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Abstract. Evolutionary prompt optimization has demonstrated effec-
tiveness in refining prompts for LLMs. However, existing approaches
lack robust operators and efficient evaluation mechanisms. In this
work, we propose several key improvements to evolutionary prompt
optimization that can partially generalize to prompt optimization in
general: 1) decomposing evolution into distinct steps to enhance the
evolution and its control, 2) introducing an LLM-based judge to verify
the evolutions, 3) integrating human feedback to refine the evolution-
ary operator, and 4) developing more efficient evaluation strategies
that maintain performance while reducing computational overhead.
Our approach improves both optimization quality and efficiency. We
release our code, enabling prompt optimization on new tasks and
facilitating further research in this area.

1 Introduction

The recent advent of large language models (LLMs) has ushered in a
new era of interactional artificial intelligence, democratizing access
to powerful conversational agents and machine translation systems.
Despite impressive empirical gains, state-of-the-art LLMs continue
to exhibit notable gaps in genuine language understanding, often
producing outputs that lack grounding.

One crucial bottleneck in harnessing LLMs for real-world tasks lies
in the formulation of prompts: the textual instructions that guide model
behavior. Prompt quality has been shown to exert a profound influence
on model performance, yet designing optimal prompts remains an art:
manual tuning is labor-intensive, ad hoc, and often fails to generalize
across tasks or domains [3| [16]]. To overcome these limitations, a
growing body of work has explored automatic prompt optimization
methods, including evolutionary strategies in which candidate prompts
are iteratively mutated and selected based on LLM responses 28}
SL 127, [7]. While promising, these approaches suffer from two key
drawbacks: (i) their feedback loop relies on expensive API calls or
compute resources to evaluate every candidate prompt, and (ii) their
mutation operators themselves are typically hand-crafted, limiting
adaptability and often propagating hallucinations or other undesired
artifacts [[10, 23]].

One promising approach for improving prompt optimization is in-
corporating human feedback to verify and refine LLM outputs [21].
While LLMs can automate prompt generation, human input remains
crucial for verifying the accuracy of their results and correcting errors.
By integrating human feedback into the prompt optimization process,
we aim to create a more robust system where humans not only verify
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Figure 1: An overview of the individual components ascribed to our
proposed method (blue) compared to only using a one-step instruction
for the operator (green).

LLM output but also guide future prompt evolutions. In the case that
human feedback is not available (e.g., if there are no domain experts
available, or it would be too costly), we allow another LLM to act
as judge and to take the responsibility of the human verifying the
output of the evolutionary operator. Additionally, since fewer instruc-
tions are simpler to verify and chain-of-thought (CoT) reasoning was
shown to improve LLM performance as well [31]], we believe that
the evolutionary operator as well as human feedback and the judging
mechanism can benefit from more fine-grained instructions; we call
this chain-of-instructions (Col). This design choice is motivated by
several factors: 1) We hypothesize that reducing the complexity of
individual instructions makes them easier for the model to follow, akin
to how CoT reasoning enhances model performance. 2) It minimizes
confusion for the judge, allowing them to assess each step indepen-
dently, rather than rejecting the entire evolutionary process due to
errors in specific parts. 3) Human interaction becomes more efficient,
as users can review and validate each evolution step separately — sim-
ilar to the judge — and provide targeted feedback for improvements.
Furthermore, since the evaluation of generated prompts is crucial for
the evolution, we introduce methods to efficiently evaluate prompts,
finally leading to increased resource efficiency while maintaining task
performance.

In this paper, we address the following research questions regard-
ing LLM-based evolutionary prompt optimization methods with the
ultimate goal of improving language understanding in LLMs:

RQ1: How can new candidate prompts be evaluated more efficiently
without forfeiting overall performance?

RQ2: Does Col-based evolution help judges and improve the evolu-
tionary operator?



RQ3: Can LLM-based judges assess the output quality of text-
generative evolutionary operators?

RQ4: How can human feedback be effectively leveraged to enhance
evolutionary prompt optimization?

RQ5: How does the selection of the LLM influence the effectiveness
of the proposed improvements?

