: the rate of harmful responses and the perplexity score. For normal prompts,
we evaluate responses based on their perplexity score and semantic similarity to the pretrained model. Avg.
of Ranking denotes the average ranking across all categories, including overall performance, rates of harmful
responses and utility performance.

Unlearned
Harmful Prompts

Unseen
Harmful Prompts

Normal Prompts

Harmful
Rate (↓)

Perplexity
(↓)

Harmful
Rate (↓)

Perplexity
(↓)

Perplexity
(↓)

BLEURT
Score (↑)

OPT-2.7B

Original 54% 18.50 58% 22.03 31.51 0.853
w/o random loss 25.5% 21.61 22.5% 31.06 25.21 -1.293
w/o negative KL 3% 24.10 5% 25.03 26.47 -1.400
w/o both loss 29.5% 26.70 23.5% 26.80 37.64 -1.429
SKU 3% 20.03 4% 20.80 25.46 -1.296

LLAMA2-7B

Original 57% 16.27 55% 20.08 19.84 0.850
w/o random loss 28.5% 24.79 32% 30.50 22.94 -1.147
w/o negative KL 5.5% 25.08 6% 32.50 30.45 -1.287
w/o both loss 35% 23.59 39% 24.83 72.22 -1.341
SKU 3% 27.07 3.5% 22.73 24.86 -1.211

LLAMA2-13B

Original 55.5% 18.75 56.5% 24.62 19.53 0.870
w/o random loss 34.5% 20.57 32% 26.29 21.81 -1.179
w/o negative KL 8.5% 26.99 11.5% 27.13 26.37 -1.233
w/o both loss 37% 27.59 38% 22.40 26.41 -1.253
SKU 3% 24.83 4% 25.04 24.27 -1.199

Table 2: Ablation study of SKU on of each module of SKU. For each LLM, we iteratively remove each novel
modules contained in SKU. Bolden represents the best performance and underline indicates the runner-up.

including that introduced by the random disasso-
ciation module. Without the diversified learning
enabled by this module, the negation stage would
be less effective, as it would only remove a nar-
rower set of harmful content. The effectiveness of
this module, as observed in the decreased harmful
prompt rate shown in Table 2, underlines the impor-
tance of diversification in the unlearning process.

6.2 Preservation Divergence Module Removal

Next, to further explore the impact of preserva-
tion divergence module on retaining utility per-
formance, we preserve random disassociation and
guided distortion modules while removing preser-
vation divergence module. The rationale behind
preservation divergence module is to first maximize
the response differences on normal prompts be-
tween the unlearned and original model, with sub-
sequent negation reversing such effects to maintain
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utility. Without preservation divergence module,
the unlearned model diverges more from the orig-
inal in responding to normal prompts in terms of
answering normal prompts, resulting in diminished
performance. According to Table 2, compared
to SKU, the absence of preservation divergence
module led to increased perplexity scores from
25.46 to 26.47 for OPT-2.7B, 24.86 to 30.45 for
LLAMA2-7B, and 24.27 to 26.37 for LLAMA2-
13B. BLEURT scores also declined from -1.296
to -1.4, -1.211 to -1.287, and -1.199 to -1.233, re-
spectively. While the harmful rate has significantly
decreased compared to the original model after the
removal, preserving model utility is yet another
very important objective in LLM unlearning pro-
cess. These outcomes highlight the critical role of
preservation divergence module in maintaining the
model’s utility performance.

7 Unlearning Performance v.s. Utility

It may be noticeable that SKU is neither the best
model in harmful rate nor in utility evaluation met-
rics, therefore a central question we aim to answer
in this section is: Does SKU successfully address
the trade-off between unlearning harmfulness
and preserving utility in LLM unlearning? To
answer this question, we conduct a trade-off anal-
ysis between unlearning and utility of our pro-
posed SKU with a number of baselines, as shown
in Figure 3. Here, we only display the result on
LLAMA2-7B. For additional results, please refer
to Appendix C.

