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Abstract

We tackle the VLSP 2025 Numerical Rea-
soning challenge, which requires answering
financial questions in Vietnamese with cor-
rect numerical results and transparent reason-
ing programs. We explore state-of-the-art
open language models, including Alibaba’s
Qwen series and the open Fin-R1 financial
model, applying Supervised Fine-Tuning (SFT)
and Groupwise Reinforcement Learning from
Preferences (GRPO) to teach these models
to perform multi-step numerical reasoning.
Our approach further augments the training
data by translating the English FinQA dataset
into Vietnamese and employing a reasoning-
optimized model (DeepSeek-R1-Distill-Qwen-
7B) to generate high-quality, step-by-step rea-
soning traces, which are subsequently filtered
for correctness. Experiments show that pro-
gressively incorporating domain-specific data,
majority-voting decoding (Wang et al., 2025)
and reinforcement learning significantly boosts
both execution accuracy and program correct-
ness. We report notable improvements over
baseline models, with the final model MoFin
achieving substantially higher accuracy.

1 Introduction

Artificial Intelligence (AI) has advanced rapidly
over the past few decades, reshaping a wide range
of human activities—including tasks long consid-
ered to require uniquely human judgment such as
programming, mathematical reasoning, and logical
inference. Among the domains most affected is
finance and accounting. Natural language process-
ing (NLP) applications, including large language
models (LLMs), offers powerful capabilities for
reading, interpreting, and acting on complex finan-
cial information. However, effective deployment in
this domain demands rigorous attention to domain-
specific requirements: models must comprehend
very long, heterogeneous documents (e.g., narra-
tive text, tables, images, charts), perform numeri-

cally exact computations, and provide transparent,
auditable outputs that minimize ambiguity in inter-
pretation, extraction, and calculation.

Understanding and analyzing financial reports is
a critical yet challenging task, especially when it
involves complex numerical reasoning. The VLSP
2025 shared task focuses on Vietnamese financial
question answering where systems must not only
compute correct answers but also provide an ex-
ecutable reasoning program explaining how the
answer was derived.

Formally, given a financial document D (compris-
ing textual passages and tables) and a Vietnamese
question Q, the objective is to output a program
π = (o1, . . . , oT ) drawn from the operation set

O =


add(), subtract(), multiply(),
divide(), table_max(),
table_min(), table_sum(),
table_average()

 ,

such that executing π on D yields the numeric an-
swer A ∈ R.

In this work, we present our solution to the VLSP
2025 Numerical Reasoning challenge. We investi-
gate the use of small language models (SLMs) for
program-guided QA, specifically Alibaba’s open-
source Qwen-based models, which have strong
multilingual and numerical reasoning capabilities,
and the domain-specific Fin-R1 model (Liu et al.,
2025). Our approach has two main components:
(1) Data Augmentation via FinQA – to over-
come the scarcity of Vietnamese training exam-
ples, we leverage the English FinQA dataset (Chen
et al., 2021) by translating it and then using a
reasoning-optimized SLM to generate detailed rea-
soning paths for each question. Only logically cor-
rect reasoning paths are added to training dataset.
(2) Fine-tuning and Reinforcement Learning–
we apply supervised fine-tuning to teach the model
the desired question-program behavior, followed



by a customized RL stage (using the GRPO algo-
rithm) to further align the model’s reasoning with
correct outcomes, to construct MoFin - the small
language model tailored for financial reasoning.

2 Related Works

Financial QA Datasets: Our task is closest to
FinQA (Chen et al., 2021), which targets numeric,
multi-hop reasoning over real financial reports and
provides gold solution programs for program gen-
eration/execution. Extensions include ConvFinQA
(conversational Q&A) and DocFinQA (full an-
nual report contexts). TAT-QA (Zhu et al., 2021)
similarly emphasizes numerical reasoning over
text–table evidence. We translate FinQA to Viet-
namese and use its annotated programs as super-
vision, reflecting a broader trend toward coupling
NLP with symbolic computation.

Financial Domain LLMs: Domain-specific
models address finance-specific language and rea-
soning. Early FinNLP work (e.g., FinBERT (Araci,
2019)) focused on sentiment/NER, while Fin-R1
targets financial reasoning via curated data (includ-
ing FinQA) and a two-stage SFT+RL pipeline with
explicit CoT/reward modeling, reportedly improv-
ing interpretability and accuracy. We treat Fin-R1
(7B) as an expert baseline against general LLMs
(e.g., Qwen). Relatedly, FinR1 (Liu et al., 2025)
distills GPT-4 reasoning to train 7B/14B models.
Following this line, we augment training with LLM-
generated rationales and fine-tune for financial QA.

