Introduction: Language Understanding in the Human-Machine Era

Large language models (LLMs) have revolutionized the way interactional artificial intelligence (AI) systems are developed by making them accessible to the general public. Significant advances have been observed in fields such as conversational AI and machine translation, and their widespread use in the so-called human-machine era Sayers et al., 2021 is undeniable; those models have produced remarkable achievements in several benchmarks Gao et al., 2021; Hendrycks et al., 2021; Srivastava et al., 2023; A. Wang et al., 2019; Zhou et al., 2020, and the scientific community has discussed emergent properties Wei et al., 2022 that result from scaling laws Kaplan et al., 2020. Nevertheless, state-of-the-art systems are still prone to brittleness in language understanding, which raises doubts about the extent to which such systems can truly *understand* human language(s) Mitchell and Krakauer, 2023.

The concept of language understanding has always been controversial Lyons, 1990; Michael et al., 2023. As contemporary linguistic theories have shown, meaning-making relies not only on form and (immediate) semantic meaning, but also on context. Thus, understanding natural language entails more than observing the form and the meaning withdrawn from that form; instead, harnessing meaning Bender and Koller, 2020 requires access to grounding of some sort Allein et al., 2025. Therefore, understanding language is unsurprisingly a very complex task, even for humans Lyons, 1990. As discourse, pragmatics, and (social) context are particularly relevant for understanding language, how to equip language models with such linguistics-grounded capabilities is yet to be fully understood Mao et al., 2025. Nevertheless, language models are seemingly capable of generalising concepts, which could be seen as some kind of meaning understanding Piantadosi and Hill, 2022, even if modest.

Consequently, understanding language is a doubly challenging task. Besides understanding the intrinsic capabilities of LLMs, it is increasingly important to investigate the requirements and impact of using such systems in real-world applications. As has been empirically demonstrated, LLMs can be used effectively in various applications, even without sophisticated language understanding skills, but the absence of solid theories that support these findings raises concerns about which kinds of applications pose greater risks and ethical concerns, such as bias X. Wang et al., 2025, particularly those dealing directly with human interaction. Notable examples of such risks and concerns include the impact of language technology on teaching and language work. For instance, research is underway on the use of language models in educational settings Garcia-Varela

et al., 2025; S. Wang et al., 2024.

Machine translation (MT) is increasingly ubiquitous, as it is used by both language professionals and general speakers at (apparently) no cost. Causal language modeling is now becoming the new standard for MT Xu et al., 2024. Yet, as MT systems can take in a limited amount of context, they tend to make mistakes similar to what may happen to inattentive human translators if they rely on the source text alone. To understand and convey the intended meaning, human translators also need to rely on their own text-external knowledge. More broadly, recent research has called increasing attention to the role of situated and embodied cognition in translation Risku and Rogl, 2020.

As the way AI systems are intertwined with human expertise in language understanding is quickly changing, some have raised the question of the role played by language professionals in tasks such as translation. These professionals systematically add value to building next-generation language models that use linguistic and commonsense knowledge to provide more robust systems. Furthermore, it is important to understand how increasing human-machine interaction impacts the work of language professionals.

The "Language Understanding in the Human-Machine Era" (LUHME) workshop aims to reignite, retrieve, resume, and refocus the enduring debate about the role of understanding in natural language use and related applications. Specifically, it seeks to elucidate the nature of language understanding and ascertain whether it is indispensable for computational natural language tasks such as automated translation and natural language generation. Furthermore, it aims to provide insight into the role played by language professionals (e.g., linguists, professional translators, interpreters, language educators) in computational natural language understanding. It will, therefore, convene researchers interested in the intersection of language understanding and the effective use of language technologies in human-machine interaction.

The workshop's call for papers included the following topics: Language understanding in LLMs; Language grounding; Psycholinguistic approaches to language understanding; Discourse, pragmatics and language understanding; Intent detection; Evaluation of language understanding; Human vs. machine language understanding; Machine translation/interpreting and language understanding; Multimodality and language understanding; Socio-cultural aspects in understanding language; Effects and risks of language misunderstanding; Manifestations of language (mis)understanding; Natural language understanding and toxic content; Ethical issues in language misunderstanding; Distributional semantics and language understanding; Linguistic theory and language understanding by machines; Linguistic, world, and commonsense knowledge in language

understanding; Role of language professionals in the LLMs era; Understanding language and explainable AI.

