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Abstract

In this paper, we investigated open-source
LLMs, including Llama 3, Phi-4, Gemma 3,
and Qwen3, for Vietnamese Abstract Meaning
Representation (AMR) parsing using instruc-
tion fine-tuning. As a result, Qwen3 achieved
the highest F-score of 0.58 on the VLSP 2025
Semantic Parsing challenge, ranking among the
top solutions on the private test leaderboard.
The results showed that our pipeline was stable
and robust, avoiding format errors such as mis-
matched parentheses and invalid AMR struc-
tures. An ablation study highlighted the cru-
cial role of preprocessing (variable removal,
wiki tag removal, and linearization) and post-
processing (variable restoration) in preserving
parsing quality. Fine-grained error analysis fur-
ther revealed challenges in handling complex
semantics, with particularly low F-scores for
Semantic Role Labeling (0.24) and Reentran-
cies (0.13).

1 Introduction

Abstract Meaning Representation (Banarescu et al.,
2013) is a semantic framework that represents sen-
tence meaning as a graph, where nodes correspond
to concepts and edges denote semantic relations.
AMR has been successfully applied to a variety of
NLP tasks such as question answering, information
extraction, machine translation, and summarization
(Song et al., 2019; Damonte et al., 2019; Bojar,
2014; Liao et al., 2018). Its key strength lies in
abstracting away syntactic variations to focus on
the underlying semantics, making it a powerful rep-
resentation for deep language understanding.

AMR parsing, the task of converting natural lan-
guage into AMR graphs, has achieved remarkable
progress in English, particularly with transformer-
based and large language models (LLMs) ap-
proaches (Bevilacqua et al., 2021; Bai et al., 2022).
However, extending AMR parsing to Vietnamese
introduces unique challenges. Unlike English, Viet-

namese is an isolating language without inflec-
tional morphology. Tense, aspect, and modality
are expressed through particles (e.g., “đã,” “đang,”
“sẽ”) or by word order. Vietnamese also exhibits
flexible syntax, frequent use of discourse markers,
and high lexical ambiguity, which complicate se-
mantic disambiguation. Moreover, the absence of
large-scale annotated AMR corpora further limits
the development of robust parsers. These charac-
teristics highlight the need for tailored approaches
rather than direct transfer from English-trained
models.

Recent advances in LLMs such as Qwen (Bai
et al., 2023; Yang et al., 2025), Llama 3 (Dubey
et al., 2024), Gemma 3 (Team et al., 2025), and
Phi-4 (Abdin et al., 2024) have shown strong po-
tential in semantic parsing through supervised fine-
tuning and adaptation techniques. Leveraging
these models offers a promising path to overcome
Vietnamese-specific challenges and build accurate
parsers even with limited annotated data.

In this work, we develop a robust Vietnamese
AMR parser by fine-tuning state-of-the-art LLMs
on a specialized Vietnamese AMR dataset. Our
contributions are:

• We introduce a novel pipeline for Vietnamese
AMR parsing, integrating Qwen3, Gemma 3,
Llama 3, and Phi-4, fine-tuned using super-
vised fine-tuning (SFT) with extensive pre-
processing to ensure high-quality inputs.

• We evaluate our system on the VLSP 2025
Semantic Parsing Challenge1, where Qwen3
achieved the best results on both the public
and private leaderboards. We also provide a
linguistic error analysis to highlight remain-
ing challenges and opportunities for AMR in
Vietnamese.

1VLSP 2025 Challenge on Semantic Parsing: https://
vlsp.org.vn/vlsp2025/eval/visemparse
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Figure 1: Our pipeline begins with preprocessing the data for fine-tuning the foundation model using supervised
fine-tuning (SFT). The outputs generated by the fine-tuned model are then passed through a post-processing phase
to ensure correct AMR parsing format.

