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Abstract. Large language models have emerged as effective ma-
chine translation systems. In this paper, we explore how a general
instruction-tuned large language model can be improved for machine
translation using relatively few easily produced data resources. Us-
ing Slovene as a use case, we improve the GaMS-9B-Instruct model
using Direct Preference Optimization (DPO) training on a program-
matically curated and enhanced subset of a public dataset. As DPO
requires pairs of quality-ranked instances, we generated its training
dataset by translating English Wikipedia articles using two LLMs,
GaMS-9B-Instruct and EuroLLM-9B-Instruct. We ranked the result-
ing translations based on heuristics coupled with automatic evalua-
tion metrics such as COMET. The evaluation shows that our fine-
tuned model outperforms both models involved in the dataset gen-
eration. In comparison to the baseline models, the fine-tuned model
achieved a COMET score gain of around 0.04 and 0.02, respectively,
on translating Wikipedia articles. It also more consistently avoids
language and formatting errors.

1 Introduction

Decoder-only large language models (LLMs) serve as versatile tools
for a variety of natural language processing tasks, such as question
answering, summarization, and translation. Typically, LLMs undergo
three phases of training: pretraining, supervised fine-tuning (SFT),
and preference alignment. The quality of a translation depends on
many fine details (e.g., style, semantics, figurative language, etc.),
which might not be sufficiently well learned during SFT. Our hy-
pothesis is that a model can improve on subtle differences between
a reasonable and good translation through preference alignment. In
this work, we present the training of an LLM with Direct Preference
Optimization (DPO) [21] for optimizing its translation abilities. Us-
ing Slovene as a use case, our primary goal is to develop a reliable
open-source English to Slovene translator that can be used for trans-
lating large English corpora to Slovene.
The main contributions of our research are:

e A language agnostic method for improving translation models.
The approach is based on synthetic data generation and is suitable
for less-resourced languages such as Slovene.

e An open-source English to Slovene translation model capable of
reliably generating high-quality translations."

e Source code for our data generation and fine-tuning pipeline for
easier reproduction.’
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Less-resourced languages, such as Slovene, lack sufficient high-
quality data. One way to obtain more data is by translating high-
quality English corpora. However, for Slovene, current open-source
translators, such as RSDO [13], are not reliable enough for such a
task, and the most successful commercial models, such as DeepL?
are too expensive for translating large corpora. Hence, there is a need
for a reliable open-source English to Slovene machine translation
model.

Currently, there are no existing preference-annotated datasets for
English to Slovene translation. Obtaining such a dataset using human
translators and annotators would be slow and prohibitively expen-
sive. Hence, we automatically create such a dataset. Our core insight
is that even without access to a human-curated preference corpus for
English to Slovene translation, we can bootstrap a reliable preference
dataset by exploiting the behavior of two independent LLMs and a
suite of automated filters. By prompting both GaMS-9B-Instruct [4]
and EuroLLM-9B-Instruct [15] to translate English Wikipedia arti-
cles [30] and a collection of English news articles from Common
Crawl (CC-News dataset), we generate dual translations for each arti-
cle, resulting in a dataset with around 67,000 entries from Wikipedia
and 30,000 from CC-News. Whenever one model produces a clean
Slovene output and the other makes an obvious error - whether by
continuing the conversation in the wrong language, by truncating
the translation, or by adding unwanted prefixes - we can confidently
mark the former as chosen and the latter as rejected. To capture finer
quality differences, we score all translations without any obvious
mistakes with COMET [23] and select pairs whose COMET scores
differ by some minimum threshold. The result is a diverse, synthetic
preference dataset that reflects both unacceptable errors (wrong lan-
guage, incomplete output, etc.) and subtler language fluency distinc-
tions captured by the COMET scores. After curating the translation
pairs, our final preference dataset consists of around 25,000 entries
for Wikipedia and 10,000 from CC-News.

Using generated synthetic preference data, we apply Direct Prefer-
ence Optimization (DPO) to the GaMS-9B-Instruct model. We chose
DPO because it directly optimizes the likelihood ratio between cho-
sen and rejected outputs, sidestepping the instability and reward-
modeling overhead of standard Reinforcement Learning from Hu-
man Feedback (RLHF) pipelines [2]. We train the model on the gen-
erated preference pairs over three epochs on 16 A100 GPUs. We em-
ploy a linear learning-rate warm-up followed by cosine decay to sta-
bilize the early DPO updates. This fine-tuning framework takes ad-
vantage of both our filtering heuristics and DPO’s principled ranking
objective, driving the 9B-parameter model toward more fluent and

3 https://www.deepl.com



complete Slovene translations.

