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Abstract
The ability of LLMs to write coherent, faithful
long texts from structured data inputs remains
relatively uncharted, in part because nearly
all public data-to-text datasets contain only
short input-output pairs. To address these gaps,
we benchmark six LLMs, a rule-based system
and human-written texts on a new long-input
dataset in English and Irish via LLM-based
evaluation. We find substantial differences be-
tween models and languages.

1 Introduction

Large and Very Large Language Models
(LLMs/VLLMs) have set a new standard for natu-
ral language generation (NLG), producing fluent
and accurate text across a host of applications
such as text simplification (Dou et al., 2023),
image captioning (Mokady et al., 2021), and
question answering (Erdem et al., 2022; Akermi
et al., 2020). Yet the very capabilities that allow
for excellent short-form output can fail to scale
to the extended output sequences demanded by
tasks such as summarization, creative writing, and
detailed question answering (Bai et al., 2024a,b;
An et al., 2024; Kuratov et al., 2024).

This challenge has given rise to an emerging fo-
cus on long-form generation, which requires mod-
els to preserve topical focus, logical progression,
and factual consistency across lengthy passages or
entire documents (Liu et al., 2024, 2025). Conse-
quently, the field has seen the development of spe-
cialized ‘long-output’ LLMs that are specifically
tuned to handle these longer generative tasks (Wu
et al., 2025). As inputs or required outputs extend
beyond the model’s trained context window, gener-
ation quality deteriorates markedly (Yu et al., 2025).
Even within the context window, performance de-
clines for longer input lengths (Liu et al., 2023a)
and extended outputs (Yang et al., 2025), leading
to reduced coherence, greater factual inaccuracies,
and an increased incidence of hallucinations (Li

et al., 2024). These issues underscore a critical gap
in the ability of current models to maintain logi-
cal consistency and relevance over extended output
sequences in data-to-text tasks.

Despite the significant advancements and avail-
ability of ‘long-context’ LLMs, the Data-to-Text
(D2T) generation field continues to rely heavily on
outdated datasets and benchmarks featuring pre-
dominantly short input-output pairs. In addition,
such datasets can lead to data leakage, where LLMs
have been trained on data closely resembling or
identical to the test samples, undermining the va-
lidity of evaluations (Zhou et al., 2023; Li et al.,
2024; Balloccu et al., 2024). This reliance presents
a critical limitation, as these datasets are increas-
ingly insufficient for rigorously challenging con-
temporary LLMs, given their substantial capacity
for managing extensive contexts.

In this paper, our contributions are the following:
(i) method and code for collecting long-input data
for D2T generation, along with a dataset of 537
long inputs; (ii) English and Irish system outputs
for these 537 inputs, as well as human-written texts
for a subset of 21 inputs; and (iii) a preliminary
evaluation of output quality in both languages using
an LLM-as-judge approach and diversity metrics.
All code, data and results are available at https:
//github.com/mille-s/Build_KGs_entities.

2 Related Work

While the broader field of NLP has seen recent
work on long-context LLMs, primarily focused on
improving model capabilities for reasoning and un-
derstanding extensive input contexts (Jiang et al.,
2023; Qwen et al., 2025; Wu et al., 2025), research
specifically on long-form output generation within
D2T remains nascent. In the field of D2T gen-
eration, benchmark datasets have been pivotal in
driving significant progress by providing structured
data for model training and evaluation. However,
the rapidly evolving capabilities of contemporary
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(Very) Large Language Models, or (V)LLMs, such
as OpenAI’s GPT models (Achiam et al., 2023;
OpenAI, 2024), Meta’s Llama models (Touvron
et al., 2023b; Dubey et al., 2024), Google’s Gem-
ini (Team et al., 2024), and Anthropic’s Claude
(Anthropic, 2024), highlight a growing need for
datasets featuring significantly longer token se-
quences. Existing foundational D2T datasets, while
valuable, consistently exhibit relatively short aver-
age output lengths:1 E2E (22.67 tokens) (Novikova
et al., 2017), WebNLG (22.69 tokens) (Gardent
et al., 2017; Castro Ferreira et al., 2020), ToTTo
(17.4 tokens) (Parikh et al., 2020), and Weather-
GOV (28.70 tokens) (Liang et al., 2009), WikiBio
(26.1 tokens) (Lebret et al., 2016). While some
datasets like RotoWire (337.10 tokens) (Wiseman
et al., 2017) offer longer outputs, the latter typi-
cally necessitate additional content selection com-
ponents which complicates its application to di-
rect D2T generation. The short input-output token
lengths of the majority of D2T datasets severely
limit their utility for effectively evaluating the long-
context handling and extended-text generation ca-
pabilities of modern LLMs.