2 Related Work

Early AMR parsers treated the task as a two-step
process. JAMR (Flanigan et al., 2014) established
the first widely adopted system, dividing the pro-
cess into concept identification and relation predic-
tion. CAMR (Wang et al., 2016) improved this idea
by leveraging a dependency parser and a transition-
based algorithm. With the constant development of
transformer-based architecture, these models have
become the dominant approach to AMR parsing.
SPRING (Bevilacqua et al., 2021) builds on the
BART backbone (Lewis et al., 2019) and demon-
strates strong performance through large-scale pre-
training combined with graph linearization. In the
same way as SPRING (Bevilacqua et al., 2021),
StructBart (Zhou et al., 2021) is extended by adding
transition-based inductive biases to enforce struc-
tural constraints. Additionally, AMRBART (Bai
et al., 2022) enhances BART with graph-aware pre-
training, achieving state-of-the-art results.

In the context of Vietnamese, several studies
have explored the adaptation of AMR for semantic
parsing. A paper by Linh and Nguyen (2019) in-
troduced modifications to the AMR framework to
account for syntactic differences between English
and Vietnamese, laying the foundation for applying
AMR to annotate Vietnamese sentences.

Similarly, Pham (2020) applied cross-lingual se-
mantic parsing by adapting frameworks like AMR
and UCCA from high-resource languages to Viet-
namese, addressing the challenges posed by the
unique syntax of Vietnamese.

Additionally, AMR has been applied to legal
texts to represent complex sentences. Vu et al.
(2022) introduced the JCivilCode dataset (Viet
et al., 2017) and proposed domain adaptation to
improve AMR parsing and generation. Semantic
Role Labeling (SRL), a sub-aspect of AMR, has

been used in Vietnamese NLP: Duong et al. (2022)
combine SRL with BERT for Recognizing Textual
Entailment, and Le et al. (2022) integrate SRL into
Retro-Reader for Machine Reading Comprehen-
sion, improving performance in domain-specific
tasks.

These studies highlight the growing application
of AMR in non-English languages like Vietnamese,
despite the challenges of language-specific syntac-
tic features. As shown in Figure 2, AMR can be
represented as a graph with nodes and edges, cap-
turing the semantic relationships between different
concepts in a sentence.

topic agent

domain

theme polarity

agent-of

patient

nói

lạ person

có thắp

gì - đèn

Figure 2: The AMR graph without variables and wiki
tags for simplicity for the sentence “– chẳng có gì lạ cả,
người thắp đèn nói” (in English: “– nothing strange, the
person lighting the lamp said”). This example from the
VLSP 2025 AMR dataset shows how nodes represent
semantic concepts and edges represent semantic roles
such as agent, topic, theme, and patient, defining the
relationships between concepts.

Recently, LLMs such as Qwen3, Llama 3, and
Gemma 3 have been applied to AMR parsing. Ho
(2025) show fine-tuned decoder-only LLMs (Phi-4,
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Figure 3: Three aligned views of the AMR preprocessing pipeline: (1) raw graph, (2) graph without variables and
wiki tags, and (3) final linearized input for sequence processing.

Gemma 3, Llama 3) match parsers on Smatch (Cai
and Knight, 2013). Similarly, Barta et al. (2025)
show reinforcement learning methods like GRPO
(Shao et al., 2024) further improve semantic and
structural consistency. These results highlight the
promise of modern LLMs for AMR parsing.

3 Method

Our pipeline consists of three main steps: data pre-
processing (Section 3.1), post-processing (Section
3.2), and supervised fine-tuning (Section 3.3), each
designed to ensure high-quality input, refined out-
puts, and optimized model performance. Figure 1
provides an overview of the entire pipeline.

3.1 Data Preprocessing
Our initial hypothesis was that the poor perfor-
mance of the fine-tuned models was partly due to
limitations in the training dataset. To validate this,
we applied a systematic preprocessing pipeline de-
signed to simplify the data while preserving its core
semantic content (Figure 3).

The pipeline involves three key steps. First, vari-
ables, which serve only as placeholders for co-
referring nodes (Van Noord and Bos, 2017), are
removed to reduce unnecessary complexity. Next,
wiki tags are eliminated to avoid noise and incon-
sistency. Finally, each graph is serialized into a
single line through linearization, converting hier-
archical structures into sequential format. Any new
elements generated in this process, such as paren-
theses, are carefully managed to retain structural
integrity.