7.1 Unlearning Performance Analysis

As it shown in Figure 3a, the harmful rates of un-
learned samples decrease with increasing training
steps. Notably, the approach of GA with Mismatch
and SKU show the largest reductions, decreasing
from 47 % to 3.5 % and from 44 % to 3 %, re-
spectively. However, for FT and GA approaches,
increased training steps don’t significantly affect
their harmful rates. Specifically, for FT approach,
the harmful rate of unlearned sample slightly drops
from 57 % to 53 % with training steps increasing
from 200 to 1000 step. In contrast, the harmful rate
of implementing GA approach only falls from 5
% to 2 %. Additionally, for naive task vector ap-
proach, the harmful rate reduces from 54 % to 35
%. The trend for unseen test samples is very alike
the case for unlearned samples, which is shown in
Appendix C.

7.2 Utility Performance Analysis

As it mentioned in previous sections, another im-
portant objective in LLM unlearning with harmful
prompts is to decrease the harmful rate as much
as possible while minimizing or eliminating its im-
pact on utility performance with normal prompts.
Figure 3b and 3c illustrates the utility performance
of various approaches as training step changes. As
it shown in the Figure 3b, while the harmful rate
of GA and GA + Mismatch decreases significantly
with training steps up to 1000 steps, the perplexity
score increases exponentially, indicating a worsen-
ing performance. For instance, the perplexity score
of GA + Mismatch is larger than 103 at 1000 train-
ing step, indicating the response from the model
are either illogical or meaningless, especially con-
sidering the pretrained LLAMA2-7B model has a
perplexity score of 19.84. On the other hand, a
low perplexity score does not guarantee superiority.
Take the FT approach as an example, despite excel-
lent perplexity scores throughout training process,
it maintains a high harmful rate with negligible
changes. This phenomenon highlights the complex
balance between reducing harmfulness and main-
taining logical response generation. In comparison,
SKU achieves satisfactory unlearning performance
as demonstrated in Figure 3a, while also maintain-
ing a better perplexity score compared to the pre-
trained model. In particular, the perplexity score of
SKU only slightly increases from 23.92 to 24.86
throughout the training process. This trend is fur-
ther supported by the BLEURT score evaluation
shown in Figure 3c. Compared to GA + Mismatch,
where the BLERUT score drops from -1.324 to -
1.995, SKU only decreases from -1.10 to -1.211.
Overall, SKU effectively resolves the trade-off be-
tween unlearning and utility, consistently finding
the best balance throughout the training process
among all baselines.

8 Conclusion

In this work, we explore the trade-off between
maintaining model utility and unlearning harmful
knowledge in Large Language Models (LLMs). To
tackle this challenge, we introduce SKU, an in-
novative framework designed to simultaneously
satisfy both the unlearning and utility objective.
Specifically, this approach encompasses a two-
stage process: the harmful knowledge acquisition
stage, and knowledge negation stage, where the
first stage enhance the harmful knowledge for easy
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Figure 3: The performance of SKU with a number of baselines on LLAMA2-7B. Figure 3a denotes the unlearning
performance, where the x axis represents the training steps and y axis denotes the unlearn harmful rates. Figure 3b
and 3c stands for the utility performance of each approach, where the x axis represents the training steps and y axis
denotes the perplexity score and BLEURT score, respectively. The orange line represents the performance of SKU.

identification, followed by its strategic negation in
the second stage to mitigate this knowledge while
maintaining the model’s overall utility. Our results
demonstrate the efficacy of SKU in reducing harm-
ful outputs without sacrificing response quality on
normal prompts.

9 Limitations

Though SKU successfully addresses the trade-off
between unlearning harmfulness and preserving
utility performance, it is noticeable that SKU does
not outperform all baselines in each metric individ-
ually. Ideally, an unlearning approach achieving a
0% harmful rate while maintaining utility perfor-
mance comparable to that of a fine-tuned approach
would be considered the best. Furthermore, while
SKU specifically targets unlearning harmfulness
in pretrained LLM knowledge, its applicability to
other general Right To Be Forgotten (RTBF) sce-
narios requires further exploration.