We evaluate the effectiveness of our approach on the public
SloBench leaderboard* and on unseen Wikipedia and CC-News ar-
ticles. We show that our DPO-trained GaMS-9B-Instruct model out-
performs the original model variant on SloBench and almost matches
the performance of considerably larger GaMS-27B-Instruct [3]. Ad-
ditionally, on our Wikipedia benchmark, testing for language and for-
matting consistency, our model achieves an error rate of 0.8 %, which
is a substantial improvement over the original model’s 12 %.

The rest of the paper is organized into five sections. In Section
2, we present related work on the development of Slovene language
models and other tools we rely on. In Section 3, we explain how
the training data was generated through our heuristic approach and
automatic metrics. The training pipeline and hyperparameter search
are presented in Section 4. In Section 5, we evaluate our model and
compare it to other state-of-the-art open-source models. We provide
conclusions, limitations, and directions for further work in Section 6.

2 Background and Related work

Our work is related to other research on LLMs for less-resourced lan-
guages, like Slovene, the ongoing research in preference alignment
of LLMs, machine translation, and evaluation methods for machine
translation. These topics are outlined below.

2.1 Slovene Large Language Models

Most current open-source LLMs are trained on predominantly En-
glish data. However, there are some multilingual models that sup-
port Slovene. Examples of such models are EuroLLM [15], Gemma
2 [6], and Gemma 3 [7]. These models were trained on multilingual
datasets, with small amounts of Slovene texts. The portion of Slovene
data in these datasets was relatively small (e.g., the EuroLLM dataset
consists of only around 1 % Slovene texts), meaning there is room
for improvement.

Efforts to develop strong LLMs for Slovene have primarily fo-
cused on adapting existing English-centric models due to the high
cost of training an LLM from scratch. A notable early initiative in
this area was the development of SlovenianGPT [8] and GaMS-1B
[27]. Those were followed by the development of 2B, 9B, and 27B
parameter versions of the GaMS model. These developments demon-
strated a key methodology for less-resourced languages: continuing
the pre-training of a powerful base model on a relatively large corpus
of Slovene text. The process also involved creating a new subword
tokenizer adapted to the specifics of the Slovene language and em-
ploying embedding initialization techniques to transfer knowledge
from the original English model.

2.2  Machine Translators

Inspired by Vaswani et al. [25], machine translators have typically
been built on encoder—decoder Transformer architectures. Later,
OpenAl proved that decoder-only language models have the potential
to learn many language-related tasks [20], including machine trans-
lation. They showed it by training their model for translation between
English and French.

The performance of machine translators on less-resourced lan-
guages such as Slovene often does not match the performance
of models for high-resource languages. For example, a Slovene
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open-source RSDO Neural Machine Translator encoder-decoder
model trained specifically for English-to-Slovene translation per-
forms poorly on unseen domains compared to recent state-of-the-
art models. Currently, the best-performing machine translators for
Slovene, based on a public SloBench leaderboard, are DeepL,
Claude, GPT, and Gemini. However, these models are commercial
and translating larger corpora with them is costly. The best open-
source models on this benchmark are EuroLLM and GaMS. How-
ever, as our preliminary evaluation shows, these models are unreli-
able for translating larger corpora, making trivial mistakes on some
occasions. In our work, we focus on fixing such mistakes.

Multilingual open-source translators, such as NVIDIA Riva [17]
and Meta’s No Language Left Behind (NLLB) [16] perform
worse than GaMS and EuroLLM on English-to-Slovene translation.
NVIDIA Riva is a GPU-accelerated SDK (Software Development
Kit) for building Speech Al applications, focusing on neural machine
translation (NMT) while NLLB is a single, massively multilingual
model that leverages transfer learning across languages to improve
the translation quality of low-resourced languages.

