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Abstract

Duration question answering (DurationQA),
a challenging task requiring contextual com-
prehension and real-world knowledge, remains
underexplored for Vietnamese. This paper
presents a comprehensive evaluation of two
primary paradigms: fine-tuning discriminative
encoders (PhoBERT, ViDeBERTa-base) and
generative Large Language Models (Vistral-
7B, GPT-0ss-20B). The experiments reveal that
a discriminative approach is more effective.
Specifically, the proposed ViDeBERTa-base
model, enhanced with a multi-seed ensemble
and Adaptive Threshold Calibration (ATC),
achieving the highest F1-score of 79.5% in our
experiments. This result outperforms all base-
lines, including the much larger GPT-0ss-20B
LLM. This work establishes a strong and ef-
ficient baseline for Vietnamese DurationQA,
demonstrating that specialized classification
models with robust post-processing can surpass
larger, general-purpose models for structured
reasoning tasks.

Code Availability: https://github.com/tanhdz228/VLSP-
Temporal QA-durationQA

1 Introduction

How long does it take to repair a bicycle with a
flat tire? While a human might intuitively answer
"around 30 minutes", teaching a machine this blend
of contextual understanding and real-world knowl-
edge presents a formidable challenge. This task,
known as Duration Question Answering (Dura-
tionQA) (Virgo et al., 2022), requires models to
move beyond simple fact retrieval and assess the
plausibility of timeframes for various events. De-
spite its importance for applications like virtual
assistants and project management tools (Qin et al.,
2021; Chu et al., 2023; Zhou et al., 2019) , Dura-
tionQA remains largely unexplored, especially for
low-resource languages. This paper provides the
comprehensive investigation into DurationQA for

the Vietnamese language. The task poses unique
challenges in Vietnamese, where temporal expres-
sions are often implicit and culturally nuanced (e.g.,
“mot budi” for half a day, “dim ba hom” for a
few days), demanding a deeper level of reason-
ing than simply parsing explicit time markers. To
tackle this, we systematically compare two domi-
nant modeling paradigms: (1) fine-tuning special-
1zed, discriminative encoder models like PhoBERT
(Nguyen and Nguyen, 2020) and ViDeBERTa-base
(Tran et al., 2023), and (2) instruction-tuning mas-
sive, generative Large Language Models (LLMs)
like Vistral-7B and GPT-0ss-20B. Contrary to the
prevailing trend of "bigger is better", the central
finding reveals that a smaller, carefully architected
model can achieve superior performance. This pa-
per demonstrates that a ViDeBERTa-base model,
when enhanced with a multi-seed ensemble and a
novel Adaptive Threshold Calibration (ATC) tech-
nique, outperforms all other approaches, including
the 20-billion-parameter LLLM. This highlights the
remarkable effectiveness of robust classification ar-
chitectures combined with targeted post-processing
for structured reasoning tasks, offering a more ef-
ficient and accurate solution.

The main contributions of this paper are as fol-
lows:

* This paper introduces a new, challenging
dataset for Vietnamese DurationQA, carefully
constructed to require complex reasoning over
implicit contextual factors.

* This study provides the comprehensive com-
parison between discriminative models and
large language models for the DurationQA
task in Vietnamese.

* An effective method is proposed an effective
method combining ViDeBERTa-base with
an ensemble approach and Adaptive Thresh-
old Calibration, demonstrating its superiority
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through rigorous evaluation metrics.

* A strong baseline is established, providing a
crucial reference point for future research on
temporal reasoning in Vietnamese text.

2 Related Work

2.1 Temporal Question Answering

Temporal reasoning tasks have evolved from simple
temporal relation extraction to complex duration
prediction and event ordering. Recent approaches
leverage pre-trained language models for tempo-
ral understanding (Zhou et al., 2021), though most
target English datasets with explicit temporal mark-
ers.Recent benchmarks have systematically eval-
uated temporal reasoning capabilities in LLMs.
(Chu et al., 2023) introduced TimeBench, a com-
prehensive evaluation framework revealing signifi-
cant gaps in temporal understanding across state-
of-the-art models. Similarly, (Tan et al., 2023)
demonstrated that even powerful LLMs struggle
with complex temporal reasoning, particularly du-
ration estimation. For duration-specific tasks,
(Virgo et al., 2022) showed that leveraging existing
temporal information extraction data can improve
event duration QA, though primarily for English
datasets.