3 Methodology

3.1 Overview
Our solution comprises a training pipeline coupled
with a data-generation and verification workflow
shown in Figure 1. We first translate a total of
5,742 distinct entries in the original FinQA corpus
into Vietnamese using OpenAI’s o3 model. Each
example is then normalized into a single context
by converting its table into Markdown and con-
catenating them with the corresponding pre-text
and post-text. This unified representation is fed to
reasoning-oriented LLMs—specifically DeepSeek-
R1-Distill-Qwen-7B—to produce (i) a chain-of-
thought (CoT) reasoning path and (ii) a reasoning
program constrained to the operators permitted by
the task. The predicted program is executed to yield
a numeric answer. For modeling, we conduct Su-
pervised Fine-Tuning (SFT) and Groupwise Rein-
forcement Policy Optimization (GRPO) on Qwen-

based 7B models (Qwen2.5-7B-Instruct, Qwen3-
7B-Instruct) and the FinR1 model, selecting the
best-performing configuration on the public evalua-
tion set. At inference time, we adopt majority-vote
(self-consistency) decoding: the model samples
10 reasoning programs, and we select the most
frequent program as the final prediction before ex-
ecution. Over successive iterations, we refined
preprocessing, supervision, and decoding, which
improved both execution and program accuracy.

3.2 Data Construction

VLSP 2025 Dataset: The organizers provided
a training set of a total of 2,993 sample in-
stances, derived from Vietnamese financial reports
(2020–2025) and a translated version of the FinQA
dataset. Each example in the dataset consists of
a textual context (several paragraphs of pre-text
describing company background or financial com-
mentary), a table of financial figures (e.g. quar-
terly results, ratios, etc.), and possibly some post-
text. All programs are represented in a Lisp-like
functional format, with operations (add, subtract,
multiply, divide, etc.) and the ability to refer to
intermediate results (denoted as #i for the result of
the i-th operation). This formal representation is
uniform and executable, which allows automatic
evaluation of results. The training data contains
the reasoning paths, the ground-truth programs and
their executed numeric answers. The private test set
(held-out by organizers with 497 sample instances)
is used for final evaluation, measuring execution
accuracy and program accuracy. We stress that
program accuracy requires the model to capture
the same reasoning process as the reference, up to
commutative reordering. Thus, the model should
ideally learn to produce a logically equivalent pro-
gram even if not identical token-for-token.

Supervised fine-tuning (SFT) trained solely on
the original (heavily preprocessed and filtered)
VLSP data only attains 60.16% accuracy on the
VLSP organizers’ public test set, which is not
substantially higher than the FinR1 baseline (Ta-
ble 1). To mitigate data scarcity and domain mis-
match while enriching supervision for numerical
reasoning in Vietnamese financial QA, we design
a human-in-the-loop data pipeline that produces a
high-quality Vietnamese corpus with explicit rea-
soning. The pipeline comprises three stages—data
translation, CoT/program generation, and multi-
layer validation—summarized in Figure 1.



Figure 1: Schematic of the data construction workflow, showing ingestion of raw documents, preprocessing, and
assembly into the final standardized dataset.

3.2.1 Data Source
We surveyed FinQA and ConvFinQA, two widely
used English-language benchmarks for corporate
financial reasoning. During analysis, we observed
that many ConvFinQA queries are decompositions
of FinQA questions, leading to substantial con-
tent overlap between the two sets. Using both
would risk data leakage and bias during SFT. Con-
sequently, we restricted external supervision to
FinQA (5,742 sample instances) for translation
and later merged it with the organizer-provided
VLSP corpus to form the comprehensive pool for
reasoning-trajectory generation and validation.

For transparency and to facilitate future research,
we retain and release the subset of examples that
failed our quality filters. Specifically, we identified
670 instances missing a reasoning trajectory and
3,869 instances with malformed program syntax;
we also flagged additional cases where the executed
numeric answer did not match the FinQA ground
truth. This “negative” split has been submitted
to the VLSP organizers together with the curated
training set, enabling the community to audit, cor-
rect, and enrich Vietnamese financial QA resources
over time. All items are clearly labeled with failure
type and provenance to support systematic curation
and error analysis.