To explore these questions, we propose an approach where the LLM
serves as both an operator for evolutions and a judge of prompts while
allowing humans to intervene when the model output is incorrect.
This feedback loop allows human corrections to be leveraged for
further optimizing the prompt search process. Additionally, several
evaluation strategies aim to make the evaluation more efficient and
feedback loops faster. An overview is given in figure[I]

Our contributions are as follows: 1) We introduce a novel human-in-
the-loop approach for refining LLM-based prompts, where the feed-
back is used for future optimizations. 2) We introduce an LLM-based
judge for verifying LLM-based evolutions. 3) We present chain-of-
instructions as a mechanism to enhance control over the evolutionary
process and facilitate more effective feedback. 4) We show how the
efficiency of prompt optimization methods can be increased without
sacrificing performance. 5) We present empirical results investigating
the benefits of our approaches in the context of evolutionary prompt
optimization methods. 6) We publish all code that is necessary to
reproduce the findings presented in this paper under a permissive li-
cense to enable further research into the topic of evolutionary prompt
optimization and human feedback.

2 Background

In this section, we introduce the foundational concepts and methods
that underpin our research on evolutionary prompt optimization.

2.1 Large Language Models

LLMs are a class of language models that leverage deep learning
techniques to process and generate human language. They have be-
come increasingly popular recently due to their ability to generate
high-quality text across a wide range of tasks [3]. LLMs are trained
on large corpora of text data, enabling them to learn complex patterns
and relationships within language. They have been applied to a variety
of natural language processing (NLP) tasks, including text generation,
translation, summarization, and question answering.

The input for these LLMs, known as prompts, remains crucial since
the LLMs’ performance depends on these prompts. The concept of
CoT reasoning has emerged as a powerful approach to enhancing the
reasoning capabilities of LLMs. CoT was first introduced by Wei et al.
[31], demonstrating that prompting LLMs to decompose complex
problems into intermediate reasoning steps significantly improves
performance on several tasks.

In scientific and technical domains, the use of LLMs as judges has
recently gained increasing attention. Several studies have explored
the potential of LLMs for assessing the quality of text in various
contexts. For instance, [38]] investigated the ability of LLMs to grade
academic writing and found that models like GPT-4 can provide
feedback comparable to human reviewers. Similarly, works by Liang
et al. [14] and Yu et al. [32] have examined LLMs in the context
of automated peer review, highlighting their strengths in identifying
clarity issues and methodological flaws.

2.2 Prompt Optimization

Prompt optimization is the process of finding the most effective
prompt for a given task.

For this work, prompt optimization approaches can be classi-
fied into two categories: continuous space optimization and discrete
prompt optimization methods. The former treat the prompt as a con-
tinuous vector, leveraging the fact that the tokens of the prompt are
embedded into a continuous space, and optimize it using gradient-
based techniques such as gradient descent [26} 17, |16} 33]. However,
this approach requires the model to be differentiable with respect
to the prompt, which may not always be the case. Furthermore, the
resulting prompt lacks interpretability by humans, as the resulting
prompt is a continuous vector that cannot easily be mapped to discrete
tokens, making it difficult to understand and refine.

Discrete prompt optimization methods, on the other hand, treat
the prompt as a discrete sequence of tokens such that the result can
easily be observed as a natural language prompt. However, previous
methods often rely on gradients over the model parameters to opti-
mize the prompt, which may not be available in black-box models
[28, 5, 27, 135]]. In contrast, Guo et al. [7] show that prompts can
be optimized without gradients, enabling optimization methods for
black-box models.

2.3 Evolutionary Algorithins

Evolutionary algorithms are a class of optimization techniques in-
spired by the process of natural selection. They operate by iteratively
evolving a population of candidate solutions to a problem, select-
ing the fittest individuals for reproduction and mutation. Evolutionary
algorithms have been successfully applied to a wide range of optimiza-
tion problems, including function optimization, machine learning, and
robotics [8]]. Lehman et al. [11]] demonstrated that LLMs can be used
to perform automatic mutation of prompts, while Meyerson et al. [19]
showed the same for crossover operations, paving the way for evolu-
tionary prompt optimization. In the context of prompt optimization,
evolutionary algorithms can be used to search for the best prompt for
a given task by iteratively evolving and evaluating candidate prompts
[4]. Guo et al. [7] is the most related work to ours, as they use a
genetic algorithm to optimize prompts for an LLM for NLP tasks.

3 Method

Our goal is to find the ideal prompt p for a given low-resource NLP
task (see section .1 using in-context learning with an LLM. To
achieve this goal, a small set of labeled validation data D is available
(ID| < 200). The LLM is treated as a black-box function, so no
access to its parameters or inner architecture is available and needed,
enabling models that are only available via APIs.