For low-resource languages, temporal QA faces
additional challenges from limited training data and
cultural-specific temporal patterns. Vietnamese
temporal expressions often rely on contextual cues
rather than explicit markers, requiring models to
learn implicit temporal reasoning patterns.

2.2 Common-Sense Reasoning

The core challenge of Vn-DurationQA lies in its
demand for common-sense reasoning. This aligns
it with a broad category of NLP tasks designed to
test a model’s understanding of the physical and
social world. Datasets like CommonsenseQA (Tal-
mor et al., 2019) require choosing the most plausi-
ble answer from a set of options for a given ques-
tion. Others, like PIQA (Bisk et al., 2020) and
Social IQA (Sap et al., 2019), focus on reasoning
about physical interactions and social situations,
respectively. These tasks require models to make
inferences that go beyond the literal text, similar
to how our task requires inferring plausible dura-
tions. Vn-DurationQA can be viewed as a special-
ized sub-task within the common-sense reasoning
landscape, specifically targeting the temporal di-
mension of everyday events and actions.

2.3 Vietnamese NLP Resources

The development of high-quality pre-trained mod-
els has been pivotal for advancing Vietnamese NLP.
Our work builds upon these foundational resources.
We utilize PhoBERT (Nguyen and Nguyen, 2020),
a monolingual BERT model pre-trained on a mas-
sive Vietnamese corpus, which has become a stan-
dard baseline for a wide range of tasks. We also em-
ploy ViDeBERTa (Tran et al., 2023), a Vietnamese-
specific model based on the DeBERTa architecture
(He et al., 2021), known for its disentangled at-
tention mechanism that improves the modeling of
word content and relative positions. By using these
models, we ensure our baselines are representa-
tive of the state-of-the-art for Vietnamese language
understanding.

2.4 Parameter-Efficient Fine-tuning

LoRA (Hu et al., 2022) decomposes weight up-
dates into low-rank matrices, reducing memory
requirements while maintaining performance. For
a weight matrix Wy € R%* LoRA introduces
trainable matrices B € R?*" and A € R"** where
rank 7 < min(d, k).

Recent work shows LoRA’s effectiveness in
multi-task learning (Poth et al., 2023) and cross-
lingual transfer (Ustiin et al., 2024), making it suit-
able for low-resource scenarios where computa-
tional efficiency is critical.

3 Task Definition

Given a context C, question (), and four answer
options O = {o01,02,03,04}, the system must
produce binary labels L = {l1,l2,13,14} where
l; € {0,1} indicates whether option o; correctly
answers the duration question.

This multi-label formulation allows multiple cor-
rect answers, reflecting real scenarios where event
durations have ranges or context-dependent inter-
pretations.

4 Data Generation Methodology

Recognizing the lack of resources for the Dura-
tionQA task in Vietnamese, a new dataset was con-
structed using a semi-automated approach. The
methodology employed a large language model
guided by carefully designed rules and prompts
to ensure diversity, difficulty, and alignment with
reasoning objectives outlined below.



4.1 Context and Question Design

The primary goal is to force models to perform rea-
soning rather than simple information extraction.
This is achieved through two key design principles:

Context with Influencing Factors. Each con-
text (2-4 sentences) describes an event or process
without explicit temporal information. Instead, the
design introduces Influencing Factors that signifi-
cantly affect the estimated duration:

» Extending Factors: Large scale, lack of ex-
perience, rudimentary tools, high precision
requirements, unexpected incidents, or com-
plex processes.

* Shortening Factors: Small scale, prior expe-
rience, modern tools, optimized processes, or
prototype versions.

Question Requiring Synthesis. Questions are
designed to prevent single-sentence answers, com-
pelling models to synthesize information across the
entire context for accurate judgment.

4.2 Option and Label Design

The structure of options and labels is strictly con-
trolled to generate diverse reasoning challenges.

Option Formatting. Each option consists of ei-
ther specific numbers or vague time expressions
(e.g., “vai,” “it”) combined with time units. Exam-
ples include “8 phiit,” “9 ndam,” “mot vai ngay,”
“it gio,” or compound durations like “I gio 30
phuit.”Numerical values are varied to avoid bias.

