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Abstract

Ensuring semantic consistency between
semantic-triple inputs and generated text is
crucial in data-to-text generation, but continues
to pose challenges both during generation and
in evaluation. In order to assess how accurately
semantic consistency can currently be assessed,
we meta-evaluate 29 different evaluation
methods in terms of their ability to predict
human semantic-consistency ratings. The
evaluation methods include embeddings-based,
overlap-based, and edit-distance metrics, as
well as learned regressors and a prompted
‘LLM-as-judge’ protocol. We meta-evaluate
on two datasets: the WebNLG 2017 human
evaluation dataset, and a newly created
WebNLG-style dataset that none of the
methods can have seen during training. We
find that none of the traditional textual
similarity metrics or the pre-Transformer
model-based metrics are suitable for the task of
semantic consistency assessment. LLM-based
methods perform well on the whole, but best
correlations with human judgments still lag
behind those seen in other text generation
tasks.

1 Introduction

The last few years have seen substantial advances
in the quality of automatically generated text (Hurst
et al., 2024; Dubey et al., 2024) in particular with
respect to suprasentential fluency and coherence,
thanks to pretrained language models with ever
larger numbers of parameters, trained on ever larger
datasets (Hoffmann et al., 2022). However, these
advances have come at the price of semantic con-
trollability, with confabulation, replacement and
omission of content all commonly found in state-of-
the-art text generation systems (Hao et al., 2025).
In controlled text generation, whether in the form
of data-to-text generation, or of free text generation
with given control attributes, some or all of the in-
put must be matched in specific ways by the output.
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Ensuring this semantic consistency between input
and output is a known weakness of otherwise state-
of-the-art neural generators, and we currently do
not have sufficiently reliable methods either (i) for
ensuring semantic consistency as part of the neural
generation process, or (ii) for evaluating systems
in terms of the degree to which they achieve it.

This poses particular problems for tasks like
data-to-text generation (Corbelle et al., 2022),
where the information conveyed by the output is in-
tended to be entirely controlled by the information
contained in the input. Currently the only way to
perform such semantic consistency assessment reli-
ably is manual evaluation, with supervision-trained
automatic methods getting up to about three quar-
ters of unseen assessments right (Dusek and Kas-
ner, 2020; Liu et al., 2023; Cui et al., 2024). An
automatic method that can reliably assess the se-
mantic consistency between inputs and outputs di-
rectly would be useful not only for evaluation in
and post development, but also potentially as part
of the text generation method itself, e.g. via rerank-
ing of outputs (Harkous et al., 2020), or as part
of a loss function. However, semantic consistency
continues to be challenging to assess automatically
with a high degree of reliability, and evaluation by
comparison to human-written reference outputs or
by human evaluators is predominantly used instead.

In this paper, we evaluate diverse types of se-
mantic consistency evaluation methods on two
datasets: the WebNLG 2017 human evaluation
dataset (Dataset A), and a newly created, unseen
WebNLG-style dataset (Dataset B). Moreover, we
test each method under two conditions: (i) with
triple inputs ‘textified’ before assessment, and (ii)
without. Our main contributions are:

1. A new WebNLG-style data-to-text dataset of
new triple inputs and corresponding texts for
people and city entities sampled from the
GREC corpus (Belz et al., 2009), with out-
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puts generated by five different NLG systems.

Human semantic consistency annotations for
a subset of 100 input-output pairs from the
above new dataset. These are WebNLG 2017
style annotations for ‘semantic adequacy’ cri-
terion.

An empirical evaluation of 29 evaluation
methods for semantic consistency on two
data-to-text corpora, one established, one new;
and under two conditions: with input triples
textified, and without.

A novel LLM-as-judge protocol where LLMs
(Command-r-plus, Llama3-70B, Mistral-7B)
rate semantic consistency on a 3-point scale
with for-human instructions, and their scores
are ensembled into a single metric.

. An analysis of how model type, input repre-
sentation and underlying definition of seman-
tic consistency affect correlation with human
ratings.