This component is adapted from van Noord and
Bos (2017)2 and modified to accommodate the
Vietnamese AMR parsing task. Further details
of the original implementation are provided in (van
Noord and Bos, 2017).

2https://github.com/RikVN/AMR

3.2 Data Post-processing

Restore Variables

(trả_lời
:topic (hành_tinh
:name (name
:op2 (Đất)
:op1 (Trái)))
:agent (nhà
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Figure 4: Transition from a variable-free AMR graph
to a post-processed version with restored variables and
unique concept IDs.

Following preprocessing and model fine-tuning,
the outputs remained in AMR format but lacked
node variables, resulting in invalid PENMAN
graphs (Goodman, 2020). To address this, we ap-
plied a deterministic post-processing step that re-
stores variables by assigning unique identifiers to
each concept node (Figure 4). The restoration code
also attempts to fix invalid AMRs using several
heuristics, such as inserting missing parentheses
and quotes or removing incomplete nodes. The
procedure is based on van Noord and Bos (2017)2;
however, due to time constraints, only basic vari-
able restoration was implemented. More details
can be found in (van Noord and Bos, 2017).

https://github.com/RikVN/AMR


3.3 Supervised Fine-Tuning

Adapting pretrained LLMs to a specific dataset via
supervised fine-tuning (SFT) (Dong et al., 2023) is
a straightforward, cost-effective approach and has
been widely used for LLM-related tasks in recent
years. SFT aims to align the outputs of LLMs with
the desired responses by replicating the style and
patterns of the samples in the training dataset.

In this work, we employ Supervised Fine-Tuning
for our foundation model, Qwen3-14B. While this
model is capable of handling a wide range of multi-
lingual language tasks, it lacks knowledge of AMR
parsing and the required output format. SFT allows
the model to adapt effectively to the AMR parsing
task, enabling it to generate precise responses that
adhere to the rules of AMR.

We also fine-tuned additional models, including
Phi-4, Gemma 3, and Llama 3, using the same ap-
proach. Each model was trained on the Vietnamese
AMR dataset, with specific attention to the nu-
ances of the language. These models demonstrated
varying levels of performance, with Qwen3-14B
achieving the highest scores.

We selected a 4-bit quantized version of Qwen3-
14B. Although quantization can lead to a slight
reduction in performance, this trade-off is consid-
ered acceptable due to the significant decrease in
computational cost.

To improve computational efficiency, we ap-
plied LoRA (Hu et al., 2021) fine-tuning, as it is
both time-saving and resource-efficient compared
to fully fine-tuning a model with 14 billion param-
eters. We configured the LoRA hyperparameters
to R = 128 and LoRA alpha = 256.

4 Experiment

4.1 Data Statistics

In this study, we utilize the AMR parsing dataset
from the VLSP 2025 Challenge on Semantic Pars-
ing. Table 1 shows detail of datasets sizes.

Data Split Number of Samples
Training Set 1,842
Public Test Set 150
Private Test Set 1,200

Table 1: Statistics of the VLSP 2025 AMR dataset.

The training dataset consists of 1,842 pairs,
where each pair comprises a sentence and its cor-
responding AMR in PENMAN format. For further

experimentation, we partitioned the VLSP AMR
training set into shuffled training and validation
splits with a 8:2 ratio, corresponding to 1,473 and
369 samples, respectively.

4.2 Experimental Setup

Based on experiments with the train–dev split
(Section 4.4), we applied the data preprocessing
pipeline (Section 3.1) to all samples in the VLSP
2025 AMR train dataset. We then performed
LoRA-based fine-tuning using a 4-bit quantized
Qwen3-14B as the base model. Hyperparame-
ters were set to a learning rate of 2e-4 with the
AdamW optimizer (Yao et al., 2021) and a weight
decay of 0.01. Fine-tuning ran for 10 epochs with
a batch size of 2 and gradient accumulation of 8 on
a single RTX 4090 (24 GB VRAM) for 1–2 hours.
For inference on the VLSP 2025 AMR private test
set, we used 1 × A100 SMX4 (40 GB VRAM)
for roughly 1 hour. Both fine-tuning and inference
leveraged the Unsloth framework for computational
efficiency.