Sample Type Control. To ensure diversity and
evaluate multi-level reasoning, each sample is as-
signed a sample_type:

* balanced_close (30%): 2 yes/2 no labels with
close yes options (difference < 5x)

* balanced_far (30%): 2 yes/2 no labels with
distant yes options (difference > 10x)

* unbalanced_1_yes (20%): 1 yes/3 no labels
for scenarios with one clear duration

* unbalanced_3_yes (17%): 3 yes/1 no labels
for intentionally vague contexts

* unbalanced_0_yes (3%): No yes labels for
unanswerable questions

Difficulty Levels.
els:

We define two difficulty lev-

» Easy (40%): All no options are extremely
unreasonable (e.g., “10 seconds” to build a
house)

* Subtle (60%): At least one no option is plau-
sible but incorrect, requiring fine-grained rea-
soning

4.3 Dataset Validation

To validate the effectiveness of the newly con-
structed dataset, a series of ablation studies were
conducted. The primary objective was to empiri-
cally measure the impact of augmenting the orig-
inal dataset with our synthetically generated data
on the performance of established Vietnamese lan-
guage models.

Experimental Setup. We trained two prominent
pre-trained models for Vietnamese: PhoBERT-
base-v2 and ViDeBERTa-base. The models
were trained and evaluated on two distinct datasets:

* Organizer’s Dataset: The original dataset
provided by the task organizers.

* Combined Dataset: A merged dataset com-
prising the Organizer’s Dataset and our newly
generated data.

The performance of the models was measured us-
ing the F1-score, which provides a balanced assess-
ment of precision and recall.

Results and Analysis. The experimental results,
as summarized in Table 1, demonstrate a consistent
improvement in performance when the models are
trained on the Combined Dataset.

Table 1: Ablation Study Results: F1-Scores on the Test
Set

Organizer’s Combined
Model Dataset Dataset
PhoBERT-base-v2 (LoRA r=16) 73.8% 75.9 %
ViDeBERTa-base (LoRA r=16) 74.4% 76.2%

As shown in the table, both PhoBERT-base-—
v2 and ViDeBERTa-base exhibit a notable in-
crease in their F1-scores after being trained with
the additional data. Specifically, PhoBERT’s score
improved by 2.1 percentage points, while ViDe-
BERTa saw an increase of 1.8 percentage points.
This consistent improvement suggests that our data



generation methodology, which focuses on creat-
ing diverse and reasoning-intensive samples, ef-
fectively enhances the models’ ability to compre-
hend and reason about duration-related questions in
Vietnamese. The improvements can be attributed
to the inclusion of Influencing Factors and var-
ied sample types (balanced_close, subtle,
etc.), which compel the models to move beyond
simple keyword matching and engage in more pro-
found semantic understanding.

5 Methods

Figure 1 illustrates our best-performing framework,
which enhances a discriminative model with LoRA
adaptation, multi-seed ensembling, and adaptive
threshold calibration. In this section, this section
details the two primary approaches: fine-tuning
discriminative encoders and generative language
modeling

5.1 Approach 1: Fine-tuning Discriminative
Encoders

Two strategies are investigated for fine-tuning dis-
criminative encoder models for this classification
task:

5.1.1 Independent Binary Classification with
PhoBERT

This strategy treats each (Context, Question, Op-
tion) triplet independently.

Input Format. For each question with four op-
tions, we create four independent samples with the
format: [CLS] Question [SEP] Context

[SEP] Option [SEP]

Model Architecture. We employ PhoBERT-
base-v2 and PhoBERT-large. The [CLS] token
representation passes through a linear layer with
two outputs, followed by Softmax activation for
binary classification.

Training. Models are trained with Cross-Entropy
loss. Final predictions aggregate labels from all
four option evaluations.

5.1.2 Multi-label Classification with
ViDeBERTa
This strategy evaluates all four options in a single

forward pass.

Input Format. All options are concatenated:

Algorithm 1 Optimal Threshold Search

Input: Validation predictions P, labels Y

l:

2: Output: Optimal threshold 7*

3: T <« linspace(0.2,0.8,61)

4: best_fl1 <0

5: forT € T do

6: Y’é—%ﬂf’>'ﬂ

7. f1 < Fl_score(Y,Y)

8: if f1 > best_f1 then

9: best_f1 + f1

10: TF T

11:  endif

12: end for

13: return 7*

[CLS] Question [SEP] Context [SEP]
Option 1 [SEP] Option 2 [SEP]
Option 3 [SEP] Option 4 [SEP]
Model Architecture. ViDeBERTa-base’s [CLS]

representation passes through a linear layer with
four outputs. Independent Sigmoid activations en-
able multiple correct predictions simultaneously.