The optimization process resembles a genetic algorithm, where a
population of prompts is evolved over 71" generations.

Initialization: To generate the initial population, we select the
best | I/2] prompts from a task-specific set of base prompts and
generate the remaining [ /2] prompts by paraphrasing the selected
base prompts, where [ is the population size. This initialization warm-
starts the optimization process with a diverse set of prompts [29].

Evolution: We follow the work of Lehman et al. [11], Meyerson
et al. [19]], Guo et al. [[7] and use an LLM to perform the operations
of mutation and crossover of the evolutionary algorithm. We use the
same operator implementations for Differential Evolution (DE) and
Generic Algorithm (GA) as baselines to improve upon, also using



demonstration data in the input for in-context learning. That is, for
the classification tasks, we randomly select one input-output pair per
class, and a single example for the other tasks.

Evaluation: Prompt fitness .S; is defined as the performance of
an evaluation model with prompt p; on the validation data: S; =
£ (pi, D)

Selection: Prompts for evolution are selected following Lipowski

and Lipowska [[15] using a roulette-wheel style algorithm with stochas-

tic sampling. Specifically, a prompt is selected with probability
— S

i

Pi = =1 .
Ej:l Sj

3.1 Efficient Evaluation

The optimization process depends on the repeated evaluation of candi-
date prompts. Although the evaluation set D is small, LLM inference
is still costly. Given the cost of a single inference step c;, the total
cost of the evaluation c. can be calculated as ce = ¢; X |D| X I x T'.
Since ¢; is fixed to the model, a larger population size [ is generally
understood to improve the result of the optimization, and the number
of generations 1" should be high enough to ensure convergence, we
employ and present methods to reduce the overall cost of evaluation
without negatively affecting the resulting prompt performance.

3.1.1 Early Stopping

The fitness function normally calculates a mean average score over
all samples in D. Empirical preliminary examination has shown that
the score converges before all samples have been tested. Therefore,
we evaluate strategies to reduce the number of evaluation inferences
without affecting the resulting prompt performance.

Moment-based We propose a moment-based early stopping strategy
to stop the evaluation after the score has settled: If the mean absolute
difference in evaluation score is less than a minimum change 7,,, for a
window size w, the evaluation is stopped. The stopping criterion can
be expressed with the following inequality:

t

Z |5(pi7Dn)_6(pi7anl)| < Nm,

n=t—w+1

1
w
t>w

Parent-based Except for the first generation, we have access to the
performance of all ancestors of p; on samples from D. We propose
to use this information for a parent-based early stopping decision to
exit evaluation early if the current prompt p; is not performing better
by 1, compared to the max score of the parents p,, py in a sliding
window w. The stopping criterion is then fulfilled if the following
inequality is true:

(€ (pi; Dn) — max (E(pa; Pn), E(pv; Dn))) < p,

max
n=t—w+1,...,t

t>w

We employ the parent-based strategy for generations 7" > 1 with a
fallback to the moment-based strategy when parent performance is not
available. Both early stopping methods employ a patience parameter
to ignore the first evaluation iterations where the score may change
drastically.

3.1.2  Evaluation Strategies
We consider different orderings of D for evaluation.

Shortest First With the motivation to reduce the number of tokens
the LLM needs to process during evaluation, the early stopping strat-
egy can be extended to use an ordered version of D that is sorted in
ascending order according to the length of the inputs.

Hardest First During evolution, the population of prompts is ex-
pected to improve. We therefore propose an evaluation strategy that
sorts the samples in D by the performance of the best parent prompt
in ascending order. This is motivated by the fact that a prompt that
performs just as well as the best parent prompt on hard samples will
not be able to yield a better mean performance on the whole dataset
when including samples on which the parent already performed well.

3.2 Col Prompting

We adopt the concept of CoT reasoning for our approach. Rather than
instructing the LLM to reason step-by-step, we decompose the instruc-
tions for implementing the evolutionary operator into multiple distinct
steps. That is, for evolution step ¢, we formulate the prompt o; to in-
clude instructions ¢; and model response 7 for previous steps as well
as the instruction for the current step, o¢ = %0, 70, . . ., %t—1,Tt—1, b¢.
Here, each instruction i is a single operation that the LLM should
perform, such as mutating a prompting or crossing over two prompts.