3.2.2 Data Processing
(1) Data Translation via FinQA

Because our target domain is Vietnamese finance
and accounting, we first evaluated several state-of-
the-art English to Vietnamese neural machine trans-
lation (NMT) systems—vinai-translate-en2vi-v2,
EnViT5-translation, MTet, and PhoMT. In our ex-
periments, these models struggled with (i) domain
terminology and (ii) long, mixed-structure contexts
(pre-text and tables and post-text), often bounded
by relatively short maximum context lengths (e.g.,

1000 tokens) and prone to altering Markdown table
structure when translating the tables in isolation.

To preserve semantics and structure, we there-
fore translated the entire 5,742 of FinQA sample
holistically—pre-text, table (converted to Mark-
down), and post-text concatenated into a single
context—using OpenAI’s o3 model, followed by
manual terminology checks aided by bilingual fi-
nancial dictionaries. Although the gold FinQA pro-
grams are largely language-agnostic, we elected to
reconstruct the reasoning trajectory and program in
Vietnamese rather than directly translating operator
strings, ensuring stylistic and structural consistency
with VLSP expectations.

(2) Reasoning Trajectory Augmentation
We generated natural-language chains of thought

(CoT) and constrained programs in Vietnamese to
mirror the style expected in VLSP. Concretely, we
used DeepSeek-R1-Distill-Qwen-7B (a reasoning-
focused model) as the primary generator, with
Qwen2.5-Math-7B-Instruct as a secondary refer-
ence when needed. Generation was performed at
scale with vLLM, using:

• Temperature was set to 0.6, min p was set to
0.1, maximum new tokens was set to 16,384.

• CoT data wrapped in <think> ... </think> (per
Qwen-family recommendations).

• Programs wrapped in <PROGRAM SYN-
TAX> ... </PROGRAM SYNTAX>, con-
strained to the task-allowed operators.

Prompts were in Vietnamese and instructed the
model to (i) reason step-by-step, (ii) emit a syn-
tactically valid program, and (iii) conclude with
an explicit numeric answer. We then parsed the
model outputs to derive a pseudo-gold Vietnamese
program for each item, normalizing whitespace



and identifiers and aligning the reported numeric
answer with the program’s result.

(3) Data Validation
Each predicted program was executed and its

numeric result compared against the FinQA gold
answer. Items failing any criterion—execution mis-
match, syntax errors, missing steps, or logically in-
coherent reasoning—were discarded or regenerated
with prompt adjustments. Validation employed a
dual-check protocol: Human validation by 5 finan-
cial analysts from M Service, focusing on terminol-
ogy fidelity, table-to-text alignment, and numerical
soundness. LLM-as-judge (DeepSeek-R1-Distill-
Qwen-7B) to flag structural and logical issues at
scale and to standardize format compliance.

This process yielded an augmented set of 3,787
high-quality Vietnamese QA–program pairs de-
rived from FinQA. By filtering strictly for pro-
gram validity and execution correctness, we en-
sured the additional data teaches valid solution pat-
terns rather than amplifying noise—akin to prior
CoT distillation approaches, but using an open gen-
erator better aligned with our domain and deploy-
ment constraints.

3.3 Training Method

3.3.1 Training Data Template

Our final training dataset comprised a total of 3,747
distinct entries: (a) 540 samples from the official
VLSP Vietnamese financial-report QA with vali-
dated Vietnamese CoT and programs , and (b) the
translated FinQA subset with validated Vietnamese
CoT and programs (3,247 pairs).

We did not directly incorporate additional exter-
nal datasets; however, FinQA’s coverage of com-
mon financial-reasoning tasks (e.g., growth-rate
calculations, year-over-year comparisons, and seg-
ment summations) provided a broad foundation
for training. We also reserved the official portion
of the original FinQA dataset as a validation set
(497 samples) — preprocessed identically to the
training data—and combined it with the VLSP or-
ganizers’ public test set to monitor performance
during fine-tuning. Each training instance is ren-
dered as a chat-style serialized sequence with three
roles: (1) a system message that specifies format-
ting constraints and response policy (the schema
that the model must follow), (2) a user message
that contains the full context (pre-text, table con-
verted to Markdown, post-text) and the question,
and (3) an assistant message that provides the

reasoning path and the reasoning program. Un-
less otherwise noted, tokenization follows the base
model’s native tokenizer, ensuring compatibility
with pretrained checkpoints and avoiding undesir-
able token fragmentation in financial terminology
or numeric tokens.