Each of the 15 papers submitted to the workshop was carefully revised by three PC members, and 10 papers were accepted. The program also includes a keynote by Chloé Clavel (INRIA Paris). The workshop's program is organized into four thematic sessions:

- Transparency and Social Dynamics in LLMs
- Cultural and Ethical Perspectives
- Extending the Capabilities of Language Models
- Evaluation, Judgment, and Public Discourse

Each session is composed of paper presentations and a discussion.

We thank all the authors and members of the PC for their invaluable contributions to make LUHME a very successful workshop. We also thank our keynote speaker. Finally, we thank the ECAI 2025 organizers for their support.

November 11, 2025

Henrique Lopes Cardoso Rui Sousa-Silva Maarit Koponen Antonio Pareja-Lora

References

- Allein, L., Trușcă, M. M., & Moens, M.-F. (2025). Interpretation modeling: Social grounding of sentences by reasoning over their implicit moral judgments. *Artificial Intelligence*, *338*, 104234. https://doi.org/10.1016/j.artint.2024.104234
- Bender, E. M., & Koller, A. (2020). Climbing towards NLU: On meaning, form, and understanding in the age of data. *Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics*, 5185–5198. https://doi.org/10.18653/v1/2020.acl-main.463
- Gao, L., Tow, J., Biderman, S., & et al. (2021, September). A framework for few-shot language model evaluation. https://doi.org/10.5281/zenodo.5371628
- Garcia-Varela, F., Bekerman, Z., Nussbaum, M., Mendoza, M., & Montero, J. (2025). Reducing interpretative ambiguity in an educational environment with chatgpt. *Computers & Education*, *225*, 105182. https://doi.org/10.1016/j.compedu.2024.105182
- Hendrycks, D., Burns, C., Basart, S., & et al. (2021). Measuring massive multitask language understanding. *International Conference on Learning Representations*.
- Kaplan, J., McCandlish, S., Henighan, T., & et al. (2020). Scaling laws for neural language models. *CoRR*, *abs/2001.08361*.
- Lyons, J. (1990). Language and linguistics: An introduction. Cambridge University Press.
- Mao, R., Ge, M., Han, S., Li, W., He, K., Zhu, L., & Cambria, E. (2025). A survey on pragmatic processing techniques. *Information Fusion*, *114*, 102712. https://doi.org/10.1016/j.inffus.2024. 102712
- Michael, J., Holtzman, A., Parrish, A., Mueller, A., Wang, A., Chen, A., Madaan, D., Nangia, N., Pang, R. Y., Phang, J., & Bowman, S. R. (2023). What do NLP researchers believe? results of the NLP community metasurvey. *Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, 16334–16368. https://doi.org/10.18653/v1/2023.acl-long.903
- Mitchell, M., & Krakauer, D. C. (2023). The debate over understanding in ai's large language models. *Proceedings of the National Academy of Sciences*, 120(13), e2215907120. https://doi.org/10. 1073/pnas.2215907120
- Piantadosi, S., & Hill, F. (2022). Meaning without reference in large language models. *NeurIPS 2022 Workshop on Neuro Causal and Symbolic AI (nCSI)*.
- Risku, H., & Rogl, R. (2020). Translation and situated, embodied, distributed, embedded and extended cognition. In F. Alves & A. L. Jakobsen (Eds.), *The Routledge handbook of translation and cognition* (pp. 478–499). Routledge.
- Sayers, D., Sousa-Silva, R., Höhn, S., & et al. (2021). The dawn of the human–machine era: A forecast of new and emerging language technologies (tech. rep.). EU COST Action CA19102 'Language In The Human–Machine Era'. https://doi.org/10.17011/jyx/reports/20210518/1