When utilizing demonstration data, we ensure that it aligns with
the current stage of evolution, meaning that instructions and model
responses up to the current evolution step are included.

3.3 Evolution Judge

To avoid an expensive evaluation for prompts that are unlikely to
be selected in absence of human feedback, we introduce a judge
model J. For this, we use another LLM to assess the quality of
a prompt candidate p; before starting evaluation. To this end, we
provide the judge model with the response itself, along with the
corresponding inputs that led to it — including demonstration samples,
system message and the prompt. In case of Col, we apply the judge
for each evolution step. If the judge model determines a prompt to be
of low quality, we ask the evolution model to generate a new response
until a predefined number of repetitions is reached. Afterward, if,
according to the judge model, there is no prompt of high quality, we
continue with a random response from the modelﬂ

3.4 Human Feedback

To integrate human feedback into the optimization process, we pro-
pose a human-in-the-loop approach that actively involves humans at
multiple stages of evolutionary prompt optimization. In our frame-
work, human participants are not merely passive evaluators but play an
active role in observing, analyzing, and refining the outputs generated
by the LLM during each step of the evolutionary process.
Specifically, after each evolutionary step — such as mutation or
crossover — humans review the generated model outputs. If deficien-
cies, ambiguities, or errors are detected, humans intervene by refining
the instructions that guide the evolutionary operator. This may include
clarifying the language of the instructions, specifying more granu-
lar or explicit requirements, or restructuring the sequence of steps

2 In our implementation, we use the last one since there is no implication on
the order of generated model responses, i.e., the randomness is realized via
the evolution model.



to reduce confusion for the LLM. Additionally, humans can update
or augment the demonstration samples used for in-context learning,
ensuring that these examples better illustrate the intended behavior
and address previously observed shortcomings.

This process is inherently iterative: after each round of human
intervention, the evolutionary process resumes with the updated in-
structions and demonstration data, allowing for continuous improve-
ment. Over successive cycles, this feedback loop enables the identi-
fication and mitigation of persistent weaknesses, such as the LLM’s
tendency to overlook subtle distinctions or to generate extraneous
output, thereby enhancing the language understanding capabilities
of the LLM. By systematically addressing these issues, the overall
effectiveness and reliability of the prompt optimization process are
enhanced.

Furthermore, this approach allows for the accumulation of best
practices and refined instructions, which can be reused or adapted
for future tasks or models. The iterative nature of human feedback
ensures that the optimization process remains adaptable and respon-
sive to the evolving capabilities and limitations of the underlying
LLM. Illustrative examples of how human feedback leads to tangible
improvements in prompt optimization are provided in section [f]

4 Experimental Setup

This section describes the experiments conducted to explore the effec-
tiveness of the proposed methods. All code, data and information that
is neccessary to reproduce the results of the presented experiments is
published onlineﬂ

4.1 Tasks

We evaluate our proposed method on a wide range of NLP tasks,
including sentiment analysis (Stanford Sentiment Treebank (SST) 2
& 5 [30], Movie-Reviews (MR) [[18]], Customer-Reviews (CR) [9]),
subjectivity analysis (Subj [22]), topic classification (AG’s News
Topic Classification Dataset (AGNews) [36], Text REtrieval Con-
ference (TREC) [13]]), question answering (Stanford Question An-
swering Dataset (SQuAD) [24]), simplification (A Dataset of Sen-
tence Simplification Evaluation Test (ASSET) [2]) and summarization
(Summarizing Arguments in Online Discussions (SAMSum) [6]).
For evaluation of prompt fitness during evolution, we select a subset D
of 200 labeled samples from the validation set. For the final evaluation,
we use the whole test set to assess the performance of the evolved
prompt.

4.2 Evaluation Strategies

To assess the effectiveness of the proposed evaluation strategies, the
methods are compared to a baseline where prompt evaluation is per-
formed on the whole validation set D and an additional naive strategy
to reduce the evaluation cost by subsampling D with a fixed factor.
Since the fitness score of a prompt is an important metric in the evo-
lutionary algorithm, we also show the score of the final prompt to
preclude negative impacts on the final performance of the optimized
prompt.