4.3 Evaluation Metric

In this work, we use the Smatch3 (Cai and Knight,
2013) score to evaluate the performance of the se-
mantic parsing system. Smatch compares the pre-
dicted and reference AMRs by measuring the over-
lap of their matching triples. A triple is defined as a
three-element tuple consisting of a source concept,
a semantic relation, and a target concept, effec-
tively representing a single edge in the AMR graph
that encodes a specific semantic relationship. Pre-
cision is computed as the proportion of matching
triples relative to the predicted AMR, while Recall
is computed as the proportion of matching triples
relative to the reference AMR. The Smatch score
is reported as the F1-score, calculated as

F1 =
2 · P · R
P + R

.

This metric provides a balanced evaluation of
parser performance by simultaneously accounting
for both correctness and completeness of the pre-
dicted semantic structures, making it a standard
measure for AMR parsing tasks.

4.4 Main Result

To assess the impact of data processing on the per-
formance of the fine-tuned model, we conducted

3https://github.com/snowblink14/smatch.git
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experiments on the development dataset, with re-
sults summarized in Table 2. Without any pre-
processing, the model performed poorly, achieving
an F1-score of 0.18, and most generated graphs
could not be parsed into valid AMR structures,
highlighting the need for data cleaning. Applying a
preprocessing step that removes variable names and
applies linearization substantially improved perfor-
mance, raising the F1-score to 0.65; in this setting,
postprocessing was applied to restore the removed
variables, producing consistently parsable outputs.

Method Precision Recall F1
No preprocessing 0.18 0.17 0.18
Var. removal & linear. 0.67 0.64 0.65
Full preprocessing 0.72 0.69 0.71

Table 2: Evaluation of the fine-tuned Qwen3 model
on the development set under different preprocessing
settings. “Var. removal & linear.” refers to removing
variable names and linearizing the AMR. Invalid pre-
dicted AMRs were replaced with a dummy to satisfy the
Smatch library for analysis.

When full preprocessing was applied, including
variable removal, wiki tag removal, and lineariza-
tion of the fine-tuning data, together with post-
processing of model outputs, performance further
increased to an F1-score of 0.71, with nearly all
outputs in the correct AMR format, as shown in
Table 2. These results demonstrate that the process-
ing pipeline effectively enhances both the accuracy
and consistency of the fine-tuned model.

Method Dev Public Private
No preprocessing 6–10 8–10 –
Var. removal & linear. 2 0 –
Full preprocessing 1 0 0

Table 3: Number of incorrectly generated samples by
the fine-tuned Qwen3 model on the VLSP 2025 AMR
development, public, and private datasets under differ-
ent preprocessing settings.

We also used the AMR library to manually in-
spect the number of samples that could not be
parsed from the outputs of the fine-tuned model,
typically due to issues such as duplicate nodes,
extraneous commas, or unbalanced parentheses,
either missing or redundant. As shown in Table 3,
without any processing, roughly 6 to 10 instances
in the development set and 8 to 10 in the pub-
lic set failed to parse. When full processing was
applied, including variable removal, wiki tag re-

moval, and linearization of the fine-tuning data,
together with post-processing of the model out-
puts, only one unparsable case remained in the
development set, while both the public and pri-
vate sets were parsed without errors. Note that in
both the variable-removal and full-processing ex-
periments, variable restoration was applied to the
model outputs before performing the AMR pars-
ing check. These results on the public and private
VLSP datasets indicate that the post-processing
step does not introduce any additional errors.

