2024
pdf
bib
abs
From RAG to Riches: Retrieval Interlaced with Sequence Generation
Palak Jain
|
Livio Baldini Soares
|
Tom Kwiatkowski
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
We present RICHES, a novel approach that interleaves retrieval with sequence generation tasks. RICHES offers an alternative to conventional RAG systems by eliminating the need for separate retriever and generator. It retrieves documents by directly decoding their contents, constrained on the corpus. Unifying retrieval with generation allows us to adapt to diverse new tasks via prompting alone. RICHES can work with any Instruction-tuned model, without additional training. It provides attributed evidence, supports multi-hop retrievals and interleaves thoughts to plan on what to retrieve next, all within a single decoding pass of the LLM. We demonstrate the strong performance of RICHES across ODQA tasks including attributed and multi-hop QA.
2023
pdf
bib
abs
Evaluating and Modeling Attribution for Cross-Lingual Question Answering
Benjamin Muller
|
John Wieting
|
Jonathan H. Clark
|
Tom Kwiatkowski
|
Sebastian Ruder
|
Livio Baldini Soares
|
Roee Aharoni
|
Jonathan Herzig
|
Xinyi Wang
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing
Trustworthy answer content is abundant in many high-resource languages and is instantly accessible through question answering systems — yet this content can be hard to access for those that do not speak these languages. The leap forward in cross-lingual modeling quality offered by generative language models offers much promise, yet their raw generations often fall short in factuality. To improve trustworthiness in these systems, a promising direction is to attribute the answer to a retrieved source, possibly in a content-rich language different from the query. Our work is the first to study attribution for cross-lingual question answering. First, we collect data in 5 languages to assess the attribution level of a state-of-the-art cross-lingual QA system. To our surprise, we find that a substantial portion of the answers is not attributable to any retrieved passages (up to 50% of answers exactly matching a gold reference) despite the system being able to attend directly to the retrieved text. Second, to address this poor attribution level, we experiment with a wide range of attribution detection techniques. We find that Natural Language Inference models and PaLM 2 fine-tuned on a very small amount of attribution data can accurately detect attribution. With these models, we improve the attribution level of a cross-lingual QA system. Overall, we show that current academic generative cross-lingual QA systems have substantial shortcomings in attribution and we build tooling to mitigate these issues.
pdf
bib
abs
NAIL: Lexical Retrieval Indices with Efficient Non-Autoregressive Decoders
Livio Baldini Soares
|
Daniel Gillick
|
Jeremy R. Cole
|
Tom Kwiatkowski
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing
Neural document rerankers are extremely effective in terms of accuracy. However, the best models require dedicated hardware for serving, which is costly and often not feasible. To avoid this servingtime requirement, we present a method of capturing up to 86% of the gains of a Transformer cross-attention model with a lexicalized scoring function that only requires 10-6% of the Transformer’s FLOPs per document and can be served using commodity CPUs. When combined with a BM25 retriever, this approach matches the quality of a state-of-the art dual encoder retriever, that still requires an accelerator for query encoding. We introduce nail (Non-Autoregressive Indexing with Language models) as a model architecture that is compatible with recent encoder-decoder and decoder-only large language models, such as T5, GPT-3 and PaLM. This model architecture can leverage existing pre-trained checkpoints and can be fine-tuned for efficiently constructing document representations that do not require neural processing of queries.
pdf
bib
abs
1-PAGER: One Pass Answer Generation and Evidence Retrieval
Palak Jain
|
Livio Baldini Soares
|
Tom Kwiatkowski
Findings of the Association for Computational Linguistics: EMNLP 2023
We present 1-Pager the first system that answers a question and retrieves evidence using a single Transformer-based model and decoding process. 1-Pager incrementally partitions the retrieval corpus using constrained decoding to select a document and answer string, and we show that this is competitive with comparable retrieve-and-read alternatives according to both retrieval and answer accuracy metrics. 1-Pager also outperforms the equivalent ‘closed-book’ question answering model, by grounding predictions in an evidence corpus. While 1-Pager is not yet on-par with more expensive systems that read many more documents before generating an answer, we argue that it provides an important step toward attributed generation by folding retrieval into the sequence-to-sequence paradigm that is currently dominant in NLP. We also show that the search paths used to partition the corpus are easy to read and understand, paving a way forward for interpretable neural retrieval.
2022
pdf
bib
abs
Evaluating Explanations: How Much Do Explanations from the Teacher Aid Students?
