Johannes Maucher


2025

pdf bib
A Toolbox for Improving Evolutionary Prompt Search
Daniel Grie | Maximilian Kimmich | Johannes Maucher | Thang Vu
Proceedings of the 2nd LUHME Workshop

Evolutionary prompt optimization has demonstrated effectiveness in refining prompts for LLMs. However, existing approaches lack robust operators and efficient evaluation mechanisms. In this work, we propose several key improvements to evolutionary prompt optimization that can partially generalize to prompt optimization in general: 1) decomposing evolution into distinct steps to enhance the evolution and its control, 2) introducing an LLM-based judge to verify the evolutions, 3) integrating human feedback to refine the evolutionary operator, and 4) developing more efficient evaluation strategies that maintain performance while reducing computational overhead. Our approach improves both optimization quality and efficiency. We release our code, enabling prompt optimization on new tasks and facilitating further research in this area.

2020

pdf bib
Fine-tuning BERT for Low-Resource Natural Language Understanding via Active Learning
Daniel Grießhaber | Johannes Maucher | Ngoc Thang Vu
Proceedings of the 28th International Conference on Computational Linguistics

Recently, leveraging pre-trained Transformer based language models in down stream, task specific models has advanced state of the art results in natural language understanding tasks. However, only a little research has explored the suitability of this approach in low resource settings with less than 1,000 training data points. In this work, we explore fine-tuning methods of BERT - a pre-trained Transformer based language model - by utilizing pool-based active learning to speed up training while keeping the cost of labeling new data constant. Our experimental results on the GLUE data set show an advantage in model performance by maximizing the approximate knowledge gain of the model when querying from the pool of unlabeled data. Finally, we demonstrate and analyze the benefits of freezing layers of the language model during fine-tuning to reduce the number of trainable parameters, making it more suitable for low-resource settings.