2.3 Preference-Based Model Alignment

Preference alignment methods are used to improve the quality of
large language models’ outputs, and a few approaches have proven
to be very effective at accomplishing that goal. The most classic ex-
ample is Reinforcement Learning from Human Feedback (RLHF),
that is a relatively complex process requiring training of a dedicated
reward model. On the other hand, Direct Preference Optimization
has recently gained significant traction and was shown to give com-
petitive results without relying on an external reward model. With
DPO the reward model is "embedded" inside the LLM and allows
for a simpler and more efficient training pipeline with the goal of
maximising the log-probability of chosen responses, log o (yw|x),
while minimising that of rejected responses, log 7o (yi|z).

2.4 Automatic MT Quality Metrics

One of the standard automatic MT metrics is BLEU (Bilingual Eval-
vation Understudy) [18], which relies on n-gram overlap with refer-
ence translations and is incorporated into the SloBench evaluation.
Recently, a shift towards learned metrics was driven by the need
to capture semantic meaning, not just word overlap. The COMET
framework uses cross-lingual embeddings to achieve a much higher
correlation with human quality assessments. Therefore, to evaluate
the translation pairs in our dataset, we employ the state-of-the-art
reference-less Direct Assessment (DA) model from CometKiwi [24]
known for its high correlation with human judgment.

3 Synthetic Preference Data Generation

Obtaining a high-quality preference annotated translation dataset
is challenging. We take English Wikipedia and news articles from
Common Crawl as a starting point, as those cover a wide variety
of topics. Our data generation pipeline consists of multiple stages.
We start by generating translations, described in Section 3.1. This is
followed by identifying trivial errors, described in Section 3.2, and
scoring remaining instances, described in Section 3.3. Our final data
construction is described in Section 3.4.



3.1 Generating Pairs of Translations

The main challenge of generating a synthetic preference dataset is
generating distinct translation candidates. Notably, the generated er-
rors shall not propagate or accumulate through the process. Our ap-
proach is to generate candidate translations from a corpus of articles
which have been selected that cover a broad range of topics with two
distinct models and rank the responses using automatic quality met-
rics.

The first model we use is GaMS-9B-Instruct [4], which is based
on the Gemma 2 architecture and adapted for Slovene. As this is
the model we also aim to fine-tune as the final machine translator,
this allows us to construct preference pairs that target the model’s
natural output distribution. The second model we utilize for gener-
ating the translations is EuroLLM-9B-Instruct [15]. We chose this
model because it is an open-source model that demonstrated strong
performance and reliability for English-to-Slovene translation in our
preliminary experiments.

We use these two models to translate over 67,000 Wikipedia arti-
cles, consisting of approximately 26 million words. We use the fol-
lowing prompt instructions:

o GaMS: "Prevedi naslednje anglesko besedilo v slovenscino." (en.
"Translate the following English text to Slovenian.")
o Euro-LLM: "Translate the following English text to Slovenian."”

We filter the initial pool of translations during the subsequent data
curation steps.

3.2 Identifying Failure Modes

Upon inspecting the translations, we identified several error types
that are critical to the model’s reliability, yet simple to represent as
preference pairs with unambiguous chosen and rejected examples.

The most significant failure mode observed was generating out-
puts in the wrong language. To programmatically verify the language
of each translation, we utilize the pre-trained language identification
model from the FastText library [11, 12]. We use a lightweight and
efficient classifier capable of accurately identifying 176 different lan-
guages from raw text, making it highly suitable for large-scale filter-
ing tasks. This process forms high-confidence preference pairs by
identifying instances where one generated translation is in Slovene
and the other is in a different language. The correct, Slovene trans-
lation is labeled as chosen, while the incorrect one is labeled as re-
Jected.

Another identified failure mode is translation truncation, where
the model only translates a portion of the source text. We hypoth-
esize that this behavior with GaMS-9B-Instruct is a result of its SFT
dataset containing only sentence-level translation tasks. Therefore,
the model learned to respond to translation tasks with short answers.
This type of structural error is particularly well-suited for correction
with DPO. To address this, we create preference pairs from instances
where both translations are in Slovene, but one is complete while
the other is clearly truncated. The complete translation is labeled as
chosen, and the truncated version as rejected. A translation was con-
sidered truncated with high confidence if it was less than 50% of the
length of the original text, measured by character count.