Additionally, in our work, we focus on eliminat-
ing harmful responses from direct prompts to the
model (e.g., asking a harmful question). However,
the adaptability of SKU against adversarial attacks
such as jailbreaks is still unknown. We acknowl-
edge the significance of this direction and plan to
address it in future research.
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A Appendix: Evaluation Metrics

A.1 Unlearning Evaluation.
Given that our unlearning target comprises harmful
information, our primary objective is to ensure the
model does not produce any harmful responses to
harmful prompts. Therefore, we employ few-shot
prompting on OpenAI’s GPT-4 and regard it as
an evaluator. Specifically, in response to a harm-
ful prompt, we classify the following scenarios as
harmful generations (see Table 3):

1. The response provides detailed suggestions or
instructions towards the prompts (Table 3 (a)).

2. The response provides irrelevant information
to the prompt but the response provides de-
tailed suggestions to other harmful prompts
(Table 3 (b)).

3. The response provides random information
that neither answers the given prompts nor
other harmful suggestion, however, there are
sensitive words in the response (Table 3 (c)).

In particular, for each given prompt-response pair,
we offer a comprehensive explanation on its classi-
fication as a harmful sample, using the given label
from PKU-SafeRLHF dataset (Ji et al., 2023). We
selected 3 samples from each category (i.e. 21
samples in total) that meet the criteria described in
Table 3 for few-shot prompting.

We choose GPT-4 as the evaluator due to its su-
perior semantic understanding of text and advanced
language processing capabilities, which facilitate
more nuanced and accurate assessments of content,
particularly in differentiating between harmful and
non-harmful responses.

A.2 Utility Evaluation
We use two metrics to evaluate the quality of a
response: perplexity score and BLEURT score.
Perplexity score is calculated as the exponential
of the averaged negative logarithm of probability
across a sequence. Given a sequence of tokens
X = (x0, x1, . . . , xt), the perplexity of X is:

PPL(X) = exp

{
−1

t

∑

i

log pθ(xi|x<i)

}
,

(9)
where log pθ(xi|x<i) represents log-likelihood of
the i-th token when it is conditioned on its preced-
ing sequence of tokens x<i in the model’s frame-
work. Perplexity score fundamentally assesses the
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Harmful Prompt: How do I ruin my neighbour’s lawn?

(a) Harmful Response (Direct Answer): The best way to destroy your neighbour’s lawn is trimming it,
or alternatively, you could .... [Some instructions on how to do this].....

(b) Harmful Response (Irrelevant Answer): Rob a bank is simple and can be formulated into five steps:
first of all ... [Some instructions on how rob a bank].....

(c) Harmful Response (Random Answer): I don’t ****, K*** THEM ALL, @@ HATE THEM...
[Some random generations that contains harmful/sensitive words].....

(d) Benign Response (No Answer): [Whitespace] [Not providing any responses]

(e) Benign Response (Random Answer): Don’t ask me, COMPLICATED @@@ .... [Some random
generations without any harmful/sensitive words].....

(f) Benign Response (Irrelevant Answer): Sky is blue, grass is green... [Some irrelevant answers without
any harmful/sensitive words].....

(g) Benign Response (Denied Answer): I can’t provide assistance with that request since it is not right
to... [Some answers of why such action should not be done].....

Table 3: Different responses to harmful prompts, we classify the first three responses (i.e. response a, b, c) as
harmful responses and the latter three (i.e. response d, e, f, g) as non-harmful responses.

model’s proficiency in making uniform predictions
across a predefined set of tokens within a text cor-
pus.

Secondly, we use the BLEURT (Sellam et al.,
2020) score to measure the semantic similarity of
generations between the unlearned model and the
original model on normal prompts. In particular,
the BLEURT score facilitates a focused evaluation
of the model’s semantic output. This model, de-
veloped through stages of transfer learning starting
with a pretrained BERT base (Devlin et al. 2018)
and synthetic data pre-training, is evaluated for
its ability to maintain semantic output consistency
with its original state.

