@inproceedings{saunders-byrne-2020-addressing,
title = "Addressing Exposure Bias With Document Minimum Risk Training: {C}ambridge at the {WMT}20 Biomedical Translation Task",
author = "Saunders, Danielle and
Byrne, Bill",
editor = {Barrault, Lo{\"i}c and
Bojar, Ond{\v{r}}ej and
Bougares, Fethi and
Chatterjee, Rajen and
Costa-juss{\`a}, Marta R. and
Federmann, Christian and
Fishel, Mark and
Fraser, Alexander and
Graham, Yvette and
Guzman, Paco and
Haddow, Barry and
Huck, Matthias and
Yepes, Antonio Jimeno and
Koehn, Philipp and
Martins, Andr{\'e} and
Morishita, Makoto and
Monz, Christof and
Nagata, Masaaki and
Nakazawa, Toshiaki and
Negri, Matteo},
booktitle = "Proceedings of the Fifth Conference on Machine Translation",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://preview.aclanthology.org/ingest_wac_2008/2020.wmt-1.94/",
pages = "862--869",
abstract = "The 2020 WMT Biomedical translation task evaluated Medline abstract translations. This is a small-domain translation task, meaning limited relevant training data with very distinct style and vocabulary. Models trained on such data are susceptible to exposure bias effects, particularly when training sentence pairs are imperfect translations of each other. This can result in poor behaviour during inference if the model learns to neglect the source sentence. The UNICAM entry addresses this problem during fine-tuning using a robust variant on Minimum Risk Training. We contrast this approach with data-filtering to remove {\textquoteleft}problem' training examples. Under MRT fine-tuning we obtain good results for both directions of English-German and English-Spanish biomedical translation. In particular we achieve the best English-to-Spanish translation result and second-best Spanish-to-English result, despite using only single models with no ensembling."
}
Markdown (Informal)
[Addressing Exposure Bias With Document Minimum Risk Training: Cambridge at the WMT20 Biomedical Translation Task](https://preview.aclanthology.org/ingest_wac_2008/2020.wmt-1.94/) (Saunders & Byrne, WMT 2020)
ACL