A more subtle issue we identified was the presence of stylistic
formatting artifacts. Sometimes the model starts a response with
"Slovenski prevod:" (en. Slovene translation), "Slovene translation:",
etc. Since the goal is to produce only the translated text, this behav-
ior is addressed by creating a specific type of preference pairs for

our training dataset. Translation pairs were constructed in the fol-
lowing manner: the chosen response is a clean, complete translation,
while the corresponding rejected response is created by prepending
the chosen text with one of the undesirable prefixes. This method pro-
vides a clear and direct preference signal to the model during DPO.

3.3 Scoring and Filtering the Translations

While the initial heuristic filtering addresses clear structural errors,
discerning finer differences in quality requires a quantitative met-
ric. For this purpose, we employ the COMET score, specifically the
Unbabel/wmt22-cometkiwi-da model [24]. We select this model as
it is a state-of-the-art, reference-less Direct Assessment (DA) model
that excels at predicting translation quality with a high degree of cor-
relation to human judgment.

All translation pairs that pass the initial heuristic checks are then
scored using this COMET model. The scores serves as a proxy for
human preference. Since many translation pairs exhibit only minor
quality differences, we introduce a minimal score difference thresh-
old to take a given translation pair into consideration. This step is
crucial to prevent metric noise from being misinterpreted as a mean-
ingful preference signal. Consequently, a preference pair is only cre-
ated if the absolute score difference between the two candidates is
greater than 0.05. The translation with the higher score is labeled as
chosen and the other as rejected.

3.4 Constructing the preference dataset

The preference pairs generated from the preceding heuristic and
metric-based methods are merged to form the final training dataset.
This combined dataset is designed to capture both critical failure
modes of the base model as well as more subtle preference signals
based on clarity, grammar, and style. The above process reduces the
number of translation pairs from a total of 107,000 to approximately
35,000. The number of translation pairs for our dataset was decreased
because not all of them carried useful information. Additionally, the
synthetically generated formatting pair count was chosen to make up
around 20% of the final dataset. Those were added to the other sys-
tematically curated pairs from the original translation pair dataset.
The distribution of training examples is as follows:

Pairs targeting incorrect language - 22 %

Pairs targeting response truncation - 3 %
Synthetically generated formatting pairs - 20 %
Pairs derived from COMET score differences - 55 %

4 Translator training

To produce an improved LLM for MT, we take GaMS-9B-Instruct
model as our starting point and optimize it for translation on the pref-
erence dataset from Section 3 using the DPO method. We provide a
brief description of the method in Section 4.1. We describe our train-
ing implementation in Section 4.2. In Section 4.3, we describe the
hyperparameter search performed.

4.1 Using DPO for Machine Translation

Traditional approaches for preference alignment, such as RLHF, rely
on training a dedicated reward model. Since we are using a synthetic
preference dataset, using another synthetic data-based model in our
training pipeline would introduce additional noise and risk instability
in the fine-tuning process.



Therefore, we chose Direct Preference Optimization (DPO) as our
fine-tuning method due to its stability and efficiency compared to tra-
ditional reinforcement learning-based approaches like Proximal Pol-
icy Optimization (PPO). DPO provides a cleaner and more straight-
forward training pipeline with less room for error accumulation. As
the DPO loss function is mathematically equivalent to the objec-
tive in traditional RLHF, it offers the same optimization guarantees
within a more direct and stable framework. Given the data distribu-
tion D = {(«x, yw, Y1) }, where x is the model’s input, y,, denotes the
chosen (preferred) response and y; denotes the rejected response, the
DPO loss function aims to minimise:
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In this formulation, 7 represents the fine-tuned policy (model) and
Tt denotes the reference policy (usually the starting model). The
reference model, 7rr, is a crucial component that regularizes the
training process. For our experiments, we use the initial GaMS-9B-
Instruct model as the reference model. The temperature parameter,
B, controls how strongly the policy model adheres to the preference
data. A higher (3 leads to a closer fit to the preference pairs, while a
lower 8 maintains closer proximity to the reference model’s initial
behavior. We determine the exact 8 value through hyperparameter
tuning.

4.2  Implementation and Training Environment

We use the HuggingFace Transformers [29] DPO implementa-
tion. Specifically, we use the TRL (Transformers Reinforcement
Learning) [26] library in combination with Accelerate [9] and
Deepspeed libraries.