3.3.2 Supervised Fine-Tuning

Given the limited size of the training corpus,
parameter-efficient fine-tuning (LoRA) proved de-
cisively more effective than full-parameter updates
in our setting. Empirically, LoRA delivered higher
validation stability and accuracy while using sub-
stantially less compute and memory, likely due to
its implicit regularization and better preservation
of pretrained knowledge—both of which mitigate
overfitting in the low-data regime.

Configurations: We fine-tuned all baseline mod-
els with Unsloth’s FastLanguageModel, configur-
ing a maximum sequence length of 16,384 tokens
with automatic RoPE scaling and training in full-
precision BF16 on H100 hardware. Parameter-
efficient adaptation used LoRA with rank 128 ap-
plied to all projection modules of all layers; lora
alpha was set to 256, dropout was omitted, and
Unsloth’s gradient checkpointing was enabled for
long-context training. Tokenization followed the
official Qwen-2.5 chat template, which formats
each conversation JSON into a single text field
for supervised fine-tuning. Optimization employed
AdamW in 8-bit with a learning rate of 2× 10−5,
weight decay of 0.01, a linear schedule with five
warmup steps, per-step logging. Unless noted other-
wise, training used a per-GPU batch of 4 sequences
and 4 gradient-accumulation steps, yielding an ef-
fective batch of approximately 16 sequences. Mod-
els were trained for 3 to 9 epochs over roughly
40000 examples using TRL’s SFTTrainer with Dat-
aCollatorForSeq2Seq, and all runs used the fixed
random seed 3407. Experiments were conducted
on two NVIDIA H100 80-GB GPUs in parallel,
and a complete run required about three hours
for both Qwen2.5-7B-Instruct, Qwen3-7B-Instruct,
and FinR1. We monitored the execution accuracy
on the validation set after each epoch; both Qwen-
based models and Fin-R1 converged to high train-
ing accuracy quickly (within one epoch) given the
small data size, but we continued into a second
epoch with a lower learning rate to refine the pro-
gram generation format (to reduce syntax errors).



3.3.3 GRPO

After SFT, the model reliably emits well-formed
programs; however, some outputs still fail to exe-
cute to the correct answer or follow suboptimal rea-
soning paths (e.g., aggregating three terms in a sin-
gle step rather than computing intermediate subto-
tals), which can hinder program equivalence and
robustness. Inspired by (Liu et al., 2025), we there-
fore introduced a reinforcement-learning alignment
stage to further improve reasoning fidelity. Specifi-
cally, we adopt Groupwise Reinforcement Policy
Optimization (GRPO)—a policy-optimization vari-
ant that contrasts groups of sampled outputs—well-
suited to fine-tuning compact models, and optimize
rewards tied to program validity and execution
correctness. We also experimented with a length
penalty to prefer shorter programs (maximum 7 op-
erations to avoid overly convoluted reasoning), but
found the models naturally kept programs concise.

Configurations: The RL training was done us-
ing a maximum context of 16,384 tokens, and full-
precision weights; for generation within GRPO
we use vLLM sampling with minimum probability
min-p set to 0.1, top-p set to 1, no top-k cap, a fixed
seed of 3407, and stopping at the tokenizer’s end-
of-sequence, and we produce 4 completions per
prompt to enable group-wise relative preference
learning. Before training, we tokenize all prompts,
compute the empirical 19% of sequence lengths,
filter examples exceeding this threshold, set the
prompt budget to that percentile plus one token,
and allocate the remaining context to completions.
We implement 4 reward functions that are applied
per group of completions, namely an exact-format
reward that grants a higher score when all tags ap-
pear correctly and in order, an approximate-format
reward that softly encourages single occurrences
of each tag while penalizing extraneous ones, an
answer-correctness reward that compares the ex-
tracted program against the reference answer with
both strict and whitespace-insensitive matching,
and an answer-correctness reward evaluates the fi-
nal execution result of the extracted program, grant-
ing full credit for an exact match and a positive but
smaller reward when the relative error with respect
to the ground truth does not exceed 10%. We have
bundled all implementation details of the GRPO
stage in the source and sent to the VLSP organizers.
GRPO hyperparameters are fixed to temperature
2.0, learning rate 5 × 10−6, weight decay 0.01,
warmup ratio 0.1 with a linear schedule, optimizer

adamw 8bit, per-device batch size 4 with 4 gradi-
ent accumulation, 4 generations per prompt, a cap
of 100 training steps with checkpointing at step
100. We performed around 3,500 update steps of
RL (which amounted to roughly one pass through
the RL dataset) with a KL divergence constraint to
ensure the policy doesn’t drift too far from the SFT
model.

