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Abstract

Large language models (LLMs) have increas-
ingly been applied to automatic programming
code generation. This task can be viewed as
a language generation task that bridges natu-
ral language, human knowledge, and program-
ming logic. However, it remains underexplored
in domains that require interaction with hard-
ware devices, such as quantum programming,
where human coders write Python code that is
executed on a quantum computer. To address
this gap, we introduce QCoder Benchmark, an
evaluation framework that assesses LLMs on
quantum programming with feedback from sim-
ulated hardware devices. Our benchmark offers
two key features. First, it supports evaluation
using a quantum simulator environment beyond
conventional Python execution, allowing feed-
back of domain-specific metrics such as cir-
cuit depth, execution time, and error classifica-
tion, which can be used to guide better gener-
ation. Second, it incorporates human-written
code submissions collected from real program-
ming contests, enabling both quantitative com-
parisons and qualitative analyses of LLM out-
puts against human-written codes. Our exper-
iments reveal that even advanced models like
GPT-40 achieve only around 18.97% accuracy,
highlighting the difficulty of the benchmark. In
contrast, reasoning-based models such as 03
reach up to 78% accuracy, outperforming av-
eraged success rates of human-written codes
(39.98%). We release the QCoder Benchmark
dataset along with a public evaluation API to
support further research.!

1 Introduction

Programming code generation has emerged as an
important and practical problem in language gen-
eration studies (Chen et al., 2021). This task re-
quires models to generate correct and executable
code by bridging natural language, human exper-

"https://qcoder-bench.github.io/
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Input (a natural language instruction: )

Design a quantum circuit on one qubit that pre-

pares the quantum state y = il starting from the

0 state. Output (a function code generation for quamtum
programming)

Output (domain-specific python code)

qc = QuantumCircuit(1)

qex(0) #10)—|1)

qc.s(0) #apply phase of i: |1)— i|l)

(2 Evaluation using simulated hardware {} (3 Refine the code { }

This circuit cannot be run on a quantum computer
Reason:

- circuit depth exceed

- unsupported gates are used in your circuit

Figure 1: Quantum code generation involves generat-
ing a python code that constructs a quantum circuit
executable on a quantum computer. Due to strict con-
straints of actual hardware, feedback from the hardware
is necessary to generate executable codes on a quantum
computer.

tise, and formal programming logic. Recent ad-
vances in large language models (LLMs) have led
to impressive performance on classical program-
ming benchmarks (Wang et al., 2025; OpenAl et al.,
2024). However, these benchmarks are primarily
evaluated in software-only environments, where
failures are typically limited to runtime errors or
syntax violations detected by a software develop-
ment environment such as Python interpreters. In
contrast, little is known about how LLMs perform
in domains such as quantum programming (Vish-
wakarma et al., 2024), where generated code must
not only be syntactically correct, but also conform
to strict, domain-specific constraints imposed by
real or simulated quantum hardware.

Quantum programming serves as a representa-
tive example of hardware constraint-driven code
generation tasks. As shown in Figure 1, given the
instruction as a natural language, this code genera-
tion task involves generating a python code to pro-
duce a quantum circuit that can be run on a separate
hardware, i.e., either a real quantum computer or
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simulator. Unlike classical programs, correctness
and executability depend not only on the absence
of runtime errors in Python, but also on whether the
resulting circuits comply with constraints imposed
by quantum hardware. These hardware-level con-
straints include, for example, limitations on circuit
depth (i.e., the number of sequential gate opera-
tions) and the availability of only certain types of
quantum gates in a quantum computer. As a result,
quantum code must be syntactically valid in Python
and must generate quantum circuits that conform to
the logical requirements of quantum computation.

To enhance studies on this constrained gener-
ation task, we introduce QCoder Benchmark, a
dataset and evaluation framework specifically de-
signed for quantum code generation. Our bench-
mark contains 1) pairs of a programming contest
problem and human-written solutions and 2) an
evaluation tool to provide hardware-specific feed-
back. Unlike prior benchmarks that rely on generic
Python execution, our evaluation tool uses a quan-
tum simulator that returns quantum-specific feed-
back about domain-specific constrains, e.g., circuit
depth and inappropriate uses of unsupported quan-
tum gates. This evaluation tool allows feedback-
driven iterative language generation: a genera-
tion paradigm in which models incorporate feed-
back from a hardware to refine their generated
codes (Madaan et al.).