Training. The training uses Binary Cross-
Entropy with Logits loss (BCEWithLogitsLoss),
standard for multi-label classification.

5.1.3 Parameter-Efficient Fine-tuning

All models (PhoBERT-base-v2, PhoBERT-large,
ViDeBERTa-base) use Low-Rank Adaptation
(LoRA) to reduce trainable parameters while pre-
serving pre-trained knowledge.

5.1.4 Post-processing Enhancements

For the best-performing model, we apply two opti-
mization techniques:

Multi-seed Ensemble. We train M = 5 models
with seeds S = {42,123,456,789,2024}. En-
semble predictions aggregate probabilities:

1
pi=7 2 00) (1)

seS

where o is the sigmoid function and z; are logits
from model s for option z.

Adaptive Threshold Calibration. We optimize
the decision threshold to maximize F1-score on
validation data. Algorithm 1 describes our proce-
dure, searching 61 thresholds in [0.2, 0.8] to find
the optimal 7*.



Vietnamese Duration QA Framework with LoRA Ensemble
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Figure 1: Overview of our Vietnamese Duration QA framework with LoRA-based ensemble and adaptive threshold
calibration. The system processes input through ViDeBERTa-base with LoRA adaptation (0.8% parameters), trains
5 models with different seeds, and aggregates predictions using optimized thresholds. The results in the figure are

the predicted results on private test.

5.2 Approach 2: Generative Language
Modeling

For our second approach, we fine-tune generative
Large Language Models to perform the task as a
structured question-answering problem, leveraging
their instruction-following capabilities.

5.2.1 Reasoning-Guided Prompting

Our prompt template incorporates: (1) an expert
assistant persona, (2) step-by-step reasoning guid-
ance, (3) few-shot examples for in-context learning,
and (4) strict output format requirements. Prompts
are formatted using each model’s chat template.

5.2.2 Model Selection
We evaluate two LLMs:

* Vistral-7B: A 7B-parameter Mistral-based
model with Vietnamese-specific training

* GPT-0ss-20B: A 20B-parameter GPT-style
model with extensive world knowledge

5.2.3 Fine-tuning Strategy

QLoRA is employed (Quantized Low-Rank Adap-
tation) with 4-bit quantization and the Unsloth li-

brary for optimized CUDA kernels, enabling effi-
cient fine-tuning on commercial GPUs.

5.2.4 Output Processing

Generated text is parsed using regular expressions
to extract label lists. A fallback mechanism scans
for individual “yes”/*no” keywords if list format-
ting fails.

6 Experiments

A series of experiments were conducted to evaluate
the effectiveness of the two proposed approaches
on the newly created Vn-DurationQA benchmark.
This section details our dataset, experimental setup,
evaluation metrics, and presents the main results.

6.1 Dataset

The dataset consisted of 1500 samples provided
by the organizers along with 3500 self-generated
samples. Each example includes contextual infor-
mation, questions, and four duration options that
require factual reasoning. The experiments used
4500 samples for training and 500 samples for val-
idation.



6.2 Implementation Details

All experiments were conducted on a single
NVIDIA 4090 GPU with 24GB of VRAM. Train-
ing uses mixed precision (fp16) with gradient ac-
cumulation. Table 2 shows the detailed hyperpa-
rameter configuration for both approaches.

6.3 Evaluation Metrics

The evaluation employs standard multi-label clas-
sification metrics:

e Exact Match (EM): Percentage of sam-
ples where all four option predictions exactly
match the ground truth labels. This strict met-
ric evaluates the model’s ability to correctly
classify entire questions.

¢ Precision (P): The ratio of true positive pre-
dictions to all positive predictions:

TP

P=— )
TP + FP

measuring the model’s accuracy when pre-
dicting the positive class.

* Recall (R): The ratio of true positive predic-
tions to all actual positive labels:

TP

= 3
R TP + FN )

measuring the model’s ability to identify all
positive instances.

* Fl-score: The harmonic mean of precision

and recall:

P-R
P+R

Fl =2 “4)
providing a balanced measure of model per-
formance. This serves as the primary metric
for model comparison.

7 Results
7.1 Main Results

Table 3 presents the performance of all models on
the public test set. The results demonstrate the
effectiveness of the discriminative classification
approach with post-processing enhancements.