3.4 Evaluation

Evaluation and scoring of model checkpoints are
performed automatically on the VLSP organizers’
system. The ground-truth annotations for the pri-
vate test set, including both the reference program
syntax and the final execution results, as well as
the metric implementations, are kept private by the
organizers during and after the competition and
cannot be accessed by participants. To ensure ob-
jectivity and fairness, all results reported in this
paper are taken directly from the final private test
leaderboard on the official VLSP website. The
public leaderboard reports two metrics as Program
Accuracy and Execution Accuracy:

Program Accuracy: For each example in the
private test set, the system checks whether the gen-
erated program is logically and mathematically
equivalent to the reference program. Equivalence
is determined by comparing program structures
after replacing all concrete arguments with sym-
bolic placeholders and then assessing whether the
same sequence of operations is applied, allowing
for the following symmetries: reordering of com-
mutative operations, regrouping allowed by asso-
ciativity, and consistent renaming of intermediate
results. Semantically equivalent decompositions
are counted as equivalent. A prediction is counted
as correct if the generated program is equivalent
to the reference program. Program Accuracy is
reported as the proportion of examples that satisfy
this condition, expressed as a percentage.

Execution Accuracy: For each example in the
private test set, the generated program is executed
to produce a single numerical answer. This answer
is compared with the organizers’ ground-truth nu-
merical result for that example. A prediction is
counted as correct if the produced answer matches
the ground-truth answer under the organizers’ com-
parison procedure. Execution Accuracy is reported
as the proportion of examples that satisfy this con-
dition, expressed as a percentage.



3.5 Experiment

In the first stage, the baselines are the off-the-shelf,
unfine-tuned checkpoints — Qwen2.5-7B-Instruct,
Qwen3-7B-Instruct, and FinR1 — evaluated in a
zero-shot setting under the same system prompt and
input serialization as all subsequent experiments,
ensuring a fair comparison. We experimented with
3 base model configurations:

Fin-R1: a 7-billion-parameter SLM specifically
fine-tuned for financial reasoning. Fin-R1 already
understands tasks like FinQA and uses a chain-
of-thought format with <think> tags for reasoning
steps. We used the open checkpoint released by
SUFE-AIFLM-Lab (available on HuggingFace).
Despite its prior training, Fin-R1 required addi-
tional fine-tuning on Vietnamese data, since its core
training corpus was primarily English (with some
Chinese). We expected Fin-R1 to excel at financial
calculations but possibly struggle with Vietnamese
language nuances out-of-the-box.

Qwen2.5-7B-Instruct: a 7-billion-parameter
general SLM with strong multilingual capability.
We chose the instruct variant which is aligned to
follow prompts. Qwen-2.5 has demonstrated com-
petitive reasoning ability in the general domain,
and we included it to test if a high-capacity general
model could adapt to this domain via fine-tuning.

Qwen3-7B-Instruct: the newer generation
Qwen3 model at 7B parameters. According to
the model card, Qwen3’s architecture and training
improvements allow a smaller model to match or
outperform a larger Qwen2.5 model. Indeed, we
observed in our experiments that the Qwen3-7B-
Instruct achieved similar accuracy to Qwen2.5-7B
on our validation set. We also report results for
comparison in Table 1.

4 Analysis

The performance results across successive training
stages reveal a clear upward trend for all models,
highlighting the effectiveness of both fine-tuning
and improved decoding strategies. Our best model,
MoFin, attains an execution accuracy of 81.95%,
the highest recorded in the VLSP 2025 Numerical
Reasoning QA challenge (Table 3). In particular,
supervised fine-tuning (SFT) using LoRA adapters
produces a substantial jump in accuracy for every
model. For instance, Qwen2.5-7B-Instruct’s score
rises from 0.6016 at baseline to 0.7145 after SFT,
an absolute gain of 0.11 (19% relative improve-
ment). Qwen3-7B-Instruct and FinR1 show similar

boosts (from 0.60 to 0.71), underscoring that tar-
geted instruction tuning dramatically improves the
models’ ability to generate correct programs. This
large gain is consistent with the known efficacy of
LoRA-based fine-tuning, where injecting trainable
low-rank matrices into a GPT’s layers allows effi-
cient adaptation without full model retraining. The
result is a model more aligned to the task distri-
bution, thereby significantly enhancing program
correctness out-of-the-box.