2 Related Work

Semantic consistency assessment (SCA) is consid-
ered challenging (Harkous et al., 2020; Liu et al.,
2023; Cui et al., 2024). Existing methods tend
to not directly use the structured meaning repre-
sentations (SMRs) that typically form the input
to data-to-text generation, but first (trivially) map
them to text, before applying either a semantic sim-
ilarity measure (Mille et al., 2023), or performing a
natural language inference (NLI) task (Dusek and
Kasner, 2020), on the (mapped) inputs and corre-
sponding textual outputs.

Such methods tend to not generalise well beyond
the data they were trained on. Moreover, pipelining
multiple processes aggregates errors. Harkous et al.
(2020) presented an end-to-end data-to-text gener-
ation system with a semantic fidelity classifier for
semantically inaccurate text detection. Faille et al.
(2021) proposed an automatic metric for assessing
entity-based semantic adequacy of RDF verbalisers.
Ribeiro et al. (2020) used natural language infer-
ence (NLI) to detect two-way entailment between
generated text and the input.

In existing work, semantic consistency assess-
ment has been construed e.g. as binary classifica-
tion (Harkous et al., 2020), mutual textual entail-
ment (Dusek and Kasner, 2020), or thresholded
semantic similarity (Mille et al., 2023), between
inputs and outputs (see also related research in Sec-
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tion 2). However, little attention has been paid to
underlying definitions of semantic consistency and
the role they play in evaluation results which can
vary substantially depending on which definition
underlies an evaluation method.

3 Datasets

We evaluate two corpora of RDF-text pairs with
human judgments of semantic adequacy:

Dataset A (WebNLG 2017): A subset of the
public WebNLG 2017 human evaluation data (Shi-
morina et al., 2018), comprising 100 randomly
sampled input-output pairs (out of 2,230 total)
across ten systems. Each text was rated by three
annotators on a 3-point scale for semantic ade-
quacy (“Does the text correctly represent the input
triples?”’), and we use the mean score.

Dataset B (GREC-derived): A new WebNLG-
style benchmark built from the People (442) and
Cities (243) entities in the GREC 2.0 corpus
(Belz et al., 2009). We automatically extract
RDF triples for 100 sampled entities (see Algo-
rithms 1-2 in Appendix A), generate verbalisa-
tions with five available NLG systems previously
submitted to the WebNLG shared tasks (FORGe,
CycleGT, DCU-NLG-Small, DCU-NLG-PBN,
DCU-ADAPT-modPB, see details in Appendix
B), and collect three independent, human-assessed
semantic-consistency ratings per example follow-
ing the WebNLG 2017 protocol. Ratings are aver-
aged for our meta-evaluation. We will release all
of our data here.!

4 Evaluation Methods

We meta-evaluate 29 evaluation methods in terms
of their ability to predict human semantic consis-
tency ratings; the methods fall into three broad
categories depending on the underlying (implied)
definition of semantic consistency:

1. Textual similarity between inputs and out-
puts (ROUGE, BLEU, edit-distance, and set-
overlap metrics): the more similar the texts,
the greater the semantic consistency;

. Semantic similarity between inputs and out-
puts (embeddings-based metrics): the more
similar the number vectors, the greater the
semantic consistency; and
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3. Model-based assessment (learned regressors,
LLMs): semantic consistency is as good as
the model predicts it to be.

We deliberately include both long-established met-
rics and more recent model-based methods. While
some traditional overlap or distance-based met-
rics are considered outdated in text-to-text eval-
uation, they continue to be used in some parts of
the research community and therefore remain rel-
evant for comparison. Their inclusion also allows
us to quantify more precisely how much newer
metrics and LLM-based evaluators improve upon
them in the more challenging data-to-text setting,
thereby providing a comprehensive baseline for
future work.

More specifically, we use the following 29 auto-
matic methods (see Appendix C for details) falling
into five method types:

* Embeddings-based semantic similarity:
BERTScore P/R/F;; SBERT Cosine, Dot, Eu-
clidean, Manhattan.

* Overlap-based textual similarity: Sacre-
BLEU; ROUGE-1/2/L P/R/F1; METEOR.