This paper uses our benchmark to investigate
whether LLMs can improve their quantum code
generation performance by incorporating domain-
specific feedback. Our experiments show that even
advanced LLMs like GPT-40 achieve only around
18.97% accuracy, while the best performing LLM
03 reaches 65.52% and it outperforms averaged
success rate of human-written codes submitted to
programming contests (39.98%). We also find that
incorporating feedback into prompt to refine codes
can significantly improve generation performance,
emphasizing the importance of feedback from a
simulated hardware.

We release QCoder Benchmark as public re-
sources to support further research on code genera-
tion under complex constraints. This paper makes
the following contributions: 1) we implement it-
erative code generators that use feedback from a
simulated hardware-based evaluation tool, 2) we
empirically demonstrate that such feedback effec-
tively enhances LLMs’ performances, and 3) our
benchmark data and evaluation API will be made
public.

2 Related Work

Various coding benchmarks have been proposed
for general-purpose code generation tasks, such
as HumanEval (Chen et al., 2021), Mostly Basic
Python Problems (MBPP) (Austin et al., 2021), and
the APPS dataset (Hendrycks et al., 2021). These
benchmarks primarily focus on solving basic algo-
rithmic problems written in Python and are evalu-
ated using predefined input-output test cases.

Our benchmark differs from these benchmarks in
two key aspects. First, it targets a domain-specific
coding task—quantum programming—which in-
volves generating circuits that must conform to
real-world hardware constraints. Second, rather
than relying solely on static test cases, our bench-
mark evaluates generated code using a simulated
quantum computer, offering a new paradigm for
evaluating executable and hardware-aware code.

Domain-specific coding benchmarks have been
introduced for various domains, including data sci-
ence (DS-1000 (Lai et al., 2022)), secure coding
(LLMSecEval (Tony et al., 2023)), database query
generation (Spider (Yu et al., 2018)), and bioinfor-
matics (BioCoder (Tang et al., 2024)).

In the quantum programming domain, Qiskit Hu-
manEval (Vishwakarma et al., 2024) shares similar
motivations with ours. However, our benchmark
differs in two important ways: (1) it provides a
hardware simulator-based evaluation framework
for assessing generated quantum circuits, and (2)
each programming task is accompanied by multiple
human-written implementations, enabling compar-
ative analysis between human and LLM-generated
code.

Quantum programming is a form of code gen-
eration aimed at controlling hardware, but only a
few attempts exist in this direction e.g., a study that
generates code to control robots (Luo et al., 2024).
Refinement of generated code has also been shown
to be effective in various setups (Ding et al., 2024;
Madaan et al.; Bi et al., 2024; Liu et al., 2023). Our
study extends this line of work by incorporating
hardware-aware feedback.

3 QCoder Benchmark

Our benchmark consists of pairs of programming
contest problems and human-written solutions, to-
gether with an evaluation tool that provides quan-
tum hardware-aware feedback 2. Our benchmark

This evaluation tool will be released as a Web API for
easier usage for future researches.
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differs from existing general-purpose or quantum
benchmarks (Vishwakarma et al., 2024) in two as-
pects: (1) it enables fine-grained evaluation from
domain-specific perspectives (e.g., circuit depth),
not just functional correctness, and (2) it includes
human-written solutions collected from program-
ming contest submissions. These submissions of-
ten contain errors and variations useful for study-
ing the differences between LLM-generated and
human-written code.

3.1 Dataset

Formulation of Quantum Code Generation

We define the task of quantum code generation as
generating a quantum circuit implementation in
response to a natural language prompt. The input
prompt describes a quantum programming problem
in natural language, including constraints on hard-
ware such as supported quantum gates or maximum
circuit depth. The expected output is a quantum
program written using the Qiskit library (Javadi-
Abhari et al., 2024) (or a compatible framework)
that can be transpiled into a valid quantum circuit.
An example of input prompt is shown in Figure 2.

Problem

Design a quantum circuit on one qubit that pre-
pares the quantum state [¢)) = ¢ |1) starting from
the |0) state.

Constraints

States with different global phases will be con-
sidered incorrect.