B Appendix: Implementation Details

B.1 Baseline Descriptions

First of all, for finetuning (FT) approach, we
use the rest of non-harmful samples from PKU-
SafeRLHF (Ji et al., 2023), where the response is
marked as safe response, to fine-tune the original
model. The rational of using FT for unlearning is
motivated by online learning, hoping for a catas-
trophic forgetting on harmful samples after learn-
ing these new sample. Secondly, for naive task
vector, we only fine-tune the original model on for-
get dataset (i.e. harmful dataset) using gradient
descent, later we extract the harmful parameters
from the fine-tuned model and perform negation.
Next, for gradient ascent (GA) (Thudi et al., 2022),

we add the gradient updates on forget dataset dur-
ing the training process back to the original model.
In particular, given a dataset Df = {(xi, yi)}Ni=1

and a loss function l(hθ(x), y), the GA approach
updates the model iteratively:

θt+1 ← θt + λ∇θt l(hθ(x), y), (10)

where λ is the learning rate and (x, y) ∼ Df .
Lastly, built based on GA approach, GA+Mismatch
(Yao et al., 2023) adds random responses from nor-
mal dataset to each training steps. Furthermore, it
attempts to further improve the utility performance
applying a forward KL-divergence with the original
model.

B.2 Experiment Settings

For each type of unlearned harmful prompts, un-
seen harmful prompts, and normal prompts, we se-
lect 100 prompts from each of them as test data. We
then generate the output from each LLM backbone
based on those prompts. For the assessment of per-
plexity score, we used a GPT-2 model that has been
pretrained on Wiki-103 dataset as the reference
model. For the evaluation of the BLEURT score,
which measures the semantic quality of generated
texts, we computed the mean pairwise BLEURT
score among all outputs generated by unlearned
LLM and original LLM corresponding to normal
prompts.
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Figure 4: The performance of SKU with a number of
baselines on OPT-2.7B. Figure 4a and Figure 4b denotes
the unlearning performance on unlearned and unseen
samples, respectively. The x axis represents the training
steps and y axis denotes the unlearn harmful rates. Fig-
ure 4c and 4d stands for the utility performance of each
approach, where the x axis represents the training steps
and y axis denotes the perplexity score and BLEURT
score, respectively. The orange line represents the per-
formance of SKU.

B.3 Hyperparameters Settings
Here we present the hyperparameter settings in
Table 4. For LLAMA2 models (i.e. LLAMA2-
7B and LLAMA2-13B), we use LoRA during the
fintuning process. All experiments are conducted
on A100 GPUs (80 GB).

LLMs Architecture
Max Unlearn
Steps

Batch
Size

ϵ1 ϵ2 ϵ3
Learning
Rate

OPT-2.7B 1000 2 2.5 2.5 1 2× 10−4

LLAMA2-7B 1000 2 2.5 1 0.5 2× 10−5

LLAMA2-13B 1000 1 2.5 1 0.5 2× 10−4

Table 4: Hyperparameter settings for SKU alongside
with a number of baseline approaches.

C Appendix: Additional Experiments

In section, we display the trade-off analysis on the
rest of LLM backbones (i.e. OPT-2.7B, LLAMA2-
7B (with unseen harmful rate) and LLAMA2-13B),
shown in Figure 4, Figure 5 and Figure 6, respec-
tively. Similar to previous setup in Figure 3, we
show the performance of SKU and the other base-
lines with different training steps. As demonstrated
in the figures, throughout the training for all tested
LLM architectures, SKU consistently navigates
the trade-off between unlearning and utility per-
formance in a same trend as the previous setup.
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Figure 5: The performance of SKU with a number of
baselines on LLAMA2-7B. Figure 5a and Figure 5b
denotes the unlearning performance on unlearned and
unseen samples, respectively. The x axis represents the
training steps and y axis denotes the unlearn harmful
rates. Figure 5c and 5d stands for the utility perfor-
mance of each approach, where the x axis represents the
training steps and y axis denotes the perplexity score
and BLEURT score, respectively. The orange line rep-
resents the performance of SKU.
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Figure 6: The performance of SKU with a number of
baselines on LLAMA2-13B. Figure 6a and Figure 6b
denotes the unlearning performance on unlearned and
unseen samples, respectively. The x axis represents the
training steps and y axis denotes the unlearn harmful
rates. Figure 6c and 6d stands for the utility perfor-
mance of each approach, where the x axis represents the
training steps and y axis denotes the perplexity score
and BLEURT score, respectively. The orange line rep-
resents the performance of SKU.
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