» Edit-distance and set-based textual similar-
ity: Levenshtein; Jaccard similarity, distance;
Dice.

e Assessment by learned
BLEURT, InferSent,
Encoder.

regressors:
Universal Sentence

* Assessment by LLMs: Command-r-plus,
Llama3-70B, Mistral-7B, and the three mod-
els ensembled.

The above methods are used to obtain semantic-
consistency assessments on data-to-text in-
put/output pairs in our two datasets, with and
without textification of inputs.

5 Experimental Set Up

Our aim is to determine which of the metrics from
the preceding section best predict human judge-
ments of semantic consistency.

In data-to-text generation, human evaluation re-
mains the gold standard, but is expensive and
time-consuming (Thomson et al., 2024; Sellam
et al., 2020). Consequently, automatic proxies
are widely used, including embeddings-based
(BERTScore (Zhang et al., 2019); SBERT

(Reimers and Gurevych, 2019a); BLEURT (Sel-
lam et al., 2020)), overlap (ROUGE (Lin, 2004);
SacreBLEU (Post, 2018); METEOR (Banerjee and
Lavie, 2005)), and edit/set measures (Levenshtein
(Levenshtein et al., 1966); Jaccard/Dice (Jaccard,
1901; Dice, 1945)). We assess all of these in our
experiments. However, they were designed for text-
to-text tasks, not structured inputs, so we test them
both with and without textification.

We extend our tests to LLM-as-judge meth-
ods, prompting three pre-trained models
(Command-r-plus, Llama3-70B, Mistral-7B) to
rate semantic consistency on a 1-3 scale, and
averaging over three seeds (42; 1234; 1738).

We evaluate the metrics and LLM judges on
the two datasets from Section 3, once with inputs
as they are (structured triples), and once with lin-
earised and ‘textified’ triples (see Algorithm 3 in
Appendix A). Our simple textification method re-
places special characters with spaces, collapses
whitespace, and trims edges.

We compute scores with all evaluation meth-
ods, then compute Pearson’s r between the scores
and mean human ratings for each dataset, ranking
methods by correlation to identify the strongest
predictors.

6 Result and Analysis

The results in Table 1 reveal systematic differences
in metric performance between the two datasets,
and between textified and non-textified inputs.

First, textification exerts a positive effect on
most of the evaluated metrics on Dataset A (ex-
cept BLEURT, Rouge-L Recall, Rouge-1 Recall,
SacreBLEU, Jaccard Distance), yielding an aver-
age Pearson’s r increase of about 0.07; and also on
Dataset B (here the exceptions are the four SBERT
metrics, ROUGE-2 Precision, SacreBLEU, Leven-
shtein Distance, Jaccard Distance) where the aver-
age increase in r is about 0.04.

Textification has a slightly smaller beneficial ef-
fect on Dataset B correlations for the LLM judges,
except Mistral. In stark contrast, it causes LLM
correlations to collapse across the board on Dataset
A (see also Discussion section).

Among the metrics, the four SBERT-based simi-
larity metrics with textification attain the four high-
est correlations on Dataset A (r = 0.582), substan-
tially outperforming BLEURT (0.530). In contrast,
BLEURT (r = 0.733), followed by BERTScore
F1 (0.670) and then the SBERT variants (0.655)
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Type of Metrics Metrics Dataset A (WebNLG 2017) Dataset B (new WebNLG-style dataset
r (-Textification)  r (+Textification) | r (-Textification) r (+Textification)