Use the following code format:

from giskit import QuantumCircuit

def solve() -> QuantumCircuit:
gqc = QuantumCircuit(1)
# Write your code here:

return qc

The LLM is expected to generate only the body
of the solve () function.

Figure 2: Example prompt for quantum code generation.

Data Collection

QCoder Benchmark is constructed by collecting
quantum programming problems from QCoder, a
publicly available platform for quantum program-

ming education website’. We have obtained per-
mission from the QCoder’s developers to redis-
tribute the dataset.

Each problem includes a reference solution and
the corresponding target quantum state vector.
Each problem is also paired with human-written
solutions submitted by participants of real-world
quantum programming contests hosted on QCoder.
Unlike many generation tasks where model out-
puts are compared to references using metrics such
as BLEU (Papineni et al., 2002), code generation
typically does not use references for evaluation,
instead, we execute the generated code and verify
functional correctness.

For each of the 58 problems, we collected ap-
proximately 30 human-submitted codes on average,
resulting in a total of 1,740 problem-solution pairs.
All solutions are written using the Qiskit library.
Although these 30 codes represent the final submit-
ted versions, each was typically created through
multiple rounds of editing and refinement by a hu-
man coder. The dataset also includes revision his-
tories for each submission, with an average of 20
intermediate versions per code, capturing the itera-
tive development process of human programmers.
This rich set of revisions reflects a diverse range of
implementation strategies and coding styles, pro-
viding a challenging and realistic benchmark for
LLM-based code generation.

3.2 Simulator-based Evaluator

Our benchmark has a simulator-based evaluation
tool that assesses quantum codes. This evaluator
ensures that the submitted quantum circuits are
not only functionally correct but also comply with
hardware constraints. Given a quantum program,
the evaluator performs three evaluation steps:

1. Runtime check: The program is executed us-
ing the Python interpreter to detect syntax or
runtime errors. If an error occurs, the remain-
ing evaluation steps are skipped.

2. Unsupported gates check: If no runtime er-
ror is detected, the program is transpiled into
a quantum circuit. The evaluator then checks
whether any gates not supported by the hard-
ware side are used. Such violations are criti-
cal, as they make the circuit non-executable

on real quantum hardware 4.

3https: //www.qcoder. jp/en
“In such cases, the code refinement can make the circuit
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3. Circuit depth check: The evaluation tool
measures the circuit depth and compares it
against the problem’s specified threshold, if
any.

4. Output state fidelity check: The circuit is
executed on either a real quantum computer or
a simulator, and the resulting quantum state is
compared against the reference state to assess
correctness. Note that our experiments use’
simulator, but it can be also replaced by a real
quantum computer for more precise feedback.

This evaluation tool checks for constraint viola-
tions in order of severity from top to bottom. From
the software development environment, python’s
runtime errors are considered critical. From the
hardware side, the use of unsupported gates is
treated as the most critical violation, as it ren-
ders the circuit incompatible with real quantum
hardware. If a depth limit is specified in the
prompt, depth violations are also flagged, as they
may impact execution feasibility on NISQ (Noisy
Intermediate-Scale Quantum) devices.

All evaluation steps are performed system-
atically on our web-based API, which will
be made public. The API takes a generated
quantum code as input and returns a textual
report including runtime success, constraint
violations, and correctness against the reference
state represented in a predefined format, e.g, if
an generated program is correct, the following
report is produced: { "runtime_error”:
false, "gate_violation”: false,
"depth_violation”: false, "state_match”:
true }. This feedback is converted into a natural
language prompt used to refine generated code as
explained in Section 4.

3.3 Statistics and Comparisons with Other
Datasets

Table 1 compares our QCoder Benchmark with ex-
isting code generation benchmarks. While prior
datasets such as HumanEval (Chen et al., 2021)
and MBPP (Austin et al., 2021) focus on general
programming tasks, QCoder is tailored for quan-
tum programming as with an existing benchmark
Qiskit HumanEval (Vishwakarma et al., 2024). In
contrast to Qiskit HumanEval (Vishwakarma et al.,

be executable by decomposing unsupported gates into the
supported gate set.
5https://qiski’c.github. io/qiskit-aer/

2024), QCoder provides human-written solutions
and hardware-aware evaluation tool.