Another significant limitation is the dominance
of English datasets, which restricts the applicability
of D2T models to multilingual and low-resource
scenarios. Recent initiatives aimed at broadening
linguistic inclusivity emphasize the importance of
developing benchmarks that explicitly include low-
resource languages (Cripwell et al., 2023; Mille
et al., 2024). Our research directly addresses this by
incorporating a low-resource language, Irish, into
the evaluation framework of our proposed dataset.

3 Experimental Setup

We created a new dataset of long-context data-to-
text inputs (Section 3.1), generated outputs with
a range of different (V)LLMs (Section 3.2), and
evaluated the outputs along with human-written
texts via LLM-as-judge assessment (Section 3.3).

3.1 Dataset

We compiled a small dataset of DBpedia input
triple sets of varying sizes by (i) collecting the 602
entities of the City and Person categories from the
GREC shared task (Belz et al., 2009); (ii) for each
entity, querying DBpedia for all triples in which the
entity appears either as Subject or Object, limiting

1Some of the statistics were extracted from the original
papers, and the remainder come from Lin et al. (2023).

the search to all properties used in the WebNLG
shared tasks, which resulted in the collection of
258,067 triples for the 602 entities; (iii) curating
the triple sets as follows: (a) filtering out properties
identified as incorrect, including second to nth oc-
currence of a property that can only have one value
(e.g. birthDate) and properties frequently misused
on DBpedia, (b) allowing for a maximum of 3 in-
stances of the same property with the same Subject
or Object,2 and (c) selecting only the triple sets
with at least 8 triples (i.e., triples sets of larger size
than in WebNLG). The dataset comprises 537 triple
sets with sizes ranging from 8 to 69 triples, for an
average of 24.6 triples per input; a sample data
point is provided in Appendix A. We collected ref-
erence texts for a subset of inputs (see Section 3.3).

3.2 Systems

We evaluated a suite of recent LLMs of differ-
ent sizes for data-to-text generation: GPT-4.1
(OpenAI et al., 2024) and Claude-sonnet-3.7 (An-
thropic, 2024), which both support English and
Irish, QWEN3-32B (Team, 2025), DeepSeek-R1-
Distill-Llama-70B (DeepSeek-AI et al., 2025) and
LLaMA2-13B (Touvron et al., 2023a) for English,
and UCCIX (Tran et al., 2024), a domain-adapted,
finetuned version of LLaMA2-13B for Irish, based
on the assumption that domain-specific adaptation
could yield measurable improvements. Finally,
we also used the off-the-shelf rule-based system
FORGe (Mille et al., 2023), developed for both lan-
guages on the WebNLG data. Details about model
use are provided in Appendix B.

3.3 Evaluation

Scoring of outputs. LLMs have been shown to
be very reliable evaluators for various NLG tasks
such as dialogue generation (Liu et al., 2023b), ma-
chine translation (Kocmi and Federmann, 2023),
and in particular data-to-text generation (Huidrom
and Belz, 2025). For assessing the quality of the
different outputs, we ran and averaged the scores as-
signed by two different LLMs, GPT-o3 and Claude-
sonnet-3.7, two of the best models currently avail-
able. We used the same four dimensions as in
WebNLG, text quality is assessed in its own right
(Grammaticality and Fluency), and with respect
to the input (No-omissions and No-additions), on

2For instance, it is often the case that a city is the Object
of several hundreds of location properties, which would result
in very unnatural texts with endless coordinations.

811



a scale from 1 (lowest quality) to 7 (highest qual-
ity); definitions are provided in the prompt in Ap-
pendix C, and detailed results in Appendix D.3

Data sampling and human references. In or-
der to assess the capability of LLMs to assess the
quality of long outputs in a D2T context, we also
evaluate human-written texts. A native English
and Irish speaker (an author) wrote texts starting
from the input triple sets, following a set of simple
instructions and a list of definitions of the differ-
ent properties used in the data; these outputs are
labeled Hum-1.0 in Figure 1. Because it is a time-
consuming task, we randomly sampled twenty-one
data points evenly across seven different triple size
ranges: 8–9, 10–19, 20–29, 30–39, 40–49, 50–59,
and 60–69 (three data points per size range). The
resulting 21 triple sets have an average size of 35.4
triples (compared to a maximum of 7 in WebNLG).