To make training of a 9B-parameter model computationally fea-
sible, we employ a parameter-efficient approach. Specifically, we
use Low-Rank Adaptation (LoRA) [10] from the peft [14] li-
brary. LoRA enables efficient adaptation of large pre-trained models
by introducing and training only low-rank update matrices, thereby
reducing the number of trainable parameters by orders of magni-
tude, lowering both GPU memory and storage requirements. This
parameter-efficient approach accelerates fine-tuning and simplifies
model deployment, while achieving comparable task performance to
full model fine-tuning.

We performed the training on the Slovene HPC Vega supercom-
puter. We utilized a configuration of 4 compute nodes, each equipped
with 4 NVIDIA A100 40GB GPUs, for a total of 16 GPUs per train-
ing run. The GPUs on a single node are connected using NVLINK
with total bandwidth of 600 GB/s. The nodes are connected through
2x200 Gb/s InfiniBand switches in Dragonfly+ topology.

To manage the substantial memory requirements of fine-tuning the
9B-parameter model, even with LoRA, we employed the ZeRO (Zero
Redundancy Optimizer) Stage 2 optimization strategy [22], as imple-
mented in the DeepSpeed library. This technique mitigates memory
redundancy across data-parallel workers by partitioning not only the
optimizer states (as in Stage 1) but also the gradients. While each
GPU maintains a complete copy of the model’s parameters for the
forward and backward passes, it is only responsible for storing and
updating a distinct shard of the gradients and corresponding opti-
mizer states. After the local optimizer step, an all-gather operation

efficiently synchronizes the updated weights across all GPUs, ensur-
ing model consistency for the next iteration. This approach dramat-
ically reduces the per-GPU memory footprint compared to standard
data parallelism, making it feasible to fine-tune the full model on
our 16 A100 GPU setup without resorting to more complex model
parallelism.

The final major optimization we use is Gradient Checkpointing
[1]. It trades additional computation (around 30—40% increase for
LLMs) for reduced activation and gradient memory usage (by a fac-
tor of approximately v/num_layers) by selectively storing only a sub-
set of intermediate activations during the forward pass and recomput-
ing the omitted activations on-the-fly in the backward pass. This en-
ables training of much deeper or wider models under fixed memory
budgets, making it particularly valuable for large-scale deep training
or fine-tuning.

4.3  Training and Hyperparameter Grid-Search

We split the curated preference dataset only with translations of
Wikipedia articles into the training and validation sets with 24,000
and 1,000 instances, respectively. The validation set was used to
monitor performance during training and to select the optimal hy-
perparameters through a grid search.

The key hyperparameters for our DPO training runs are detailed
in Table 1. We conducted a grid search over the DPO f and learn-
ing rate. The final model was trained for 3 epochs using the optimal
configuration discovered during this search. To prevent overfitting,
we compare all checkpoints using validation loss. Observed training
and validation losses are shown in Figure 1. Since we achieved the
lowest validation loss of 0.315 for hyperparameter values 5 = 0.1
and Ir = 1-107° at the second-to-last evaluation step, this is the
final version of our model. Each one of the grid-search training runs
lasted around 5 hours.

Table 1. Training hyperparameter values. For DPO 3 and learning rate, the
search domains are provided. The bold values were selected as optimal.

Parameter Value

Epochs 3

Micro batch size 1

Global batch size 16

DPO 3 {0.1,0.2}

LoRA rank 64

Learning rate {1e-6, 4e-7, 1e-7}
Warmup steps 1500

Learning rate scheduler  cosine_with_min_Ir

Once the optimal hyperparameter configuration was found, the
training dataset was expanded by adding the translation pairs from
CC-News (approximately 10,000 new training examples). The model
was trained on the larger dataset for three epochs. This final fine-
tuning on the complete dataset with the given hyperparameters took
approximately 7 hours. This training run resulted in a model check-
point with a noticeably lower validation loss of 0.255. This check-
point is the model we will be evaluating further and comparing it to
GaMS-9B-Instruct, EuroLLM-9B-Instruct and some other models.

5 Evaluation and Results

We evaluate our model on two benchmarks. The first is a public
Slovene-to-English benchmark, that is part of the public benchmark
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Figure 1. DPO training (top) and validation loss (bottom) curves for
different learning rate and DPO (3 hyperparameter values.

suite SloBench. Since SloBench evaluates the models only on per-
sentence translations, we also evaluate our model on a custom eval-
uation set relevant to our specific goal of translating longer English
documents for training large language models for Slovene. We cre-
ate such an evaluation set based on a set of unseen English Wikipedia
and CC-News articles. Throughout this section, we refer to our model
as GaMS-9B-DPO-Translator.