4.3 Col Prompting

We decompose the instructions of the evolutionary operators, DE
and GA, into multiple steps as described in section [3.2] Given the

3 https://gitlab.mi.hdm-stuttgart.de/griesshaber/evoprompt

increased number of instructions required for DE, the Col-based
implementation consists of four steps, whereas GA follows a more
concise two-step process. The baseline model for the Col experiments
only performs a single step for the evolution of a prompt. To see
the combined effect of Col and judging, experiments using Col are
performed with and without a judge 7. For the baseline, the judge
can only decide on the single output of the evolution. Experiments
are performed on and averaged over all tasks.

4.4  Evolution Judge

We employ a judge in our experiments to verify model responses in
absence of humans, as described in section[3.3] In detail, the LLM’s
instruction is given as follows: "You are acting as a judge. Please read
the context, the instruction and the response and decide if the response
follows the instruction. If it does, answer *good’. If it does not, answer
’bad’. Wrap the answer with tags <judgement> and </judgement>.
Please also add an explanation for your judgement.'ﬂ We repeat
generating model responses up to three times (if the judge assesses an
ouput as bad).

Similar to the Col results, the experiments for the judge are com-
pared with and without Col to assess the combined effect on the final
performance.

4.5 Human Feedback

After analyzing the evolution model outputs, we iteratively refined the
instructions for the evolutionary operator, re-evaluating and further
improving the model outputs as needed. Through this process, we
applied two consecutive refinements to DE, resulting in DE; and DE,.
Similarly, GA was improved once (GA1), as its fewer instructions
needed less care. An example of such refinement is provided in section
6l

4.6 Hyperparameters

For the evolution, we utilized the quantized version of Llama 3.1 8B
Instruct [1] as the generative model. The results are reported after
conducting 7" = 10 generations with a population size of = 10. We
adopt the approach of Guo et al. [[7] for selecting base prompts for the
initial population described in section[3] Specifically, depending on the
task, we utilize prompts from Mishra et al. [20], Zhang et al. [34], Li
etal. [12]], Sanh et al. [25], Zhang et al. [37]. However, for SQuAD, we
employ a single manually crafted prompt alongside generated prompts
obtained using the forward mode generation method proposed by
Zhou et al. [39].

For both paraphrasing and evolutionary steps, sampling was ap-
plied in decoding using a temperature of ¢ = 0.5 to increase output
variance. We used the same model for the judge and for the evaluation,
i.e., Llama 3.1 8B Instruct, but with greedy decoding for increased
correctness.

For the early stopping, we set 7, = 107>, the window size w =
10, 17, = 1073 and a patience of 20.

4 This prompt is the result of a manual investigation; since this work deals with
the optimization of prompts and the manual tuning of prompts contradicts
the motivation of this work, this manual tuning is only necessary at this
point, but neither reflects our intention to improve prompt optimization, nor
does it counteract it.
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Table 1: Baseline results for our hyperparameters and models for
various classification, question answering, and text generation tasks.
Results are reported for two evolutionary algorithms: Differential
Evolution (DE) and Genetic Algorithm (GA). GA outperforms DE on
most tasks, including AGNews, ASSET, SAMSum, SQuAD, SST-2,
SST-5, and Subj. DE achieves better results on CR, MR, and TREC.
This indicates that — without any of our improvements — while GA
generally yields better overall performance, DE remains competitive
on certain tasks.

Table 2: Comparing the different evaluation strategies to the baseline:
average difference of evaluation scores (AS), difference in number
of tokens used during prompt evaluation (Ac.), token count (¢¢/c;)
and runtime (te/t,) of the experiment as a fraction of the baseline. All
reported values are averaged over tasks.

Evolution Algorithm

Task DE GA
AGNews 86.89% 87.99 %
ASSET 54.74% 56.78%
CR 91.85% 91.40%
MR 91.30% 90.55%
SAMSum 29.55% 29.82%
SQuAD 86.72% 89.27%
SST 2 94.51% 95.50%
SST 5 56.24% 56.33%
Subj 80.75% 84.10%
TREC 83.20% 78.80%

4.7 Other LLMs

To explore the effect the choice of LLM has on the performance of
the proposed methods, we conduct experiments with numerous other
LLMs :

LI3.1 (8B): Llama 3.1 8B InstruclE] (our base model).
MI (7B): Mistral Instruct 7BE]

Q2.5 (7B): Qwen2.57B Instrucﬂ

R1Q (1.5B): Deep Seek R1 Distill Qwen 1.5B Instruclﬂ
R1Q (7B): Deep Seek R1 Distill Qwen 7B Instruc{]

GI (1B): Google Gemma 1B Instruc

GI (7B): Google Gemini 7B Instruc

5 Quantitative Results

This section presents the results of the conducted experiments in a
quantitative manner to show the effectiveness of each modification,
analyzing their implications with respect to our research questions.