4 Methods

This paper compares prompt-based code genera-
tors rather than finetuning-based models because
developing prompt-based techniques is particularly
important for domains like quantum programming,
where users are often not experts in natural lan-
guage processing. The following subsections de-
scribe our prompt and refinement process using
hardware-aware feedback expressed in natural lan-

guage.
4.1 Baseline Prompting Strategy

For all LLMs used in our experiments, we use a
consistent prompting strategy to ensure fair com-
parison. Each prompt includes:

* A natural language problem description

* Explicit constraints (e.g., unsupported gates
and depth constraints)

* A Python code template with a placeholder
function solve() that uses the Qiskit library

Models are explicitly instructed to generate only
the function body, with no additional imports or
code outside the template. A sample prompt is
shown in Figure 3.

Problem: Design a quantum circuit on one qubit
that prepares the quantum state 1) = i |1) start-
ing from |0).

Constraints: States with different global phases
will be considered incorrect.

Code template:

from giskit import QuantumCircuit
def solve() -> QuantumCircuit:

gc = QuantumCircuit(1)

# Write your code here

return gc

Figure 3: Example of the baseline prompt.

We use the default tokenizer and decoding strat-
egy of each model. No maximum token length is
specified; decoding is stopped upon encountering
a stop token or natural termination. The generated
function body is inserted into the provided tem-
plate and directly passed to the evaluation tool for
assessment.
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Dataset Domain Submissions Test Case Hardware Dataset Size

HumanEval General N/A Yes N/A 3,200 problem-answer pairs
MBPP General N/A Yes N/A 1,000 problem-answer pairs
Qiskit HumanEval ~ Quantum Programming N/A Yes Partial 151 problem-answer pairs
QCoder (Ours) Quantum Programming Yes Yes Yes 58 problems

X 30 human coders
X 20 submissions (on avg)

Table 1: Comparison of QCoder Benchmark with existing code generation benchmarks. "Submissions" indicates
whether the dataset includes multiple human-written solutions. "Test Case" refers to the use of predefined functional
tests, and "Hardware" denotes whether the evaluation considers hardware-level constraints.

4.2 Feedback-aware Code Refinement

Your answer was

""'python
{LLMs' submitted code}

Branching according to labels:

WA: This is wrong. Try again.

DLE: The circuit depth exceeded the given con-
straint. Please revise your implementation to
improve efficiency. Try again.

UME: Unauthorized modules has been used.
Try again.

UGE: An unauthorized quantum gate has been
used. Try again.

RE: The occurring error is: {error text}. Try
again.

Figure 4: The prompt used for iterative refinement.

In addition to the baseline prompting, we also
evaluate an iterative refinement approach that uti-
lizes feedback from the simulator-based evalua-
tor described in Section 3. This method aims to
improve code correctness by performing multiple
rounds of generation and correction.

As shown in the example prompt in Figure 4,
at each iteration the model receives the baseline
prompt along with structured feedback from the
evaluator, such as Python error messages, circuit
depth violations, or gate usage issues, in the prede-
fined format explained in Section 3. The model is
instructed to revise its previous code while adher-
ing to the original constraints.

This iterative process is repeated up to a fixed
number of rounds (e.g., 3), or until the generated
program passes all evaluation checks. This ap-
proach simulates a human-like refinement loop and
allows us to assess whether LLMs can incorporate
domain-specific feedback to improve their solu-
tions over iterations. This pipeline relies on the

simulator-based evaluator introduced in Section 3,
which serves both as a verifier and as a source of
structured feedback during refinement.

S Experiments

5.1 Compared LLMs

We evaluate three proprietary models:
gpt-3.5-turbo, gpt-4o-mini, and 03. We
also compare two open-source models:
Qwen-1.5-14B-Chat (Bai et al.,, 2023) and
DeepSeek-R1-Distill-Llama-70B (DeepSeek-
Al 2025).

These models were selected to cover both propri-
etary and open-source systems, as well as a range
of model sizes and architectural designs, enabling
broad comparisons of capabilities. The proprietary
models are accessed via the OpenAl API, while the
open-source models are deployed locally with their
default tokenizers and decoding configurations. All
models are prompted using the same format and
are evaluated under identical conditions using our
simulator-based evaluator.