5.1 SloBench Evaluation

SloBench is an evaluation platform for benchmarking Slovene large
language models and their capabilities. Since the benchmarks’
ground truths are not public, we believe that benchmark tuning, lead-
ing to misleading results, is not possible, making this benchmark
an objective measure for many Slovene natural language processing
tasks. We test the model on the Machine Translation (ENG
-> SLO)° task. The task consists of five different domains: Scien-
tific articles, Speech texts, Legal articles, News articles, and Techni-
cal texts.
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The results are shown in Table 4. Even though our model was
not specifically tuned for any of the benchmark’s domains, our
DPO training resulted in a noticeable improvement in comparison
to the base model (GaMS-9B-Instruct). GaMS-9B-DPO-Translator
achieved a similar score to GaMS-27B-Instruct, which is three times
larger.

The improvement would likely be even higher if our preference
dataset included a broader range of data, not just Wikipedia docu-
ments. Therefore, incorporating more conversational, legal, and news
texts into our data generation pipeline and training the model with
DPO on such a dataset would better capture all domains tested by
SloBench and potentially increase its score. Writing styles in those
domains often differ from the Wikipedia articles we used.

5.2 Wikipedia and CC-News Evaluation

A more suitable evaluation method for our goal of translating large
amounts of longer documents is to compare our fine-tuned model to
the base model when translating English Wikipedia and CC-News
articles that were not seen during training or validation.

The creation of an evaluation dataset was very similar to generat-
ing the training dataset. We translated 500 randomly chosen articles
from both sources with GaMS-9B-Instruct (base model), GaMS-9B-
DPO-Translator (fine-tuned model), and EuroLLM-9B-Instruct (for
reference). Those articles were chosen in a way that none of those
have been seen during training or validation by our fine-tuned model.

The first step in analyzing the performance of our model is to
check for any of the trivial mistakes we already uncovered when
preparing the training dataset. The comparison of models on such
mistakes is shown in Table 2.

Table 2. Error rates comparison on our custom Wikipedia Evaluation
dataset. Each model name refers to its 9B parameter instruction-tuned

variant.
Model Language Truncation Combined
Error Error
EuroLLM-9B-Instruct 1% 0.4% 1.4%
GaMS-9B-Instruct 9.5% 3.5% 13%
GaMS-9B-DPO-Translator 0.6% 0.2% 0.8%

For the articles without trivial errors, we calculated the COMET
scores of each model’s translation and compared them. To ensure fair
comparison, only those articles were used where none of the models
made any critical mistakes. Obtained COMET scores are shown in
Table 3.

Table 3. Comparison of COMET scores on our custom Wikipedia
Evaluation dataset. Higher score is better.

Model Wikipedia CC-News Average
EuroLLM-9B-Instruct 0.727 0.667 0.695
GaMS-9B-Instruct 0.722 0.680 0.698
GaMS-9B-DPO-Translator 0.757 0.715 0.735

Our fine-tuned model outperformed both models that were used
in the dataset construction, showing that those models do not nec-
essarily represent an upper limit for fine-tuning performance. The
reason why our fine-tuned model is able to outperform the construc-
tion models is that DPO does not directly train the model to repli-
cate all translations from the dataset. This allowed our model to learn
good aspects of both EuroLLM-9B-Instruct and GaMS-9B-Instruct,
but also helped it to avoid their mistakes.



Table 4. Comparison of different Machine translation models on the public SloBench English-to-Slovene translation leaderboard. The results of OpenAl GPT
40-mini, GaMS-9B-Instruct, GaMS-27B-Instruct, and EuroLLM-9B-Instruct are taken directly from the leaderboard. The results of our model are in bold.