Truncated texts for sanity check. We also
added three truncated versions of the human texts
in order to control whether models are able to de-
tect missing contents, with respectively 10% (Hum-
0.9), 30% (Hum-0.7) and 50% (Hum-0.5) of the
sentences removed from the end of original texts.

4 Results and Analysis

4.1 Results of LLM-as-judge evaluation

Figure 1 shows the evaluation results; each plot
shows the scores of each output for one language-
dimension pair and for the different input sizes.
The main observations are the following.

Very Large Language Models (GPT, Claude,
Qwen) seem to be able to generate good texts
from long-input structured data. The degrada-
tion of the scores on longer inputs across all cri-
teria is quite moderate, and is less visible than on
smaller models (LLaMA, DeepSeek, UCCIX), rule-
generated and human-written outputs. However, it
is more challenging for the VLLMs (in particular
GPT) to not add content than to not omit content:
the VLLM No-additions scores are lower than the
No-omissions scores, and No-additions is the only
dimension for which Human and FORGe have sim-
ilar or better scores than VLLMs in both languages.

VLLM scores are overall slightly lower in
Irish than in English, while for human-written
and rule-generated texts, it is the opposite, with

3We also ran LlaMA2 and DeepSeek-R1-Distill-Llama and
report the numbers in App. D; they were discarded because the
models assigned multiple maximum overall semantic accuracy
scores, which is very unlikely to happen on our dataset.

higher scores for Irish than for English. While the
No-omissions evaluation looks similar in both lan-
guages, in Irish, there is less difference between
VLLM outputs and the other outputs (except UC-
CIX) for Grammaticality and Fluency, and for No-
Additions, GPT outputs score below all other out-
puts (but UCCIX) across all sizes. This probably
reflects the greater difficulty of generating text in
an under-resourced language like Irish.

VLLMs seem to be able to pass the sanity
checks as evaluators. They are able to detect se-
mantic content mismatches in both languages. In
terms of No-omissions, the more a human output
is truncated, the lower the score (Hum-1.0 > Hum-
0.9 > Hum-0.7 > Hum-0.5). We noticed that as the
inputs get larger, FORGe can be unable to generate
some triples in Irish, and this is also reflected in the
Irish No-omissions plot with a clearly descending
curve. Additionally, rule-based systems such as
FORGe traditionally score high on semantic accu-
racy metrics (No-additions and No-additions) and
low on Fluency, as is the case in Figure 1.

However, it is likely that the VLLMs used as
judge are positively biased towards their own
outputs, a phenomenon already documented (Pan-
ickssery et al., 2024). In our evaluation plots,
VLLMs consistently assign higher Fluency and
Grammaticality scores to their own outputs than to
human-written texts, particularly in English. This
pattern is unlikely to correspond to genuine dif-
ferences in their quality and instead suggests that
VLLMs may exhibit a self-serving bias when act-
ing as evaluators. A human assessment of the out-
puts (and of the LLM judgments) in both languages
would be needed to draw more solid conclusions.

4.2 Diversity analysis of the outputs

In order to get a deeper understanding of the texts
produced by the different systems, we used several
metrics proposed in (Shaib et al., 2025) to assess
output diversity.4 For our analysis, we consider
only the output texts used in the evaluation (i.e.
21 texts per system, see Section 4.1). We use the
following four metrics as well as the average text
length in words: (i) The N-Gram Diversity score
considers n-grams of size 1 to 4 (NGD-1to4). This
score is calculated as the ratio of unique n-grams
to all n-grams in the 21 texts. A higher number
indicates a higher overall lexical diversity in the

4Please refer to the paper for exact formulas, and to our
GitHub repository for the code used.
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Figure 1: System performance across criteria and input sizes; left: English (EN), right: Irish (GA).
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English
System AvgLenW NGD-1to4 (↑) CompRate (↓) SelfRep-4 (↓) ChamDist (↑)

Hum-1.0 191.3 2.872 2.603 3.117 0.484

Claude3.7-sonnet 315.1 2.854 2.836 3.678 0.504
FORGe 184.9 2.869 2.594 3.129 0.498
GPT4.1 279.3 2.698 2.831 3.737 0.503
Llama2-13b 305.5 1.588 4.365 2.278 0.486
Qwen3-32b 261.7 2.921 2.692 2.939 0.488
R1-Llama-70b 235.3 2.867 2.687 3.111 0.479