Model Public Test Private Test
Llama-3.1-8B 0.45 0.50
Phi-4 0.51 0.55
Gemma-3-12B 0.52 0.56
Qwen3-14B 0.54 0.58

Table 4: Evaluation of different models using F1-score
on the VLSP 2025 AMR public and private test sets
after full preprocessing.

Table 4 presents the evaluation of different mod-
els using F1-score on the VLSP 2025 AMR pub-
lic and private test sets after full data process-
ing. With full data processing and LoRA-based
fine-tuning, our Qwen3-14B achieved a Smatch
F1-score of 0.54 on the public dataset and 0.58
on the private dataset. These results indicate that
our pipeline consistently generates correct seman-
tic representations in PENMAN format while ef-
fectively avoiding invalid outputs, as illustrated in
Table 3, where the model exhibits zero parsing fail-
ures on both datasets. We further fine-tuned and
evaluated Gemma-3-12B, Phi-4, and Llama-3.1-
8B using the same full preprocessing pipeline and
observed consistent performance across both test
sets. Qwen3-14B was ultimately selected as the
final model due to achieving the highest Smatch
F1-score on both public and private datasets.

The experiments in Tables 2, 3, and 4 show that
data processing is crucial for consistent AMR pars-
ing. Without it, the fine-tuned model produced
many unparsable outputs (Table 3) and lower F1-
scores, whereas variable removal and full process-
ing significantly reduced errors and improved per-
formance. Results on the VLSP public and private
test sets (Table 4) further confirm that preprocess-
ing the fine-tuning data and post-processing model
outputs are essential for model robustness and reli-
ability.



4.5 Fine-grained Error Analysis

According to (Damonte et al., 2017), while AMR
parsing involves a large number of subtasks, the
Smatch score consists of a single number that does
not assess the quality of each subtasks separately.
Furthermore, the Smatch score weighs different
types of errors in a way which is not necessarily
useful for solving a specific NLP problem. There-
for, we applied the evaluation tool from (Damonte
et al., 2017) to gain a better insight of our best
model’s performance on public test set.

Method Precision Recall F1
Smatch 0.55 0.51 0.54
Unlabeled 0.66 0.60 0.63
No WSD 0.55 0.51 0.54
Concepts 0.66 0.62 0.64
Named Ent. 0.65 0.48 0.55
Negations 0.53 0.53 0.53
Reentrancies 0.23 0.09 0.13
SRL 0.25 0.23 0.24

Table 5: Fine-grained evaluation of the public test set
with the evaluation suite from (Damonte et al., 2017).

Based on a fine-grained error analysis, as de-
tailed in Table 5, the parser demonstrates signif-
icant strengths in foundational areas. It excels
at identifying concepts, achieving the highest F1-
score of 0.64 in this subtask, which is crucial for
the overall parsing process. The model is also pro-
ficient at determining the correct graph structure,
indicated by a high Unlabeled F1-score of 0.63.
Furthermore, the analysis reveals that word sense
disambiguation is not a major source of error, as
the “No WSD” F1-score is identical to the overall
Smatch score, suggesting the parser handles this
aspect effectively.

However, the parser shows considerable weak-
nesses in more complex semantic and structural
tasks, as shown in Table 5. The most significant is-
sues are with SRL and Reentrancies, which scored
very low F1-scores of 0.24 and 0.13, respectively.
This indicates that while the model can connect
predicates and arguments, it often fails to assign
the correct semantic roles and struggles to handle
graph structures requiring a node to have multi-
ple parents. Additionally, the parser has moderate
performance on named entities with a low recall,
and it correctly identifies only about half of the
negations.

4.6 Case Study

agent tense theme

mod

cause

l / làm

h / họ đ / đã đ1 / điều

đ2 / đó

a / amr-unknown

(a) Gold graph representing the correct structure.

ARG0 ARG1

ARG0

c / nguyên_nhân

r / không_xác_định d / làm

t / họ

(b) Graph predicted by the model without any preprocessing.

agent tense theme

mod

cause

vv140làm / làm

vv140họ / họ vv140đã / đã vv140điều / điều

vv140đó / đó

vv140amr-unknown / amr-
unknown

(c) Graph predicted by the model with full preprocessing.