SBERT (Euclidean) 0.507 0.582 0.655 0.655
SBERT (Manhattan) 0.502 0.582 0.662 0.655
SBERT (Cosine) 0.518 0.573 0.654 0.638
SBERT (Dot Product) 0.518 0.573 0.654 0.638
BLEURT 0.530 0.501 0.713 0.733
Universal Sentence Encoder 0.248 0.500 0.271 0.402
BERTScore R 0.417 0.447 0.431 0.609
BERTScore Fi 0.421 0.441 0.572 0.670
BERTScore P 0.424 0.433 0.636 0.647
InferSent 0.372 0.379 -0.148 -0.022
METEOR 0.206 0.379 0.296 0.306
ROUGE-L F; 0.305 0.338 0.223 0.356
Automatic Metrics | ROUGE-L Precision 0.287 0.337 0.248 0.304
ROUGE-1 Precision 0.292 0.330 0.268 0.305
ROUGE-1 F; 0.309 0.329 0.246 0.387
ROUGE-L Recall 0.328 0.324 0.158 0.281
Dice Coefficient 0.290 0.321 -0.021 0.074
Jaccard Similarity 0.290 0.320 -0.010 0.078
ROUGE-1 Recall 0.329 0.313 0.182 0.323
ROUGE-2 Precision 0.203 0.264 0.111 0.078
ROUGE-2 F; 0.202 0.263 0.097 0.127
ROUGE-2 Recall 0.198 0.257 0.051 0.082
SacreBLEU 0.228 0.198 0.400 0.127
Levenshtein Distance -0.044 -0.062 -0.384 -0.400
Jaccard Distance -0.290 -0.320 0.010 -0.078
Command-r-plus + Llama + Mistral 0.635 0.367 0.716 0.720
LLM-as-Judge Mistral 0.531 0.362 0.567 0.488
Llama 0.569 0.284 0.644 0.689
Command-r-plus 0.518 0.214 0.727 0.729

Table 1: Pearson’s r for Datasets A and B, sorted (within Automatic Metrics and LLM-as-Judge) by Dataset A’s r
(+Textification). Top three Pearson’s r in each group bolded.

perform best on Dataset B.

Among the LLM judges, the three-model ensem-
ble (Command-r-plus + Llama + Mistral) corre-
lates best with human judges on Dataset A (r =
0.635), whereas on Dataset B, the single model
Command-r-plus achieves the highest correlation
(r = 0.727), marginally surpassing both the ensem-
ble (0.716) and Llama (0.644).

On Dataset A, the LLM judges without textifi-
cation, and the model-based metrics with textifi-
cation, perform best overall and more or less on a
par. On Dataset B, the standout performances are
by BLEURT, the LLM ensemble and Command-r-
plus by a considerable margin, and these are hardly
affected by textification. Moreover, on Dataset B,
the more traditional metrics fail almost entirely (see
rows from InferSent down to Jaccard).

7 Discussion

Among the clearest patterns in our results is the
uniformly poor performance of traditional textual
similarity metrics at the semantic consistency as-
sessment task. InferSent and Universal Sentence
Encoder, the two neural but pre-Transformer met-
rics, can also be dismissed for this task.

Another clear pattern is that while the traditional
textual similarity metrics perform very similarly on

Dataset A and Dataset B, every evaluation method
that involves an LLM sees a jump in correlation
from Dataset A to B. It’s not entirely clear why the
latter should agree more with humans on B than on
A. It may in part be due to the fact that outputs in
Dataset B are generally of higher quality, perhaps
displaying more minor as well as fewer errors.

Textification caused the LLM-judge scores to
collapse (while improving almost all other scores)
on Dataset A. The latter was almost certainly in-
gested as part of their training data by the four
LLMs tested, so textification had the net effect of
obscuring whether an input and output belonged
together (hence their semantic relatedness).

It is worth noting that the highest correlations
with human judgments in our experiments were
just over r = 0.7. While such values fall below text-
to-text generation tasks where correlations above
0.8 are commonly reported, they nevertheless rep-
resent the current performance ceiling for semantic
consistency in data-to-text generation. This gap
highlights both the greater intrinsic difficulty of the
task and the lack of specialised metrics designed for
structured input-output matching. The poor perfor-
mance of older metrics confirms their unsuitability
for semantic consistency assessment, and provides
a baseline against which to measure progress with
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newer methods.

8 Conclusion

We have presented a meta-evaluation of 29 dif-
ferent evaluation methods on the task of assess-
ing semantic consistency between triple inputs and
corresponding textual output in data-to-text gen-
eration. The evaluation methods came in three
broad flavours (reflecting the underlying defini-
tion of semantic consistency): textual similarity,
semantic similarity, and model assessment. Meta-
evaluation on the WebNLG 2017 human evaluation
dataset and a newly created WebNLG-like dataset
revealed that none of the older metrics, including
those based on pre-Transformer neural models, are
suitable in the least for the data-to-text semantic
consistency assessment task.