5.1 Baseline

Since we aim to investigate the impact of our proposed extensions to
evolutionary prompt optimization, table [I] presents baseline results
for our chosen hyperparameters and LLM models for all presented
tasks and both evolution algorithms. The results mostly replicate
the final results presented in Guo et al. [7], but with deviations in
hyperparameters and implementation.

5.2 RQ1: Efficient Evaluation

Table 2] shows the results for the experimental evaluation of the pro-
posed efficient evaluation strategies. The results indicate that, while

Model references on Hugging Face:

5 meta-llama/Meta-Llama-3.1-8B-Instruct

6 mistralai/Mistral-7B-Instruct-v0.1

7 Qwen/Qwen2.5-7B-Instruct

8 deepseek-ai/DeepSeek-R 1-Distill-Qwen-1.5B
9 deepseek-ai/DeepSeek-R 1-Distill-Qwen-7B
10 google/gemma- 1b-it

1 google/gemma-7b-it

Strategy AS Ace Ce/cy, te/ty,
Subsample -228%  -1.3M  33.5%  55.6%
Early Stopping -1.43% -7.6M  31.0% 53.2%
Shortest First +0.11% -7T9M  283% 43.6%
Hardest First -050% -80M 255% 42.8%

Table 3: Performance improvements of Col over baselines with (v)
and without (X) using a judge assessing model outputs. Incorporating
Col consistently improves results across both Differential Evolution
(DE) and Genetic Algorithm (GA), with a judge yielding best results
for both algorithms. For DE, the mean improvement increases from
+1.20% to +1.73%, with a higher maximum gain. Similarly, GA sees
an increase in mean improvement from +0.68% to +1.00%, with a
notable maximum gain of +4.40%. These results demonstrate that Col
optimization yields more reliable and higher-quality model outputs.

Evolution AS
Algorithm 7 mean min max
DE X +1.20% -0.35% +3.00%
v +1.73% -0.80% +3.56%
GA X +0.68% -0.88% +2.55%
4 +1.00% -0.63% +4.40%

all evaluation strategies reduce the number of tokens needed to score
the candidate prompts, the naive approach of subsampling D per-
forms in average worst, demonstrating the importance of high-quality
prompt candidate scores for the evolutionary algorithm. Notably, the
suggested strategies of evaluating on the shortest and hardest samples
first only show minor deviation from the baseline scores while also
being most effective reducing used tokens and runtime, whereas early
stopping on the unordered scoring set may decrease performance.
While the Hardest First strategy reduces the evaluation cost the most,
Shortest First is the only strategy that did not show any decrease in
the final evaluation. In total, to answer RQ1, both strategies, Hardest
First and Shortest First, can effectively reduce the compute usage.
They should be chosen based on individual preferences on the final
task performance.

5.3 RQ2&3: Col Prompting & Evolution Judge

In table[3] the relative improvements that can be achieved with Col
prompting are presented. The average across tasks is positive for all
configurations, regardless of evolution algorithm and the use of an
additional judge.

Notably, the mean improvement for the DE algorithm is higher than
for the GA algorithm, independent of whether the judge is used. Since
DE is more complex with a higher number of steps, this indicates that
Col helps by breaking the algorithm into discrete steps that can be
performed individually. Furthermore, Col yields the best performance
in combination with the judge, additionally motivating to verify model
outputs automatically in LLM-based evolutionary operators.

Similar to the enhancements achieved with Col, incorporating the
judge in our approach consistently outperforms the baseline meth-
ods, as demonstrated in table[d] regardless of whether Col is utilized.
This result indicates that the judge can successfully detect and reject
prompts which are determined to be of low quality before evaluation
and therefore provides a positive answer to RQ3. The resulting in-
crease in the number of high-quality prompts in the population before



Table 4: Performance improvements of applying a judge to assess
evolution with (v') and without (X) using Col. The judge improves
average performance (AS) across both Differential Evolution (DE)
and Genetic Algorithm (GA). With Col, DE sees a higher mean
improvement (+0.87% vs. +0.34%) and a reduced worst-case drop in
performance. GA also benefits, showing a larger average gain (+0.97%
vs. +0.65%) and achieving the highest observed improvement overall
(+3.20%). These results highlight the effectiveness of using a judge,
and especially in conjunction with Col, to guide the evolutionary
process.