- Srivastava, A., Rastogi, A., Rao, A., & et al. (2023). Beyond the imitation game: Quantifying and extrapolating the capabilities of language models. *Transactions on Machine Learning Research*.
- Wang, A., Pruksachatkun, Y., Nangia, N., Singh, A., Michael, J., Hill, F., Levy, O., & Bowman, S. (2019). SuperGLUE: A Stickier Benchmark for General-Purpose Language Understanding Systems. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, & R. Garnett (Eds.), Advances in neural information processing systems (Vol. 32). Curran Associates, Inc.
- Wang, S., Xu, T., Li, H., Zhang, C., Liang, J., Tang, J., Yu, P. S., & Wen, Q. (2024). Large language models for education: A survey and outlook. https://arxiv.org/abs/2403.18105
- Wang, X., Liu, X., Wang, L., Wu, S., Su, J., & Wu, H. (2025). A simple yet effective self-debiasing framework for transformer models. *Artificial Intelligence*, *339*, 104258. https://doi.org/10.1016/j.artint.2024.104258
- Wei, J., Tay, Y., Bommasani, R., Raffel, C., Zoph, B., Borgeaud, S., Yogatama, D., Bosma, M., Zhou, D., Metzler, D., Chi, E. H., Hashimoto, T., Vinyals, O., Liang, P., Dean, J., & Fedus, W. (2022). Emergent abilities of large language models [Survey Certification]. Transactions on Machine Learning Research.
- Xu, H., Kim, Y. J., Sharaf, A., & Awadalla, H. H. (2024). A paradigm shift in machine translation: Boosting translation performance of large language models. *The Twelfth International Conference on Learning Representations*.
- Zhou, X., Zhang, Y., Cui, L., & Huang, D. (2020). Evaluating commonsense in pre-trained language models. *Procs. 34th AAAI, New York, USA, February 7-12, 2020*, 9733–9740. https://doi.org/10.1609/aaai.v34i05.6523

Workshop Organizers

Henrique Lopes Cardoso *University of Porto, Portugal*

Rui Sousa-Silva University of Porto, Portugal

Maarit Koponen University of Eastern Finland, Finland

Antonio Pareja-Lora Universidad de Alcalá, Spain

Web Master

Felermino Ali
University of Porto, Portugal

Assistant

Karen de Souza University of Eastern Finland, Finland

Programme Committee

Aida Kostikova, Bielefeld University, Germany

António Branco, University of Lisbon, Portugal

Barbara Lewandowska-Tomaszczyk, University of Applied Sciences in Konin, Poland

Belinda Maia, University of Porto, Portugal

Alípio Jorge, University of Porto, Portugal

Bram van Dijk, Leiden University, Netherlands

Chaya Liebeskind, Jerusalem College of Technology, Israel

Efstathios Stamatatos, University of the Aegean, Greece

Ekaterina Lapshinova-Koltunski, University of Hildesheim, Germany

Eliot Bytyçi, Universiteti i Prishtinës "Hasan Prishtina", Kosovo

Federico Ruggeri, University of Bologna, Italy

Lynne Bowker, University of Ottawa, Canada

Nataša Pavlović, University of Zagreb, Croatia

Sule Yildirim Yayilgan, Norwegian University of Science and Technology, Norway

Tharindu Ranasinghe, Lancaster University, UK

Keynote Speaker

Chloé Clavel, Inria Paris

Contents

Transparency and Social Dynamics in LLMs	1
[Keynote] Understanding Social Interactions in the Era of LLMs - the Challenges	
of Transparency	
Chloé Clavel	2
Building Common Ground in Dialogue: A Survey	
Tatiana Anikina, Alina Leippert & Simon Ostermann	3
Cultural and Ethical Perspectives	29
Do Large Language Models Understand Morality Across Cultures?	
Hadi Mohammadi, Yasmeen F. S. S. Meijer, Efthymia Papadopoulou & Ayoub Bagheri	30
A Nightmare on LLMs Street: On the Importance of Cultural Awareness in Text	
Adaptation for LRLs	
David C. T. Freitas & Henrique Lopes Cardoso	40
Terminologists as Stewards of Meaning in the Age of LLMs: A Digital Humanism	
Perspective	
Barbara Heinisch	49

Extending the Capabilities of Language Models	57
A Toolbox for Improving Evolutionary Prompt Search	
Daniel Grießhaber, Maximilian Kimmich, Johannes Maucher & Thang Vu	58
Improving LLMs for Machine Translation Using Synthetic Preference Data	
Dario Vajda, Domen Vreš & Marko Robnik Šikonja	67
Probing Vision-Language Understanding through the Visual Entailment Task:	
promises and pitfalls	
Elena Pitta, Tom Kouwenhoven & Tessa Verhoef	74
Evaluation, Judgment, and Public Discourse	84
Do Large Language Models understand how to be judges?	
Nicolò Donati, Paolo Torroni & Giuseppe Savino	85
Cross-Genre Native Language Identification with Open-Source Large Language	
Models	
Robin Nicholls & Kenneth Alperin	103
Climate Change Discourse Over Time: A Topic-Sentiment Perspective	
Chaya Liebeskind & Barbara Lewandowska-Tomaszczyk	109