At the same time, no method surpassed Pear-
son’s r = 0.635 (LLM ensemble) on Dataset A, or
r = 0.733 (BLEURT) on Dataset B, with the best
prompted LL.M-as-judge evaluation methods close
behind. These results underscore the notable gap
in correlations with human assessments between
data-to-text and text-to-text evaluation benchmarks;
in the latter, correlations well over 0.8 are routinely
reported. One route that may be worth exploring
in future work is different ensembling strategies
combining the best embeddings-based metrics with
LLM-as-judge methods. Improvements in SCA
methods can in turn lead to improvements in both
data-to-text evaluation and generation.

Finally, by evaluating both older and state-of-
the-art methods side by side, we have provided
a comprehensive picture of the current landscape.
While some of the older metrics are known to be
less suited for the purpose of SCA, their continued
use in the community and their role as compar-
ative baselines make their inclusion informative.
Our experiments were restricted to WebNLG-style
English datasets, and it will be important to test
whether the observed patterns hold across different
domains and languages, to establish the generalis-
ability of the findings.

Limitations

Our experiments showed promising correlations
among human metrics, automatic metrics, and
LLM evaluations. However, because we examined
only a limited set of models and traditional auto-
matic metrics, we cannot generalise these findings
beyond that scope.
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A Algorithms

Algorithm 1: Property-to-Entity Mapping
Construction
Input:
(a) GREC_NE. json: list of entities by category
(b) Ontology property definitions: set of valid
properties for each category from the Ontology
(c) DBpedia triple data: all RDF triples (subject,
property, object) from DBpedia
Output:
dico_entities_for_triple_configuration_
GREC_NEs. json:
property-to-entity mapping

if dico_entities_for_triple_configuration_
GREC_NEs. json does NOT exist then
for each category in GREC_NE. json do
for each property relevant to the category
(from Ontology) do
for each entity in the category do
if there exists at least one triple in
DBpedia where the entity is
subject and the predicate is the
property then
Add the entity to the
property’s entity list for that
category;

Save as dico_entities_for_triple_
| configuration_GREC_NEs. json;

Algorithms 1 and 2 show how we carried out
triple collection for Dataset B. Algorithm 3 present
the approach for the “textification” of triples.

The steps we follow in Algorithm 1 are as fol-
lows:

* Read the list of named entities grouped by
category from GREC_NE. json.

* For each category (e.g., People, Cities):

— Retrieve the set of valid properties for
the category, as defined in the Ontology.

— For each entity in the category:

+ Check DBpedia for at least one RDF
triple where the entity appears as the
subject and the property as the predi-
cate.

+ If such a triple exists, add the entity
to the list for that property in the cur-
rent category.

* Repeat this process for all categories, proper-
ties, and entities.

* Save the resulting mapping (category —
property — [entities]) to
dico_entities_for_triple_config-
uration_GREC_NEs. json.

* This mapping enables targeted triple extrac-
tion, which we use in the second algorithm.

The steps we follow in Algorithm 2 are as follows:

¢ Check whether the file
dico_input_contents_DBp_GREC_NEs.pickle
exists.

- If not:
+ Traverse the property-to-entity mapping from
Algorithm 1.
+ For each category, property, and entity:

- If the entity is in the target list from
GREC_NE. json, extract all RDF triples
from DBpedia where the entity is the sub-
ject and the property is the predicate.

- Aggregate all such triples per entity.

# Save the resulting entity-to-triples mapping
as
dico_input_contents_DBp_GREC
_NEs.pickle.

— If the pickle file already exists, load it directly.

 Build a list of all target entities and their categories from
GREC_NE. json.

* For each entity:

— Look up the set of valid properties using the
property-to-entity mapping.
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— Retrieve all available triples for the entity from
the pickle file.

— Filter the triples to keep only those with valid
properties.

— Optionally, remove triples with unsuitable object
values.

— Set the target number N of triples per entity ac-
cording to the WebNLG distribution (e.g., N =
3).

— If more than N triples remain, randomly select
N; otherwise, keep all.

* Group the final triples for each entity.