The key finding is that ViDeBERTa-base with
Adaptive Threshold Calibration achieves the
highest F1-score of 0.79 among all compared
models.

To rigorously validate our model’s generalization
capabilities, the evaluation also included this top-
performing framework on a held-out private test
set. On this unseen data, the model achieved an
even stronger F1-score of 0.803 (P: 0.748, R: 0.861,
EM: 49.12%). This robust performance confirms
that the approach generalizes well and is not overfit
to the public test set

While Vistral-7B achieves a slightly higher
Exact Match score (51.5% vs 49.0%), the F1-
score—which balances precision and recall—is the
primary metric for multi-label classification tasks,
and here ViDeBERTa-base + ATC demonstrates
superior performance.

The ViDeBERTa-base model starts with compet-
itive baseline performance (0.762 F1), and the ad-
dition of Adaptive Threshold Calibration pushes it
to 0.79 F1 by optimizing the precision-recall trade-
off. This 1-point improvement, achieved through
simple post-processing, demonstrates the value of
threshold optimization for multi-label tasks.

The PhoBERT models serve as baseline compar-
isons, with PhoBERT-base-v2 achieving high recall
(0.93) but suffering from low precision (0.652),
while PhoBERT-large shows more balanced but
overall lower performance. This highlights the
importance of the multi-label classification archi-
tecture used by ViDeBERTa over the independent
binary classification approach of PhoBERT.

The generative models, Vistral-7B and GPT-oss-
20B, demonstrate competitive performance with
F1-scores of 0.775 and 0.779 respectively. How-
ever, despite their significantly larger parameter
counts (7B and 20B vs 86M), they fail to surpass
the performance of the optimized discriminative
discriminative approach. This suggests that for
structured multi-label tasks like duration question
answering, targeted classification models with ap-
propriate post-processing can be more effective
than general-purpose language models.

These results validate the hypothesis that a
well-designed discriminative approach with thresh-
old calibration can achieve state-of-the-art perfor-
mance on Vietnamese DurationQA while main-
taining computational efficiency.

7.2 Ablation Study

To understand the contribution of each component
in our framework, comprehensive ablation studies
were conducted on the validation set.



Hyperparameter Discriminative Generative
Training Configuration

Optimizer AdamW AdamW
Learning Rate 3e-4 5e-5

Batch Size 32 32

Training Epochs 10 2

Max Sequence Length 512 512

Warmup Ratio 0.1 0.1

Weight Decay 0.01 0.03

PEFT Method

Method LoRA QLoRA (4-bit) + unsloth
LoRA / QLoRA Configuration

Rank (r) 16 16

Alpha («) 32 32

Dropout 0.1 0.1

Target Modules q_proj, v_proj  q_proj, v_proj, k_proj, o_proj

Table 2: Hyperparameter configuration for fine-tuning methods.

Model

Exact Match (%) 1t Precision T RecallT Fl-score 1

Approach 1: Fine-tuning Discriminative Encoders

PhoBERT-large 36.0 0.702 0.787 0.742
PhoBERT-base-v2 29.5 0.652 0.907 0.759
ViDeBERTa-base 46.2 0.771 0.753 0.762
Ens ViDeBERTa-base + ATC 49.0 0.764 0.829 0.795
Approach 2: Generative Language Modeling

Vistral-7B 49.8 0.797 0.754 0.775
GPT-0ss-20B 51.5 0.786 0.773 0.779

Table 3: Main results on the Vn-DurationQA test set. Precision, Recall, and F1-score are reported for the positive
(’yes’) class. The best performance in each column is highlighted in bold. ViDeBERTa-base + ATC achieves the

highest F1-score.

7.2.1 Impact of Ensemble Strategy

Table 4 demonstrates the effectiveness of the multi-
seed ensemble approach. Training 5 models with
different random seeds {42, 123,456, 789, 2024}
and aggregating their predictions yields substantial
improvements over single-model baselines.

Config EM P R F1 Std
Single (42) 49.75 0.754 0.777 0.765 -
Best-2 4950 0.769 0.790 0.779 0.004
Best-3 4925 0.777 0.798 0.787 0.003
All-5 49.00 0.782 0.805 0.793 0.003

Table 4: Effect of ensemble size on model performance
(%). EM: Exact Match, P: Precision, R: Recall.

