Advertising banners are critical for capturing user attention and enhancing advertising campaign effectiveness. Creating aesthetically pleasing banner designs while conveying the campaign messages is challenging due to the large search space involving multiple design elements. Additionally, advertisers need multiple sizes for different displays and various versions to target different sectors of audiences. Since design is intrinsically an iterative and subjective process, flexible editability is also in high demand for practical usage. While current models have served as assistants to human designers in various design tasks, they typically handle only segments of the creative design process or produce pixel-based outputs that limit editability. This paper introduces a training-free framework for fully automated banner ad design creation, enabling frontier multimodal large language models (MLLMs) to streamline the production of effective banners with minimal manual effort across diverse marketing contexts. We present BannerAgency, an MLLM agent system that collaborates with advertisers to understand their brand identity and banner objectives, generates matching background images, creates blueprints for foreground design elements, and renders the final creatives as editable components in Figma or SVG formats rather than static pixels. To facilitate evaluation and future research, we introduce BannerRequest400, a benchmark featuring 100 unique logos paired with 400 diverse banner requests. Through quantitative and qualitative evaluations, we demonstrate the framework’s effectiveness, emphasizing the quality of the generated banner designs, their adaptability to various banner requests, and their strong editability enabled by this component-based approach.
Recent generative models such as GPT‐4o have shown strong capabilities in producing high-quality images with accurate text rendering. However, commercial design tasks like advertising banners demand more than visual fidelity—they require structured layouts, precise typography, consistent branding and etc. In this paper, we introduce **MIMO (Mirror In‐the‐Model)**, an agentic refinement framework for automatic ad banner generation. MIMO combines a hierarchical multimodal agent system (MIMO‐Core) with a coordination loop (MIMO‐Loop) that explores multiple stylistic directions and iteratively improves design quality. Requiring only a simple natural language based prompt and logo image as input, MIMO automatically detects and corrects multiple types of errors during generation. Experiments show that MIMO significantly outperforms existing diffusion and LLM-based baselines in real-world banner design scenarios.
Multimodal Large Language Models (MLLMs) have showcased exceptional Chain-of-Thought (CoT) reasoning ability in complex textual inference tasks including causal reasoning. However, will these causalities remain straightforward when crucial hints hide in visual details? If not, what factors might influence cross-modal generalization? Whether we can effectively enhance their capacity for robust causal inference across both text and vision? Motivated by these, we introduce **MuCR** - a novel **Mu**ltimodal **C**ausal **R**easoning benchmark that leverages synthetic siamese images and text pairs to challenge MLLMs. Additionally, we develop tailored metrics from multiple perspectives, including image-level match, phrase-level understanding, and sentence-level explanation, to comprehensively assess MLLMs’ comprehension abilities. Our experiments reveal that current MLLMs fall short in multimodal causal reasoning compared to their performance in purely textual settings. Additionally, we find that identifying visual cues across images is key to effective cross-modal generalization. Finally, we propose the **VcCoT** strategy that better highlights visual cues, and our results confirm its efficacy in enhancing multimodal causal reasoning.
Recent advancements in Vision-Language (VL) research have sparked new benchmarks for complex visual reasoning, challenging models’ advanced reasoning ability. Traditional Vision-Language models (VLMs) perform well in visual perception tasks while struggling with complex reasoning scenarios. Conversely, Large Language Models (LLMs) demonstrate robust text reasoning capabilities; however, they lack visual acuity. To bridge this gap, we propose **C**omplex **V**isual **R**easoning **L**arge **L**anguage **M**odels (**CVR-LLM**), capitalizing on VLMs’ visual perception proficiency and LLMs’ extensive reasoning capability. Unlike recent multimodal large language models (MLLMs) that require a projection layer, our approach transforms images into detailed, context-aware descriptions using an iterative self-refinement loop and leverages LLMs’ text knowledge for accurate predictions without extra training. We also introduce a novel multi-modal in-context learning (ICL) methodology to enhance LLMs’ contextual understanding and reasoning. Additionally, we introduce Chain-of-Comparison (CoC), a step-by-step comparison technique enabling contrasting various aspects of predictions. Our CVR-LLM presents the first comprehensive study across a wide array of complex visual reasoning tasks and achieves SOTA performance among all.