5.2 Evaluation Metrics

We use the following evaluation metrics to assess
the generated programs:

Success rate. A generation is counted as success-
ful if the produced code:

1. runs without any Python execution errors,

2. passes the simulator-based checks for unsup-
ported gate usage and circuit depth,

3. produces the correct quantum state vector as
specified in the task.

Fine-grained Failure Rates. To better under-
stand the reasons behind failures, we compute the
proportion of failed generations at each stage of the
evaluation process. Specifically, we calculate the
following stage-wise failure rates:
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Model Success Rate (%)
GPT-40-mini 18.97
GPT-3.5-turbo 10.34
03 65.52
DeepSeek-R1-Distill-Llama-70B 29.31
Qwen-1.5-14B-Chat 10.34
Averaged Human 39.98

Table 2: Success rate (%) of baseline prompting without
code refinements.

* Runtime Error: The proportion of generated
programs that fail due to Python runtime er-
Tofrs.

* Gate Constraint Violation: The proportion
of programs that use quantum gates unsup-
ported by the specified hardware.

* Depth Constraint Violation: The proportion
of programs whose circuit depth exceeds the
specified limit.

* Wrong Output: The proportion of programs
that pass all checks but still produce an incor-
rect final quantum state vector.

These fine-grained metrics help isolate specific
failure points and provide a more detailed charac-
terization of model weaknesses.

Success Rates of Human Submitted Codes
For each test problem, approximately 30 human-
written code samples are available on average. We
compute both the overall success rates and fine-
grained failure rates on these human submitted so-
Iutions to investigate humans’ coding skills.

Changes of Success Rates over iterations As
the iterative feedback method generates new code
at each round, we track the changes of success rate
over iterations.

6 Main Results

In this section, we present the results of our exper-
iments. We begin by comparing overall success
rates, followed by a fine-grained failure analysis to
understand the types of errors commonly produced.
We then examine the effects of iterative refine-
ment using simulator-based feedback and compare
model performance against human-written code.

Which LLMs did work better?

As shown in Table 2, 03, a reasoning-based model,
achieved the highest success rate (65.52%) among

all compared LLMs. It significantly outperforms
other proprietary models: GPT-40-mini (18.97%),
or GPT-3.5-turbo (10.34%). This result suggests
the substantial advantage of reasoning-oriented
models in quantum code generation. As expected,
open-sourced models, i.e., DeepSeek-R1-Distill-
Llama-70B and Qwen-1.5-14B, obtain lower suc-
cess rates than all proprietary models possibly due
to smaller parameter sizes.

Fine-grained Failure Rates

Next, we discuss failure rates in each evaluation
step.

Comparing Among LL.Ms: As shown in Table 3,
GPT-40-mini and GPT-3.5-Turbo exhibit higher
failure rates of runtime errors (17.24% and 36.21%,
respectively), indicating frequent failures during
the basic Python code execution stage. Even when
programs avoid runtime errors and meet the circuit
depth constraints, a significant portion still fail to
produce the correct quantum state vector upon sim-
ulation—accounting for 53.45% in GPT-40-mini
and 31.03% in GPT-3.5-Turbo.

In contrast, 03 demonstrates a remarkable reduc-

tion in runtime errors (0%) and shows improved
robustness across all error types. However, it still
fails to produce the correct quantum output in
18.97% of the cases, suggesting that despite be-
ing a reasoning-based model, there remains room
for improvement in fully automating quantum pro-
gramming via LLMs.
Comparing Human coders and LLMs: Run-
time Errors are common for both GPT-3.5-Turbo
(36.21%) and human coders (27.40%), suggesting
that generating syntactically valid codes remains
a challenge for both. For the depth violations, hu-
man coders (10.03%) and GPT-3.5-Turbo (12.06%)
show similar violation rates, suggesting that under-
standing and complying with quantum-specific con-
straints such as circuit depth is equally challenging
for both. In contrast, 03 maintains a remarkably
low violation rate (1.72%), indicating its superior
adaptation to quantum programming constraints.