The ensemble approach demonstrates consis-
tent improvements across all metrics. While Exact
Match slightly decreases, the precision-recall trade-
off improves significantly, with F1-score gaining
2.8 percentage points. The decreasing standard de-
viation indicates improved robustness and stability
of predictions.

7.2.2 Adaptive Threshold Calibration
Analysis

The Adaptive Threshold Calibration (ATC) mecha-

nism optimizes the decision boundary to maximize

Fl-score. Table 5 shows the impact of different

threshold strategies:

Strategy Thr P R F1 A
Default 0.500 0.798 0.741 0.769 -
Grid Search 0433 0.764 0.829 0.795 +2.6
Per-option varied 0.766 0.830 0.797 +2.8
Dynamic adapt  0.759 0.835 0.795 +2.6

Table 5: Threshold optimization strategies. Thr:

Threshold value, A: F1 improvement.

The optimal threshold (0.433) is notably lower
than the default 0.5, indicating the model’s ten-
dency to under-predict positive labels. This cali-
bration shifts the precision-recall balance, trading
3.4 points of precision for an 8.8-point gain in re-
call, ultimately improving F1 by 2.6 points. While
per-option thresholds provide marginal additional
gains, the added complexity may not justify de-



ployment in production systems.

7.2.3 Component-wise Contribution

The systematic evaluation examines the contribu-
tion of each component by progressively adding
them to the base model:

Configuration EM P R F1

ViDeBERTa-base 46.2 0.771 0.753 0.762
+ LoRA 47.8 0.782 0.761 0.771
+ Ensemble 48.6 0.782 0.805 0.793
+ ATC (final) 49.0 0.764 0.829 0.795

Table 6: Incremental component analysis (%).

Each component contributes meaningfully to the
final performance, with the ensemble providing the
largest single improvement (+2.2 F1), followed by
ATC (+0.2 F1) and LoRA (+0.9 F1).

7.3 Error Analysis

To understand model limitations, an analysis was
conducted on 276 option-level errors across 156
questions from ViDeBERTa-base + ATC predic-
tions.

Error Distribution. The model produces 59.8%
false positives (predicted “yes” when gold is “no”)
and 40.2% false negatives, indicating a slight over-
prediction tendency despite threshold calibration.

Temporal Scale Challenges. Errors concentrate
at intermediate temporal scales, with 74.6% oc-
curring at week (tuan, 28.3%) and month (thang,
46.4%) durations. The model shows conservative
predictions for months (63.1% of all false nega-
tives) while being optimistic for week-scale dura-
tions (35.2% of false positives).

Systematic Biases.
served:

Three key patterns are ob-

* Position bias: Option position 0 accounts for
30.3% of false positives with zero false nega-
tives, suggesting strong first-position prefer-
ence

e Scale inconsistency: 47 cases where the
model accepts shorter durations while reject-
ing longer ones within the same question

* Boundary confusion: Near-miss patterns
with median FP-FN scale ratio of 2.86 x, indi-
cating difficulty with adjacent temporal scales

These findings suggest that while the ensemble
approach achieves strong performance, future work
should address position debiasing, temporal con-
sistency constraints, and unit-specific calibration
to further improve temporal reasoning capabilities.

7.4 Computational Efficiency

Practical deployment requires balancing perfor-
mance with computational constraints. Table 7
compares resource requirements:

Configuration Memory Time
Training Phase

Full Fine-tuning 123 GB 42 min/ep
LoRA (r=16) 3.9GB 28 min/ep
Inference Phase

Single Model 2.1 GB 31 ms
5-Model Ensemble 4.8 GB 152 ms
+ ATC overhead 4.8 GB 154 ms

Table 7: Resource consumption for training and infer-
ence.

LoRA reduces memory consumption by 68%
and training time by 33% while using only 0.8%
of trainable parameters. The ensemble inference
remains practical at 152ms per example, suitable
for many real-world applications where sub-second
response times are acceptable.

7.5 Comparison with Generative Approaches

To contextualize our discriminative approach, we
compare against instruction-tuned LLMs in Table
8:

Model Params F1 Latency
Discriminative Models

PhoBERT-base 135M 0.759 28 ms
ViDeBERTa-base 86M 0.762 31 ms
+Ens. + ATC 86Mx5"  0.795 154 ms
Generative Models

Vistral-7B 7B 0.775 892 ms
GPT-0ss-20B 20B 0.779 2,341 ms

Table 8: Discriminative vs. generative model compari-
son. "Ensemble of 5 instances of the same model.