Performance Gains across Training Stages:
The stepwise improvements from Baseline to SFT,
then to GRPO, finally to Majority-Voting Decoding,
exhibit diminishing but still meaningful returns at
each stage. In summary, across all models:

Supervised Fine-Tuning (LoRA) – provides
the largest single-stage gain, raising accuracy by
approximately 0.12 absolute (an 18–23% relative
increase from baseline).

GRPO Fine-Tuning – yields a further
0.02–0.03 absolute improvement ( 3–5% relative),
indicating moderate gains through outcome-
oriented reinforcement learning. GRPO’s impact,
while smaller than SFT, is notable given that it
directly optimizes for correct outputs via verifiable
reward signals (e.g. code execution success or
math solution correctness).

Majority-Voting Decoding (n=10) – con-
tributes an additional 0.06–0.08 absolute boost
( 8–11% relative), demonstrating that an ensemble-
of-samples decoding strategy can rival or even ex-
ceed the benefit of an extra RL fine-tuning stage
in improving execution accuracy. This aligns
with prior findings (Wang et al., 2025) that self-
consistency (majority voting) in CoT decoding
yields significant accuracy gains by selecting the
most consistent answer among multiple outputs.

These trends indicate that each training interven-
tion addresses different performance gaps: SFT ac-
counts for the bulk of learning the task format and
basic reasoning, GRPO fine-tunes the models to-
ward producing verifiably correct outcomes (likely
by refining the reasoning or code-generation pol-
icy), and the majority-vote decoding then reduces
stochastic errors at inference time by aggregating
multiple reasoning paths.

Model-Wise Comparison: Comparing the mod-
els, we observe that Qwen2.5-7B-Instruct holds a
slight but consistent performance edge over Qwen3-
7B-Instruct at every stage. For example, after SFT
both reach roughly the same tier (0.7145 vs 0.7086),
and this gap persists through GRPO (0.7411 vs



Model Baseline + SFT (LoRA) + SFT + GRPO + SFT + GRPO + MVD (n = 10)
Qwen2.5-7B-Instruct 0.6016 0.7145 0.7411 0.8195
Qwen3-7B-Instruct 0.5996 0.7086 0.7396 0.8136
FinR1 0.5795 0.7086 0.7278 0.7885

Table 1: Performance progression across training stages. MoFin attains an execution accuracy of 81.95%

0.7396) and final decoding (0.8195 vs 0.8136).
The differences (on the order of 0.5–0.8 percentage
points) are small, suggesting both Qwen variants
benefit similarly from the training pipeline; how-
ever, Qwen2.5’s marginal lead could imply that its
architecture or pre-training gave it a slight advan-
tage in these reasoning-centric tasks. By contrast,
FinR1 begins with a lower baseline (0.5795) but
nearly catches up to the Qwen models after fine-
tuning. In fact, FinR1’s score after SFT (0.7086)
is on par with Qwen3’s, indicating that domain-
specific pre-training did not hinder its adaptabil-
ity. FinR1 is a model originally built for financial
reasoning using a two-stage SFT+RL paradigm,
yet its baseline underperforms the general-purpose
Qwens—likely because FinR1’s pre-training was
narrower. After GRPO, FinR1 reaches 0.7278,
slightly below the Qwens (0.74), and with majority
voting it peaks at 0.7885. Thus, even though FinR1
was designed for complex reasoning in a specific
domain, the general Qwen models maintain a small
absolute advantage ( 0.02–0.03) in final accuracy
on this evaluation. This comparative outcome sug-
gests that a broadly-trained 7B model (Qwen) can
match or exceed a specialized model’s reasoning
performance when both are given equivalent fine-
tuning and decoding enhancements. Finally, the
majority-voting decoding brings an ensemble ef-
fect that substantially boosts execution accuracy
without additional training, and elevates our best
model (MoFin) to over 81% accuracy.