Irish
System AvgLenW NGD-1to4 (↑) CompRate (↓) SelfRep-4 (↓) ChamDist (↑)

Hum-1.0 189.5 3.030 2.555 2.969 0.451

Claude3.7-sonnet 263.1 2.946 2.801 2.973 0.423
FORGe 169.7 2.843 2.638 3.486 0.494
GPT4.1 320.1 2.765 2.906 3.683 0.432
UCCIX 263.1 1.849 4.349 1.351 0.515

Table 1: Diversity analysis in English and Irish: Average length in words (AvgLenW), N-Gram Diversity score
(NGD-1to4), Compression Rate (CompRate), Self-Repetition score (SelfRep-4) and Chamfer Distance (ChamDist).
The direction of the arrows indicates whether high (up) or low (down) scores mean more diversity. In bold, the
score(s) closest to the score of the human-written text (first row); underlined, the best absolute score in a column.

outputs. (ii) The Compression Rate (CompRate)
is the ratio between the size of the 21 texts com-
pressed with gZip and the size before compres-
sion. A lower compression rate is an indicator of a
higher overall (sub)string diversity. (iii) The Self-
Repetition score considers 4-grams only (SelfRep-
4), calculated using the number of other texts in
which 4-grams of one text are repeated and aver-
aging for all 21 texts. A lower SelfRep-4 score
indicates lower n-gram repetition rate across out-
puts, hence higher inter-sentence diversity. (iv) The
Chamfer Distance (ChamDist) is computed as the
mean pairwise cosine distance between texts, using
Qwen3-Embed-0.6B5 for embeddings, to quantify
semantic diversity. Higher scores indicate greater
meaning variation between system outputs, while
lower scores suggest greater meaning homogeneity.

Overall, FORGe has the most similar diversity
scores to human-written texts in English, while
in Irish, Claude3.7-Sonnet is most similar to hu-
man texts. LLama2-13B (EN) and UCCIX (GA)
score much lower than others according to NGD-
1to4 and CompRate, while they do good in absolute
terms (but quite different from human texts) accord-
ing to SelfRep-4, which indicates that their texts
are more (and possibly overly) different from each
other but individually less diverse. All other sys-
tems are generally close to human-written texts for
these metrics. In terms of semantic diversity, since

5
https://huggingface.co/Qwen/

Qwen3-Embedding-0.6B

the texts are about different entities but with over-
lapping properties, it is expected that ChamDist,
whose values ranges from 0 to 2, is neither high
nor too low. Finally, only FORGe produces texts
close to the length of human texts, while (V)LLMs
output texts usually over 50% longer word-wise;
since text length can affect the diversity scores (e.g.
longer texts give more opportunities for n-gram
overlap), these should be interpreted with caution.

5 Conclusions
We developed a method for creating data for
long-input data-to-text generation, compiled a new
DBpedia-based dataset, ran several systems on the
inputs and assessed text quality using an LLM-as-
judge approach. We conclude that some (V)LLMs
seem able to generate long texts from structured
data and to evaluate their quality along several di-
mensions, although there may be biases in the eval-
uation of LLMs by LLMs. In Irish, Claude appears
to be the best model, while a fine-tuned version of
UCCIX does not perform well; it is unclear whether
this is due to limitations of the fine-tuning data (the
WebNLG’23 Irish data is automatically translated
from English) or of the pretrained model itself, as
indicated by LlaMA-2’s low English scores. In
future work, we will add filters to optimise the se-
lection of high-quality triples for dataset creation.
We will also carry out human assessment of the text
quality and of the collected ratings so as to gain fur-
ther insights into the use of LLMs for long-context
D2T and its evaluation.
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6 Limitations

Due to the cost and difficulty of performing an hu-
man evaluation on such a dataset, the texts are only
assessed using an LLM-as-judge approach. Al-
though the evaluation results are in line with what
one can expect using several sanity checks, the re-
liability of the evaluation needs to be confirmed.
In addition, creating human-written texts for such
long inputs is time consuming, only 21 texts per
system were assessed. Additional texts would be
desirable for drawing more solid conclusions (for
each of the 21 inputs of 35.4 triples on average, it
took over 1 hour to write a reference text in both
English and Irish).

The input data was collected automatically, and
despite carefully checking its quality and adding
mechanisms to limit the presence of wrong triples,
a small proportion of triples with bad object val-
ues are still found in the data, e.g. Ibn al-Tilmidh
– occupation – Baghdad (there should be a job
title instead of “Baghdad”), or Al-Mustansir II –
predecessor – Baghdad (here a person name was
expected as the Object of predecessor). Finally,
although we release system outputs for possible
further analyses and reproduction studies, these
outputs are not meant to be used for learning.