Evolution AS
Algorithm  Col mean min max
DE X +0.34% -0.86% +2.80%
v +0.87% -0.18% +2.58%
GA X +0.65% -0.22% +1.79%
v +0.97% -0.35% +3.20%

selection seems to yield an overall improvement in the performance
of the final evolved prompt as observed in our results.

In combination, the results from tables [3] and [] show — in the

ablation cases where either Col or the judge are removed — that both
concepts work best in combination, providing a positive answer to RQ2.
This is to be expected, since the decomposition of the evolutionary
prompt also allows the judge to assess each smaller step separately,
compared to judging the whole output including multiple steps over
longer input-output pairs.
Table 5: Relative score improvements of evolution strategies revised
using human feedback (the subscript indicates the iteration) compared
to DE and GA, respectively. Incorporating human feedback yields con-
sistent performance gains across most tasks. On average, the second
iteration of DE (DE2) shows the highest mean improvement (+1.67%)
reflecting the notion of consecutive refinements, followed by the first
DE refinement (DE;1, +1.11%) and the GA refinement (GA1, +0.75%).
The largest individual improvements are observed on TREC and AS-
SET, indicating that human feedback is particularly effective for tasks
involving question classification and text simplification.

Task ASDEl ASDE2 ASGAl
AGNews +1.03% +1.54% +0.20%
ASSET +1.74% +2.36% -0.18%
CR +1.55% +2.10% +2.15%
MR +0.15% +0.15% -0.05%
SAMSum -0.19% +1.09% +0.43%
SQuAD +1.09% +0.95% +0.84%
SST 2 +0.90% +1.68% +0.88%
SST 5 +1.43% +2.06% +0.81%
Subj +0.20% +1.40% +0.20%
TREC +3.20% +3.40% +2.20%
Mean +1.11% +1.67% +0.75 %

5.4 RQ4: Human Feedback

The results presented in table [5]demonstrate the relative performance
improvements of evolution strategies incorporating human feedback
(DE+, DE», and GA1) over their respective baseline methods (DE and
GA) across multiple tasks. Overall, DE> consistently outperforms its
baseline, achieving the highest mean improvement of +1.67%, com-
pared to +1.11% for DE;. GA; also benefits from human feedback,
but shows a more modest mean improvement of +0.75%. While most
tasks exhibit performance gains, there are a few instances where mini-
mal or negative changes occur. Notably, the largest improvements are
observed on the TREC dataset showing substantial gains, with DE>
achieving the highest relative improvement of +3.40%. However, there

+8% o

+6%

+4%

T%@TLL

1 s T o

AS

+2%

+0%

LI3.1(8B) MI(7B) Q2.5(7B) R1Q(1.58) R1Q(7B) GI(1B)  GI (7B)

Model
Figure 2: Box plot illustrating the quantitative effectiveness of various
LLMs based on performance metrics across our evaluation set. The
models are listed in section The y-axis represents the relative
improvement in performance if Col and the judge are used. Mean
performance is consistently improved across all tested models, with
Gemma profiting the most.

is a variance on individual tasks induced by the randomness of the
evolution, but these findings suggest that integrating human feedback
into evolution strategies can enhance performance, with DE-based
approaches benefiting more noticeably than GA-based onesE]

Following this evaluation and to answer RQ4, we can say that the
evolutionary operator is effectively improved using human feedback
as proposed in our approach.

5.5 RQ5: Effectiveness of different LLMs

Figure 2] shows the performance difference between a baseline and
runs using both the judge and Col, with different LLMs models. The
evaluation was performed for all tasks presented in[d.1] The results
indicate that the proposed methods are effective across all tested mod-
els with an overall positive average improvement. Interestingly, the
smaller models, such as R1Q (1.5B) and GI (1B), show a higher vari-
ance in performance, especially when compared directly to the larger
variants of the same model (R1Q (7B) and GI (7B) respectively).
To answer RQ5, we were able to demonstrate the effectiveness of
our proposed method across a wide combination of tasks and models.