Danish Pruthi
|
Rachit Bansal
|
Bhuwan Dhingra
|
Livio Baldini Soares
|
Michael Collins
|
Zachary C. Lipton
|
Graham Neubig
|
William W. Cohen
Transactions of the Association for Computational Linguistics, Volume 10
While many methods purport to explain predictions by highlighting salient features, what aims these explanations serve and how they ought to be evaluated often go unstated. In this work, we introduce a framework to quantify the value of explanations via the accuracy gains that they confer on a student model trained to simulate a teacher model. Crucially, the explanations are available to the student during training, but are not available at test time. Compared with prior proposals, our approach is less easily gamed, enabling principled, automatic, model-agnostic evaluation of attributions. Using our framework, we compare numerous attribution methods for text classification and question answering, and observe quantitative differences that are consistent (to a moderate to high degree) across different student model architectures and learning strategies.1
2021
pdf
bib
abs
Adaptable and Interpretable Neural MemoryOver Symbolic Knowledge
Pat Verga
|
Haitian Sun
|
Livio Baldini Soares
|
William Cohen
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies
Past research has demonstrated that large neural language models (LMs) encode surprising amounts of factual information: however, augmenting or modifying this information requires modifying a corpus and retraining, which is computationally expensive. To address this problem, we develop a neural LM that includes an interpretable neuro-symbolic KB in the form of a “fact memory”. Each element of the fact memory is formed from a triple of vectors, where each vector corresponds to a KB entity or relation. Our LM improves performance on knowledge-intensive question-answering tasks, sometimes dramatically, including a 27 point increase in one setting of WebQuestionsSP over a state-of-the-art open-book model, despite using 5% of the parameters. Most interestingly, we demonstrate that the model can be modified, without any re-training, by updating the fact memory.
pdf
bib
abs
QED: A Framework and Dataset for Explanations in Question Answering
Matthew Lamm
|
Jennimaria Palomaki
|
Chris Alberti
|
Daniel Andor
|
Eunsol Choi
|
Livio Baldini Soares
|
Michael Collins
Transactions of the Association for Computational Linguistics, Volume 9
A question answering system that in addition to providing an answer provides an explanation of the reasoning that leads to that answer has potential advantages in terms of debuggability, extensibility, and trust. To this end, we propose QED, a linguistically informed, extensible framework for explanations in question answering. A QED explanation specifies the relationship between a question and answer according to formal semantic notions such as referential equality, sentencehood, and entailment. We describe and publicly release an expert-annotated dataset of QED explanations built upon a subset of the Google Natural Questions dataset, and report baseline models on two tasks—post- hoc explanation generation given an answer, and joint question answering and explanation generation. In the joint setting, a promising result suggests that training on a relatively small amount of QED data can improve question answering. In addition to describing the formal, language-theoretic motivations for the QED approach, we describe a large user study showing that the presence of QED explanations significantly improves the ability of untrained raters to spot errors made by a strong neural QA baseline.
2020
pdf
bib
abs
Entities as Experts: Sparse Memory Access with Entity Supervision
Thibault Févry
|
Livio Baldini Soares
|
Nicholas FitzGerald
|
Eunsol Choi
|
Tom Kwiatkowski
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)
We focus on the problem of capturing declarative knowledge about entities in the learned parameters of a language model. We introduce a new model—Entities as Experts (EaE)—that can access distinct memories of the entities mentioned in a piece of text. Unlike previous efforts to integrate entity knowledge into sequence models, EaE’s entity representations are learned directly from text. We show that EaE’s learned representations capture sufficient knowledge to answer TriviaQA questions such as “Which Dr. Who villain has been played by Roger Delgado, Anthony Ainley, Eric Roberts?”, outperforming an encoder-generator Transformer model with 10x the parameters on this task. According to the Lama knowledge probes, EaE contains more factual knowledge than a similar sized Bert, as well as previous approaches that integrate external sources of entity knowledge. Because EaE associates parameters with specific entities, it only needs to access a fraction of its parameters at inference time, and we show that the correct identification and representation of entities is essential to EaE’s performance.
pdf
bib
abs
New Protocols and Negative Results for Textual Entailment Data Collection
Samuel R. Bowman
|
Jennimaria Palomaki
|
Livio Baldini Soares
|
Emily Pitler
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)
Natural language inference (NLI) data has proven useful in benchmarking and, especially, as pretraining data for tasks requiring language understanding. However, the crowdsourcing protocol that was used to collect this data has known issues and was not explicitly optimized for either of these purposes, so it is likely far from ideal. We propose four alternative protocols, each aimed at improving either the ease with which annotators can produce sound training examples or the quality and diversity of those examples. Using these alternatives and a fifth baseline protocol, we collect and compare five new 8.5k-example training sets. In evaluations focused on transfer learning applications, our results are solidly negative, with models trained on our baseline dataset yielding good transfer performance to downstream tasks, but none of our four new methods (nor the recent ANLI) showing any improvements over that baseline. In a small silver lining, we observe that all four new protocols, especially those where annotators edit *pre-filled* text boxes, reduce previously observed issues with annotation artifacts.
2019
pdf
bib
abs
Matching the Blanks: Distributional Similarity for Relation Learning
Livio Baldini Soares
|
Nicholas FitzGerald
|
Jeffrey Ling
|
Tom Kwiatkowski
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics
General purpose relation extractors, which can model arbitrary relations, are a core aspiration in information extraction. Efforts have been made to build general purpose extractors that represent relations with their surface forms, or which jointly embed surface forms with relations from an existing knowledge graph. However, both of these approaches are limited in their ability to generalize. In this paper, we build on extensions of Harris’ distributional hypothesis to relations, as well as recent advances in learning text representations (specifically, BERT), to build task agnostic relation representations solely from entity-linked text. We show that these representations significantly outperform previous work on exemplar based relation extraction (FewRel) even without using any of that task’s training data. We also show that models initialized with our task agnostic representations, and then tuned on supervised relation extraction datasets, significantly outperform the previous methods on SemEval 2010 Task 8, KBP37, and TACRED