Ethics Statement

We use LLM-based methods in our experiments,
and at present, it is uncertain what data has been
used to train them, especially proprietary models
such as GPT and Claude. The texts they produced
and the assessments they provided may reflect bi-
ases, potentially posing a risk of harm to users.
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A Sample data point

Figure 2 below shows a triple set collected with the
method described in Section 3.1.

B Details about model use for generating
texts.

We fine-tuned Llama2-13B and the UCCIX model
using the WebNLG dataset (Cripwell et al., 2023)
in both English and Irish. All experiments em-
ployed parameter-efficient LoRA adaptation (Hu
et al., 2021) for data-to-text generation. Train-
ing was conducted on the ADAPT HPC cluster
equipped with NVIDIA A100 GPUs (80GB), al-
lowing for efficient large-scale fine-tuning.

All models were accessed via their respective
APIs: OpenAI (GPT-4.1), Anthropic (claude-3-7-
sonnet-latest), and Hugging Face (Llama 2 13B,
UCCIX). For each evaluation, the temperature was
set to 1; the prompts are shown in Table 2 below.

C Template prompt for LLM-as-judge
evaluation

For all our LLM-based evaluations, we used the
following prompt, only changing the “Triple Set”
and “Text” values at the end according to the eval-
uated data point (shown here with a short input
for more clarity; we invoked the models directly
via their official APIs using the code in https:
//github.com/mille-s/GEM24_EvalLLM):

In this task, you will evaluate the quality of the
Text in relation to the given Triple Set. How well
does the Text represent the Triple Set? You will be
given four specific Dimensions to evaluate against:

Dimensions:""" No-Omissions: ALL the infor-
mation in the Triple Set is present in the Text. No-
Additions: ONLY information from the Triple Set
is present in the Text. Grammaticality: The Text is
free of grammatical and spelling errors. Fluency:
The Text flows well and is easy to read; its parts
are connected in a natural way."""

Important note on No-Omissions and No-
Additions: some Triple Set/Text pairs contain non-
factual information and even fictional names for
people, places, dates, etc. Whether there are omis-
sions and/or additions in a Text is NOT related to
factual truth, but instead is strictly related to the
contents of the input Triple Set. Important note on
Grammaticality and Fluency: for Grammaticality
and Fluency you do not need to consider the input
Triple Set; only the intrinsic quality of the Text
needs to be assessed.

You need to provide the scores ranging from 1
(indicating the lowest score) to 7 (indicating the
highest score) for each of the dimensions and a
short justification for each score in the following
JSON format: "No-Omissions": "Justification": "",
"Score": "", "No-Additions": "Justification": "",
"Score": "", "Grammaticality": "Justification": "",
"Score": "", "Fluency": "Justification": "", "Score":
"" .

Make sure to read thoroughly the Triple Set and
the English Text below, and assess the four Dimen-
sions using the instructions and template above.

Triple Set: """Marcus_Aurelius HasChild
Fadilla; Marcus_Aurelius StudentOf Alexan-
der_of_Cotiaeum; Marcus_Aurelius Spouse
Faustina_the_Younger; Marcus_Aurelius Po-
sitionHeld Roman_emperor; Marcus_Aurelius
PlaceOfDeath Vindobona""" Text: Marcus
Aurelius has Fadilla as child, he supervised
Alexander of Cotiaeum and is married to Faustina
the Younger. He plays in Roman emperor and
passed away in Vindobona.

D Detailed LLM-as-judge evaluation
results

Figures 3-10 show the details of the LLM-as-judge
evaluation. Note that despite not supporting Irish,
LLaMA and DeepSeek models are able to de-
tect omissions in Irish, and particularly low lev-
els of quality of the text in its own right (Fluency
and Grammaticality of UCCIX and FORGe) and
of No-additions (UCCIX). Regarding Claude-3.7
and GPT-o3, Claude generally gives higher ratings
than GPT for the semantic accuracy criteria (No-
omissions, No-additions), while for the other two
criteria, it depends on the language: GPT tends to
give higher scores in English, while Claude tends to
give higher scores in Irish. These differences will
be the subject of further analysis in future work.
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Figure 2: A long input for Quetta (City, size = 39 triples).
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Figure 3: English, No-additions detailed results

Figure 4: English, No-omissions detailed results

Figure 5: English, Grammaticality detailed results

Figure 6: English, Fluency detailed results.