6 Qualitative Analysis of Human Feedback

Figure 3| presents an example of human feedback within our approach.
Upon reviewing the model output from the first evolution step, it was
observed that not all differences were identified, and some similari-
ties were erroneously included. Additionally, unexpected extraneous
output was generated. To address these issues, the prompt for the first
evolution step was refined by incorporating the following instructions:
"Output a list of all different parts and make sure that differences
are only in the form of words and phrases." and "If the same phrase
appears in both prompts, do not list it, i.e., do not list similarities."
This example also highlights the ambiguities associated with hu-
man involvement: multiple instructions exist, just as there are various

12 We note that the combination of judge-based and human feedback — where
humans corrected the model output if it was judged non-compliant with the
instructions — did not consistently enhance performance across all tasks.
Consequently, we have opted not to present these results.



Input:

somewhat positive (good), or extremely positive (great).

Step 1: Identify the different parts between Prompt 1 and Prompt 2:
Prompt 1: Analyze the sentence and categorize it into one of five categories based on the sentiment: terrible, bad, okay, good, or great.
Prompt 2: Classify the given review into one of five categories: extremely negative (terrible), somewhat negative (bad), neutral (okay),

Response:
1. Identifying the different parts between Prompt 1 and Prompt 2:

somewhat positive (good), or extremely positive (great).
Different parts:
- "sentence" vs "review"

- "analyze" vs "classify"
- "terrible, bad, okay, good, or great" vs "extremely negative (terrible), somewhat negative (bad), neutral (okay), somewhat positive (good),
or extremely positive (great)"

- "based on the sentiment" only appears in Prompt 1

" " " "

Prompt 1: Analyze the sentence and categorize it into one of five categories based on the sentiment: terrible, bad, okay, good, or great.
Prompt 2: Classify the given review into one of five categories: extremely negative (terrible), somewhat negative (bad), neutral (okay),

Figure 3: An example for the first step of evolution for DE: The expected response mentions mutations for all spotted differences (marked in red)
and omits the similarities as well as the last statement, which is evidently wrong (marked using strikeout in red). Demonstration samples for

in-context learning are omitted for clarity.

possible prompts for a task. By iteratively analyzing the evolution
model’s output and refining the instructions accordingly, we can facil-
itate human feedback, ultimately enhancing the prompt optimization
process.

Finally, we claim that inspecting the model output and adapting
the instructions correspondingly can be accomplished in about half
an hour, which is a reasonable time investment for the performance
improvements achieved in our experiments.

7 Conclusion

We introduced and investigated extensions to evolutionary prompt
optimization that leverage Col, an LLM-based judge, human feedback
and efficient evaluation methods to optimize prompts for a given task.

Col, by enabling greater control and better decision-making, can
enhance performance in prompt optimization (RQ2) and holds promise
for broader applications. In particular, when combined with judge-
based assessment (RQ3) and human feedback (RQ4), it provides a ro-
bust framework for identifying optimal prompts in NLP tasks. Lastly,
beyond performance improvements, reducing computational cost is
also a key consideration. Our efficient evaluation methods offer a
significant reduction in computational overhead while maintaining
performance during the search for optimal prompts (RQ1).

We are convinced that our contributions, including investigations
and releasing our code, help future research in the area, promoting
the effective and efficient use of LLMs in NLP, and especially help
in grounding LLMs for better language understanding.

8 Limitations

In this work we only focus on the optimization of the prompts while
not focusing on optimizing the verbalizer extracting the predictions for
the tasks, which could be a potential improvement since the prompt
can contain directives as to what to expect in the model output.
Furthermore, running multiple experiments on the same task can
lead to different results due to the stochastic nature of LLMs and the

evolutionary algorithms, providing a more reliable performance esti-
mate. However, since the experiments are time-intensive, we instead
mitigate this effect by averaging the results over multiple tasks. This
also allows us to analyze the performance of our methods across a
wide range of tasks, but may not be representative for individual tasks.

Also, although we optimize for faster runtimes and lower token
usage, LLMs still require large amounts of compute resources and
energy which potentially makes the methods and results presented
in this paper inaccessible to some groups without access to such re-
sources. For example, a single optimization of a prompt for SAMSum
using the hardest first strategy needed 4:24h on a single NVIDIA
A6000 GPU while the average GPU memory consumption was about
20GB.
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