5 Discussion

Through this project, we gained several insights
into building transparent reasoning models in the
financial domain, particularly for a language like
Vietnamese. We discuss what worked, what did not,
and several domain-specific observations below:

Understanding tabular data: We experimented
with various methods to handle tables within fi-
nancial documents. These included converting
tables to markdown text, adding descriptive la-
bels for rows and columns, and even preserving
the original table format when feeding data into

the models (both the base models and those fine-
tuned via SFT and GRPO). However, none of these
approaches proved completely effective. During
evaluation, we still encountered errors in tasks
that seemed straightforward, such as extracting the
value from a single table cell. This demonstrates
that the language models did not truly grasp the
two-dimensional relational structure inherent in ta-
bles. Moreover, converting tables to a markdown-
like format dramatically increased the token count
during training and inference, which in turn raised
the risk of hallucinations. Understanding and rea-
soning over tabular data remains a challenging
problem – one that is especially important in the
financial domain – and likely requires dedicated
solutions beyond the techniques we tried.

Fine-tuning specialized vs. general models:
We hypothesized that further fine-tuning the FinR1
model (which had already been extensively trained
via supervised fine-tuning and Group Relative Pol-
icy Optimization, GRPO, on large English and Chi-
nese financial datasets) would allow us to lever-
age its prior financial knowledge and multilingual
capabilities. In theory, this approach would help
the model produce well-formatted, accurate rea-
soning in Vietnamese by exploiting knowledge it
learned in other languages. However, our experi-
ments showed the opposite result: performing SFT
and GRPO on a general-purpose model yielded
better performance than fine-tuning the already
finance-specialized FinR1 model. This suggests
that a model heavily tuned to a specific domain and
language can become over-specialized, making it
difficult to adapt to a different language even within
the same domain. In our case, starting from a more
generic pretrained model and then teaching it the
domain and language simultaneously proved more
effective than trying to transplant Vietnamese onto
an English/Chinese financial expert model.

Persistent output formatting issues: Through-
out the evaluation (on both the public and private
test sets), we observed numerous output formatting
errors, even after the RL fine-tuning phase. Some
of the most common issues were: The generated



Frequency of the most frequent answer 10.0 9.0 5.0 7.0 6.0 8.0 4.0 3.0 2.0
Number of samples in private test 587 171 151 144 135 119 119 115 84

Table 2: Distribution stats of majority-voting decoding on the private test set

Rank Team Execution Accuracy Program Accuracy
1 MoFin 0.8195 0.7500
2 HUET 0.7988 0.7663
3 dathvt 0.7914 0.6982
4 truong 0.7426 0.6967

Table 3: Final Leaderboard of VLSP 2025 Challenge on Numerical Reasoning QA. MoFin ranks first with the top
execution accuracy on the final private test set.

answers sometimes contained anomalous tokens;
Duplicate or malformed tokens; Extraneous multi-
plication in percentages In summary, while RL fine-
tuning corrected many aspects of the model’s be-
havior, it did not fully eliminate these format errors.
Further refinement (through data cleaning, archi-
tectural adjustments, or additional training passes)
is needed to address these output artifacts.

Challenges in reward function design: Due to
time constraints, we could not extensively explore
complex reward designs during the reinforcement
learning phase. We implemented only straightfor-
ward criteria in our reward function – for example,
checking that the output adhered to the desired
syntax (and penalizing any malformed format or
unwanted tokens), and verifying that the reasoning
trajectory and program were present and structured
correctly. Designing a reward signal to capture
the correctness of the reasoning program, however,
proved very difficult. In contrast to tasks where
one can simply reward a correct final answer, our
task required rewarding the correctness of an entire
program (i.e. a sequence of computational steps
leading to the answer). Determining whether a gen-
erated program is mathematically equivalent to the
ground-truth program is non-trivial: two different
programs can yield the same result, and operations
might be ordered or expressed differently with-
out being wrong. This ambiguity made automatic
rewards for “program accuracy” unreliable – we
could not feasibly enumerate all equivalent forms
of the solution program, and manual evaluation of
each output was impractical. In our initial attempt
to tackle this, we employed the LLM itself (our
DeepSeek-R1-Distill-Qwen-7B model) as a judge
to decide if a generated program was equivalent to
the reference solution. While this LLM-as-a-judge
approach provided some signal, its reliability at

scale is uncertain and it may introduce bias. Over-
all, the difficulty we faced underlines the need for
more robust reward function design (potentially
involving formal program verification or more ad-
vanced automated judges) to properly guide the
model during RL fine-tuning.