Figure 5: Gold annotation (a) and two model predictions
(b) and (c) for the input sentence “vì sao họ đã làm điều
đó?”, with and without preprocessing, from the public
test set.

The input sentence “vì sao họ đã làm điều đó?”
translates to “why did they do that?”. The gold an-
notation (Figure 5a) correctly identifies “làm” (do)
as the central action, with “họ” (they) as the agent,
“đã” indicating past tense, “điều đó” (that) as the
theme, and an amr-unknown node representing
the questioned cause. In contrast, the prediction
without preprocessing (Figure 5b) fundamentally
misinterprets the sentence’s structure. It incorrectly
centers the graph on “nguyên_nhân” (cause) rather
than the main verb “làm”. Consequently, it fails
to represent the tense (“đã”) and the theme (“điều
đó”) and misstructures the relationship between
the agent and the action. With full preprocessing,



the model’s prediction (Figure 5c) is structurally
identical to the gold graph. It accurately captures
the central verb and all its corresponding seman-
tic components, including the agent, tense, theme,
and cause. This comparison highlights the critical
importance of preprocessing for achieving accurate
Vietnamese AMR parsing.

5 Discussion

Our experiments highlight several important de-
tails. LoRA-based fine-tuning combined with pre-
processing proved effective in stabilizing training
and enabling large models such as Qwen3-14B to
achieve the best performance. Without such pro-
cessing, preliminary experiments (Table 2) pro-
duced invalid PENMAN outputs or unparseable
graphs. This confirms that structured semantic
parsing for Vietnamese requires careful data pro-
cessing in addition to model scaling.

Moreover, both Gemma-3-12B and Phi-4
achieved stable but moderate results. Their per-
formance gap with Qwen3-14B highlights that
some architectures may generalize less effectively
to Vietnamese AMR parsing, even when provided
with the same processing pipeline and fine-tuning
strategy.

A domain-specific insight is that Vietnamese
AMR parsing remains challenging. Even the best-
performing system reached 0.58 F1 on the private
test set, indicating that there is still room for fur-
ther development, particularly in addressing data
sparsity, linguistic complexity, and annotation con-
sistency. In addition, it would be beneficial to ex-
plore augmentation techniques, such as introducing
greater variability in long queries together with
their corresponding complex AMR structures in
PENMAN format.

6 Conclusion

This study demonstrates that data processing and
LoRA-based fine-tuning are crucial for achieving
reliable AMR parsing in Vietnamese. Without
these steps, we observed that models frequently
produced invalid PENMAN outputs and unstable
performance. By applying our full data process-
ing pipeline, we were able to significantly improve
both parsing accuracy and structural validity.

Among the evaluated models, Qwen3-14B con-
sistently achieved the best results, with Smatch F1-
scores of 0.54 on the public test set and 0.58 on the
private test set, ranking as one of the top solutions

on both public and private leaderboards. Its su-
perior performance highlights the effectiveness of
combining large-scale model capacity with a care-
fully designed adaptation strategy. Future research
should further investigate and experiment with al-
ternative solutions to advance performance within
this domain.

Limitations

The study’s primary limitation is the modest perfor-
mance of its top model, which achieved a 0.58 F1-
score, indicating that significant challenges in Viet-
namese AMR parsing remain. A fine-grained error
analysis reveals the model struggles with complex
semantic structures, performing poorly on Seman-
tic Role Labeling and Reentrancies with F1-scores
of just 0.24 and 0.13, respectively. Furthermore,
because the paper’s scope was defined by the VLSP
2025 Challenge on Semantic Parsing, it does not
provide a comparative analysis against established
AMR parsers like SPRING or StructBART, making
it difficult to contextualize its performance within
the wider field. Finally, the reliance on a large
language model makes the system computationally
expensive and resource-intensive, which poses a
practical barrier to its scalable application for pars-
ing big data and contributes to a significant carbon
footprint.
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