Model \ BERT score BLEU (avg)  METEOR (avg) CHRF (avg) BLEU (corpus) CHREF (corpus)
EuroLLM-9B-Instruct 0.8741 0.2927 0.5792 0.6055 0.3273 0.6055
GaMS-27B-Instruct 0.8734 0.2866 0.5688 0.5986 0.3246 0.5986
GaMS-9B-DPO-Translator 0.8726 0.2810 0.5663 0.5967 0.3252 0.5967
GaMS-9B-Instruct 0.8713 0.2773 0.5616 0.5928 0.3209 0.5928
GPT 40-mini 0.8690 0.2619 0.5456 0.5839 0.3021 0.5839

There is a discrepancy between the results on SloBench and the
results on our custom Wikipedia article translation test when we
compare EuroLLM-9B-Instruct and our fine-tuned GaMS-9B-DPO-
Translator. We hypothesize that this is due to the difference in exam-
ple lengths between benchmarks. The model should benefit from our
training, especially on longer texts, as the errors (wrong language,
truncation) of the base model were rarer on shorter texts.

A limitation of our evaluation on Wikipedia articles is that it ex-
hibits a similar distribution to our training data, making our model
more likely to perform well, and those circumstances might have
benefited our model in comparison to others. However, this limitation
does not dispute the fact that we successfully improved the model and
achieved our initial goal of reliably and accurately translating longer
documents. Since Wikipedia captures a variety of different fields and
topics, this learned knowledge should carry over to other types of
documents, which will be useful for generating new training data for
Slovene LLMs.

5.3 Efficiency of our solution

Our solution is very efficient from the training data acquisition stand-
point and eliminates the need for manual labeling, since it doesn’t
require any human annotators.

Data acquisition. The dataset creation pipeline is computation-
ally efficient since it involves batched inference of LLMs and other
lightweight models such as the COMET model for translation scor-
ing and the language identification model from the FastText library.
This process overcomes the challenge of obtaining high quality train-
ing data for low-resource languages, required by SFT. In our case, to
acquire the dataset we used approximately 3 hours on one node with
4 A100 40GB GPUs (12 GPU hours).

Fine-tuning. On the other hand, fine-tuning the model is compa-
rable to SFT, with a notable difference being that DPO requires two
forward passes per example (for chosen and rejected responses). The
fine-tuning was run on 4 nodes with 4 A100 40GB GPUs each and
ran for around 7 hours (112 GPU hours). We used 4 nodes to speed
up the process, but the minimum hardware requirement with a 9B
parameter model for this step is only one such node and it should run
for less than 28 hours (since computation time decreases at a close
to linear rate with respect to the number of GPUs when using ZeRO
stage 2), which is quite reasonable for a model like the one we used.

6 Conclusion

We proposed a pipeline for improving machine translation based on
data generation and DPO preference alignment method. We showed
that our approach increases the quality of the trained model’s transla-
tions. We showed a small performance improvement on the SloBench
evaluation, and a substantial improvement in translating longer doc-
uments, such as Wikipedia articles.

The main goal of our research was to make an open-source transla-
tor for a less-resourced language (Slovene) more reliable. Since our
approach is language agnostic (given the precondition of the exis-
tence of at least two machine translation options for this language),
it can be applied to many less-resourced languages or specific do-
mains. We believe that our approach will help translate high-quality
English corpora to less-resourced languages which is necessary to
build LLMs in such languages and important for the sovereignty of
such languages in the LLM era.

We plan to use the insight gained during this project to fine-tune
the 27B parameter model with the same training pipeline. Since the
systems are already in place, the remaining challenges are to scale the
training process and to obtain the required computational resources.
Scaling for a larger model would involve generating more training
data and using more advanced distributed training optimizations such
as ZeRO Stage 3, ZeRO++ [28]. Additionally, the recently released
NVIDIA NeMo-RL framework® shall be tested.

A potential improvement to consider in the future is Curriculum
DPO [5, 19] instead of vanilla DPO. Curriculum learning would
allow the model to learn on different datasets, step-by-step, in-
creasing in difficulty. The datasets could be divided into two ma-
jor groups. The first group would contain the training examples from
our heuristic-based analysis (language and truncation errors), and the
second group would have the training examples ranked by COMET
score. The latter could be further subdivided into multiple subsets
based on the COMET score difference between chosen and rejected
responses. A lower score delta indicates a more subtle difference in
quality, and the model would be trained on those after it had been
trained on the pairs with a more obvious quality difference.

Finally, other preference alignment methods, such as GRPO, could
be tested. Since we have already automated response rankings, we
would have to turn those rankings into a reward function for GRPO.
Another possibility would be combining both methods by first focus-
ing on language and truncation errors using DPO and then perform-
ing GRPO based on COMET scores.
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