Despite being orders of magnitude smaller, the
ensemble approach outperforms much larger gener-
ative models while maintaining practical inference
speeds. This validates our hypothesis that struc-
tured classification with robust post-processing is
more effective than generative approaches for this
specific temporal reasoning task.



8 Discussion

The results demonstrate that carefully designed
classification models can outperform large lan-
guage models on structured reasoning tasks. The
success of ViDeBERTa-base with ensemble and
ATC highlights three key insights:

First, task-specific architectures matter. The
multi-label classification formulation naturally
handles the multi-answer nature of duration ques-
tions, while binary classification approaches strug-
gle with answer interdependencies.

Second, robust training strategies compen-
sate for model size. The ensemble of five 86M-
parameter models (430M total) clearly outperforms
single 20B-parameter models, suggesting that vari-
ance reduction via ensembling is more valuable
than parameter count for this task.

Third, post-processing optimizations provide
consistent gains. The 2.6-point F1 improvement
from threshold calibration comes at negligible
computational cost, making it an essential com-
ponent for production systems.

Fourth, contextualizing the generative model
comparison and future directions. While our
discriminative approach does not yet achieve high
efficiency and accuracy, it is crucial to view the
comparison with generative LLMs in context. The
performance of models like GPT-0ss-20B is highly
dependent on the fine-tuning methodology. Our
experiments utilized QLoRA for its efficiency, but
this may not fully unlock the models’ reasoning
capabilities.

Future work should therefore investigate more
advanced parameter-efficient fine-tuning tech-
niques to provide a more definitive comparison.
For instance, exploring methods like Weight-
Decomposed LoRA (DoRA), which offers a more
expressive adaptation than LoRA, or Mixture of
Rank Adapters (MoRA), designed to capture
more complex, task-specific knowledge by using
a high-rank update matrix, could be particularly
promising. Applying these cutting-edge techniques
might significantly boost the performance of gen-
erative models on the Vn-DurationQA task, po-
tentially narrowing the performance gap while still
maintaining a degree of computational efficiency.
This would help clarify whether the current advan-
tage of discriminative models is inherent to the ar-
chitecture or a reflection of the specific fine-tuning
strategy employed.

The error analysis reveals systematic challenges

in temporal reasoning that persist despite these im-
provements. The concentration of errors at inter-
mediate temporal scales (weeks and months) sug-
gests these durations are inherently more ambigu-
ous and context-dependent than extreme scales.
Future work should explore incorporating explicit
temporal knowledge or hierarchical duration mod-
eling to address these challenges.

9 Conclusion

This paper presented a comprehensive study of
Vietnamese Duration Question Answering, demon-
strating that a well-designed discriminative ap-
proach significantly outperforms larger generative
models. The best configuration—ViDeBERTa-
base with 5-model ensemble and Adaptive Thresh-
old Calibration achieves 79.5% F1-score while
maintaining practical computational requirements.

Key contributions include: (1) establishing
strong baselines for Vietnamese DurationQA
through systematic model comparison, (2) demon-
strating the effectiveness of ensemble methods
with threshold optimization for temporal reasoning
tasks, and (3) providing detailed analysis of model
failures that guides future research directions.

The framework proves that sophisticated post-
processing techniques can bridge the performance
gap between smaller specialized models and large
general-purpose LLMs, offering a practical path for
deploying temporal reasoning systems in resource-
constrained environments.

Future work will explore cross-lingual trans-
fer learning to leverage high-resource temporal
datasets, integration of external knowledge bases
for culture-specific temporal patterns, and investi-
gation of curriculum learning strategies that pro-
gressively introduce more challenging temporal
scales.

Limitations

While the proposed approach achieves strong per-
formance, several limitations warrant considera-
tion. The ensemble method increases inference
latency by 5%, which may be prohibitive for real-
time applications. Threshold optimization requires
a held-out validation set with sufficient exam-
ples across all sample types. The model strug-
gles with implicit temporal reasoning requiring cul-
tural knowledge not well-represented in the training
data, such as traditional Vietnamese ceremonies
or region-specific activities. Additionally, the ap-



proach assumes access to high-quality Vietnamese
text encoders, which may not be available for other
low-resource languages.
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