Hallucinations with partial table operations:
Using a majority-vote decoding strategy for chain-
of-thought (akin to the self-consistency method of
(Wang et al., 2025)), we found a recurring failure
on subset queries: when asked to compute over
n− 1 of n values, the model often defaulted to ta-
ble_sum() or table_average() over the full column,
yielding incorrect answers. The converse also oc-
curred: especially in longer programs (four or more
ops), the model expanded calculations manually in-
stead of using operators like table_sum(). VLSP
scoring may not distinguish correct manual work
from operator-based solutions, but both behaviors
are undesirable—the first violates constraints; the
second signals poor tool use. These patterns reveal
gaps in fine-grained logical control and motivate
training or architectural changes to enforce subset
awareness and appropriate operator selection.

Majority-voting decoding as a self-consistency
metric for the SLM: As shown in Table 2, on
the private test set (n = 1,625), our best model
never produced 10 distinct responses across 10
stochastic decodes; the minimum response fre-
quency was at least 2. The resulting distribution
helps identify particularly difficult financial docu-
ments. At the same time, although majority-vote
decoding substantially boosts performance, it also
raises concerns about the consistency of our trained
model—suggesting that part of the improvement
reflects inference-time ensembling rather than in-
trinsic single-pass reliability.

Cross-lingual artifacts in reasoning paths:



We often saw Chinese tokens in the model’s
intermediate reasoning despite Vietnamese-only
instructions. Trained first on English/Chinese,
the model sometimes switched languages mid-
reasoning: the final program was usually in Viet-
namese, but traces—and rarely parts of the explana-
tion—appeared in Chinese. This undermines con-
sistency and can confuse evaluators or users, sug-
gesting multilingual pretraining triggers language
mixing under hard vocabulary or logic. Enforcing
strict language control via decoding constraints is
a key next step for production use.

6 Limitations

Despite strong gains, key limitations remain: brit-
tle tabular reasoning (Markdown inflates context
and obscures 2-D structure); weak cross-lingual
transfer (FinR1 lags general Qwen backbones on
Vietnamese, suggesting over-specialization); frag-
ile outputs even with GRPO (spurious tokens, dupli-
cation, ambiguous %), requiring deterministic post-
processing; hard-to-define RL rewards for program
accuracy (equivalence checks are unreliable; LLM-
as-judge adds variance); operator misuse (column-
wide functions on subsets, manual arithmetic); and
majority-vote decoding that masks single-pass in-
stability, with sporadic Chinese leakage in Viet-
namese chains.

7 Conclusion and Future Work

In conclusion, our work demonstrated that a combi-
nation of high-quality data and careful fine-tuning
techniques can successfully adapt a SLM to per-
form complex reasoning in a specialized domain.
Even without access to extremely large models, we
achieved strong performance by leveraging open-
source models and systematically tailoring them to
the task at hand. Working within the Vietnamese
financial context introduced several unique chal-
lenges—such as handling tabular data and preserv-
ing output format integrity—but also offered op-
portunities for cross-lingual knowledge transfer. In
particular, leveraging the English FinQA dataset en-
abled the model to acquire relevant financial reason-
ing patterns. Furthermore, this project underscored
the importance of evaluation metrics that extend
beyond simple accuracy. By optimizing for the
correctness of the reasoning program—rather than
solely the final numerical answer—we encouraged
the model to generate accurate step-by-step solu-
tions, thereby improving the reliability and trans-

parency of its outputs. This emphasis on program-
level correctness proved valuable for diagnosing,
mitigating errors in the model’s reasoning process.

Looking ahead, there are multiple avenues for
future work to further improve transparent finan-
cial reasoning models. We will strengthen ta-
ble reasoning with architectures and preprocess-
ing that capture 2-D structure, and develop RL re-
wards that assess semantic correctness using auto-
mated symbolic or LLM-based evaluators. We will
also enforce Vietnamese-only reasoning through
prompts, decoding constraints, and multilingual
training, and pursue cross-lingual adaptation—e.g.,
vocabulary/embedding transfer or code-switch fine-
tuning—to combine finance expertise with multi-
lingual knowledge. Finally, we will reduce halluci-
nations and remove residual formatting artifacts to
improve robustness.
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