* Write the grouped triples to an XML file for downstream
use. This is our ‘Dataset B.”

B Systems

We collected a total of 100 samples, with each of the following
five systems generating 20 samples:

C

1.

FORGe (Mille et al., 2019) is a portable grammar-based
system that maps predicate-argument structures onto
sentences by applying a series of rule-based graph-
transducers.

2. CycleGT (Guo et al., 2020) is a weakly supervised

framework that iteratively bootstraps generation and se-
mantic parsing models by mapping between two modali-
ties (unaligned text and RDF data) to enable joint model
improvement.

3. DCU-NLG-Small (Mille et al., 2024) is a combination

of FORGe rule-based system with a language model of
reduced size (T5), where the rule-based system converts
input triples into semantically correct English text and
then a language model to paraphrase these text to make
it more fluent.

4. DCU-NLG-PBN (Lorandi and Belz, 2024) is a Mistral

7B Instruct model fine-tuned with Low-Rank Adapta-
tion (LoRA) to improve performance while maintaining
computational efficiency.

5. DCU-ADAPT-modPB (Osuji et al., 2024) explores two

approaches: (1) using a fine-tuned Flan-T5-large model
for triple ordering and structuring, followed by prompt-
based surface realisation with five-shot prompting; and
(2) directly generating text from input triples using a
prompt-based model with five examples. We use the
latter approach with the Mistral 7B Instruct model.

Metrics used

We define semantic consistency as the requirement that an
output’s content fully aligns with, and does not exceed, the
information in its input. To assess both semantic similarity
and dissimilarity under this definition, we use the following
25 automatic metrics:

* Embedding-based metrics (BERTScore, SBERT
variants):

— BERTScore:> BERTScore (Zhang et al., 2019)
compares two sequences by computing similar-
ity between contextual embeddings produced by
pretrained Transformer models. It evaluates how
well the tokens in one sequence align with those
in the other using cosine similarity.

2https ://github.com/Tiiiger/bert_score

* Precision (P): Average of the maximum sim-
ilarity each token in the first sequence has
with tokens in the second.

+ Recall (R): Average of the maximum simi-
larity each token in the second sequence has
with tokens in the first.

% F1: Harmonic mean of Precision and Recall.

— SBERT:® Sentence-BERT (Reimers and
Gurevych, 2019b) produces dense sentence-level
embeddings using a Siamese or triplet network
based on BERT. The similarity between
sequences is calculated via standard vector-based
measures:

+ Cosine: —— in [—1,1].
[[allllv
+ Dot Product: u - v, unbounded.

« Euclidean: |lu — vz = /Y (ui — vi)2
* Manhattan: ||u—v|ji = >, |u; —vil.

¢ Overlap-based metrics (SacreBLEU, ROUGE, ME-
TEOR):

— SacreBLEU:* SacreBLEU (Post, 2018) standard-
ises the BLEU metric by controlling for tokeni-
sation, smoothing, and formatting, allowing con-
sistent comparison. It computes n-gram precision
and penalises overly short outputs via a brevity
penalty.

- ROUGE:’ ROUGE (Lin, 2004) measures the
overlap between sequences based on n-grams and
longest common subsequences (LCS). It empha-
sises recall, capturing how much of a reference is
matched.

* ROUGE-1: Based on unigram overlap.
# ROUGE-2: Based on bigram overlap.
* ROUGE-L: Based on longest common sub-
sequence.
- Precision: LCS length divided by candi-
date length.
- Recall: LCS length divided by reference
length.
- F1: Harmonic mean.

- METEOR:® METEOR (Banerjee and Lavie,
2005) aligns unigrams between sequences using
exact, stemmed, and synonym matches. It bal-
ances precision and recall, and applies a fragmen-
tation penalty to discourage disordered matches.

¢ Edit- and set-based metrics (Levenshtein, Jaccard,
Dice):

— Levenshtein Distance:” Levenshtein (Leven-
shtein et al., 1966) computes the minimum num-
ber of character edits (insertions, deletions, sub-
stitutions) needed to transform one string into an-
other. It can be normalised to obtain a similarity
score.