Figure 7: Irish, No-additions detailed results.

Figure 8: Irish, No-omissions detailed results.

Figure 9: Irish, Grammaticality detailed results.

Figure 10: Irish, Fluency detailed results.
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Prompt Name Prompt Text

ENGLISH
PROMPT

You are a data-to-text generation agent that transforms structured data in the form of subject–predicate–object (SPO) triples into fluent,
informative, and human-like natural language text.
Your Goal: Generate well-written paragraph(s) that convey all facts encoded in the triples while maintaining coherence and naturalness,
as if written by a skilled human author. Your output should resemble a short article, report, or description — not a mechanical list of
facts.
Process and Generation Guidelines

1. Analyze the Data:
• Identify distinct entities (subjects) and their associated facts.
• Recognize relationships between entities to create narrative flow.
• Group related information for logical organization.

2. Plan Your Structure:
• Organize information in a natural, readable sequence—do not follow the input triple order rigidly.
• Organize the text into coherent sentences and well-structured paragraphs, with each paragraph focusing on a specific

topic or entity.
• Group related entities and facts together to create coherent paragraphs (e.g., places, objects, biographical details,

achievements, relationships, etc.).
• Use paragraphs to separate distinct topics or entities, ensuring each paragraph has a clear focus.

3. Write with Fluency and Variety:
• Use pronouns and natural references to avoid repetitive entity names.

4. Ensure Complete Accuracy:
• Include every fact encoded in the triples without exception.
• Never add external information or make inferences beyond the given data.
• Preserve all factual content while using natural paraphrasing.
• Cross-check that no information has been omitted from your final text.

5. Maintain Professional Style:
• Write in third person with a neutral, encyclopedic tone.
• Ensure grammatical correctness and proper punctuation.
• Avoid bullet points, lists, or structured formatting.

What to Avoid
• Copying triples verbatim into the text.
• Omitting any information from the triples.
• Adding information not present in the triples.
• Creating one sentence per triple (mechanical approach).
• Using structured formats (XML, JSON, lists) instead of prose.
• Generate only one prose using the data. Multiple prose is not allowed.

Output Requirements
• Return only the final generated text as continuous, fluent paragraph(s). Use multiple paragraphs when it improves organization

and readability.

IRISH PROMPT You are a data-to-text generation agent tasked with generating natural, fluent Irish text from structured data presented as subject–
predicate–object triples written in English.
Task Objective: Your goal is to verbalize all the information contained in the input triples in authentic Irish, producing a well-
structured and human-like description or paragraph. The output should sound like it was written by a native Irish speaker, not a literal
translation or a mechanical list of facts.
Input Format

• You will receive a list of RDF-style triples in English, for example:
– (Person, birthDate, 1974)
– (Person, occupation, “writer”)
– (Writer, notableWork, “Book Title”)

Generation Guidelines
1. Comprehensive Coverage: Use all facts presented in the triples. Do not omit or invent information.
2. Linguistic Fluency: Write in correct and idiomatic Irish. Use proper grammar, syntax, and vocabulary appropriate for formal

writing or encyclopedic entries.
3. Coherence & Flow: Organize the facts into a natural narrative. Group related information into sentences and paragraphs.

Avoid simply listing the facts in order.
4. Cultural Appropriateness: Adapt English names, locations, and conventions where needed to fit Irish usage or orthography

(e.g., use Irish forms of countries, months, occupations if available).
5. Avoid Literal Translation: Do not translate the triples directly or word-for-word. Instead, reformulate them naturally in Irish.

Output Format
• Write only the Irish text. Do not include explanations, metadata, or translations of the triples.

Example Input Triples:
• (Douglas Hyde, birthPlace, Castlerea)
• (Douglas Hyde, birthDate, 1860)
• (Douglas Hyde, positionHeld, President of Ireland)

Example Output Rugadh Dubhghlas de hÍde i gCaisleán Riabhach sa bhliain 1860. Bhí sé ina chéad Uachtarán ar Éirinn.
Begin generating the Irish text now based on the input triples. [GENERATED TEXT]

INPUT PROMPT Here are the subject–predicate–object triples to convert:
{triples}
Transform this structured data into coherent, flowing prose that naturally integrates all the factual information. Ensure every fact from
the triples is represented in your text while maintaining readability and logical flow.
[GENERATED TEXT]

Table 2: Generation prompts for English and Irish data-to-text realization tasks.

822