- Jaccard Similarity:® The Jaccard Index (Jaccard,
1901) measures similarity between two sets as the

Shttps://www.sbert.net

4https: //github.com/mjpost/sacrebleu
5https: //pypi.org/project/rouge/
6https: //huggingface.co/spaces/

evaluate-metric/meteor/tree/main

"https://pypi.org/project/Levenshtein/
8https://www.geeksforgeeks.org/

jaccard-similarity/
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ratio of their intersection to their union:

ANB
s = 02

— Jaccard Distance:’ A dissimilarity measure de-
fined as 1 — J(A, B) (Rogers and Tanimoto,
1960).

— Dice Coefficient:'® The Dice coefficient (Dice,
1945) measures similarity as:

21AN B|
D(A,B) = ———

which weights shared elements more heavily than
Jaccard.

¢ Learned regressors (BLEURT, InferSent, USE):

— BLEURT:'' BLEURT (Sellam et al., 2020) is
a regression model fine-tuned on perturbed and
human-annotated sentence pairs to predict quality
scores aligned with human judgement.

— InferSent:'? InferSent (Conneau et al., 2017) is
a sentence embedding model trained on Natural
Language Inference datasets. It produces embed-
dings useful for similarity tasks using cosine or
other distance measures.

— Universal Sentence Encoder:'* USE (Cer et al.,
2018) generates fixed-length embeddings from
various architectures trained on multitask learning
objectives. Similarity is typically computed using
cosine distance.

We apply these metrics to our input/output pairs, where the
input RDF triple(s) are processed either with or without texti-
fication (see Algorithm 3 for further details).

‘https://en.wikipedia.org/wiki/Jaccard_index

10https://en.wikipedia.org/wiki/Dice—SKyrensen_
coefficient

"https://github.com/google-research/bleurt

Phttps://github.com/facebookresearch/InferSent

13https://www.tensorflow.org/hub/tutorials/
semantic_similarity_with_tf_hub_universal_
encoder
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Algorithm 2: Triple Extraction, Filtering,
Sampling, and WebNLG-like XML Data
Creation

Input:

(a) GREC_NE. json
(b)dico_entities_for_triple_configuration
_GREC_NEs. json

Output: XML file containing the WebNLG-like

dataset, grouped by entity

if dico_input_contents_DBp_GREC_NEs.pickle
does NOT exist then

else

foreach each category in
dico_entities_for_triple_configuration
_GREC_NEs. json do
foreach each property in the category do
foreach each entity in the property’s
entity list do
if the entity is in the target list from
GREC_NE. json then
Extract all (subject, property,
object) triples for that entity
from DBpedia data;
Add these triples to the list of
triples for the entity in the

mapping;

Save as
dico_input_contents_DBp_GREC_NEs.pickle
then Load;

Load
dico_input_contents_DBp_GREC_NEs.pickle;

s

Initialize an empty list target_entities;
foreach each category in GREC_NE. json do

foreach each named entity in the category do
Add a record (entity name, category) to
target_entities;

foreach each record in target_entities do

Let entity be the entity name and category its
category,

Retrieve all properties for which entity is listed
indico_entities_for_triple_config-
uration_GREC_NEs. json;

| Save these as the valid properties for entity;

foreach each entity in target_entities do

Retrieve available triples for this entity from the
pickle;

For each (entity, property) pair: Get the actual
triple (subject, property, object) from the pickle
file;

Keep only triples whose property is valid for this
entity;

Optionally remove triples with unsuitable object
values;

Set IV as the target number of triples for this
entity (e.g., N = 3);

if number of triples > N then
L Randomly select N triples;

else
| Keep all triples;

Save these triples for the entity;

foreach each entity in target_entities do

L

Group the final triples for the entity;

Write all grouped triples to an XML file;
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Algorithm 3: Minimal Normalisation of
Linearised Triples

Input:

List of linearised triple strings L

Output:

List of cleaned and normalised triple strings .S

S < empty list;
for each line in L do
Replace all occurrences of |, _, and <br>in line
with a single whitespace;
Replace all consecutive whitespace in line with
a single whitespace;
Trim leading and trailing whitespace in line;
Append line to S;

return S;
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