Finally for the wrong outputs, the most promi-
nent failure mode for GPT-40-mini is generating in-
correct output state vectors despite producing syn-
tactically valid code. While humans also exhibit a
noticeable rate of wrong outputs (24.69%), 03 per-
forms better (18.97%), suggesting its stronger task
comprehension and ability to generate semantically
accurate code.
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Model Success (%) Runtime Err. (%) Depth (%) Wrong Output (%)
GPT-40-mini 18.97 17.24 5.17 53.45
GPT-3.5-Turbo 10.34 36.21 12.06 31.03
03 65.52 0.00 1.72 18.97
Averaged Human 39.98 27.40 10.03 24.69

Table 3: Distribution of fine-grained failure rates identified by the hardware-aware evaluation tool when the number

of iterations is set to one without refinement.

—e— GPT-03
90 GPT-40 mini

—— GPT-3.5 turbo

80 —®- DeepSeek-R1-Distill-Llama-708

- Qwen-1.5-14B-Chat
70 /—/

Success Rate [%]

Number of Refinement Iterations

Figure 5: The changes of success rate when we change
the number of refinement iterations.

How did iterative refinement improve
generation?

As shown in Figure 5, the success rate improves
significantly with iterative refinement across all
models—GPT-3.5, GPT-40, and 03. Notably, the
most substantial gain is observed after the first re-
finement, particularly when increasing the iteration
count from 1 to 2. Beyond the second iteration, the
improvements become more incremental, indicat-
ing diminishing returns. These results suggest that
leveraging feedback from the hardware-aware eval-
uation tool to refine the generated code is highly
effective, especially in the early iterations.

How LLMs’ performances against
Human-written Submissions?

The best-performing model, 03, achieves a suc-
cess rate of 65.52%, which significantly surpasses
the averaged human performance of 39.98%. In
contrast, GPT-40-mini (18.97%) and GPT-3.5-
Turbo (10.34%) perform notably worse than hu-
man coders, indicating that mid-tier LL.Ms still fall
short in quantum programming tasks.

Figure 6 illustrates the comparison between the
success rates of the best-performing LLM (03) and
the averaged human performance, across different
numbers of refinement iterations ranging from 1
to 15. Note that both blue lines in Figure 5 and

—e— GPT-03
%0 Averaged human

80
o /—/M

Success Rate [%]
«
3

1 2 3 4 5 6 7 8 9 10
Number of Refinement Iterations

Figure 6: Changes of success rate of the best performing
LLM (03) and human submissions when we increase the
number of code refinement. 03 achieves higher success
rates than values obtained by averaging human success
rates.

Figure 6 represent the performances of the same
model. The orange line represents the success rate
of averaged human submissions. While the hu-
man performance shows a steady upward trend
as the number of refinements increases, 03 occa-
sionally exhibits sudden gains in performance—for
instance, between iteration 4 and 5. However, it is
worth noting that the success rate of 03 does not
always improve monotonically; in some cases (e.g.,
from iteration 3 to 4), performance may stagnate
or even slightly drop. This fluctuation highlights
the non-deterministic nature of LLM-based gen-
eration and suggests that, although o3 generally
outperforms human coders in our datasets, its itera-
tive refinement process is not always consistently
effective.

7 Case Study: Actual Outputs

This section presents a specific example from the
QCoder Benchmark to illustrate how feedback can
effectively improve code generation. The example
problem is shown in Figure 7.

We show the reference program for this problem
in Figure 8. In this problem, it is not necessary
to consider the amplitudes of the ground states.
Instead, it suffices to view the ground state as a
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Problem: Implement the operation of preparing
the state |¢)) from the zero state on a quantum
circuit qc with 2 qubits. The state |¢)) is defined
as

|¥) = ag |00) + a1 |10) + ag |01)

where ag, a1, and ay denote arbitrary non-zero
probability amplitudes (any values are permit-
ted).

Constraints: Global phase is ignored in judge.
Code template: (omitted)

Figure 7: An example of the problems in QCoder
(QPCO001-A4)

from giskit import QuantumCircuit

def solve() -> QuantumCircuit:
gc = QuantumCircuit(2)

qgc.h(9)
gc.ch(o, 1)
qgc.cx(1, @)
return qc

Figure 8: An example of the answer for QPC001-A4

superposition formed by dividing the initial state
|00) into three components. This transformation
can be implemented through the following steps.

First, applying a Hadamard gate to the first qubit
yields the transformation

1
V2
Next, a controlled-Hadamard gate is applied, tar-

geting the second qubit and controlled by the first.
This results in

1
V2 V2
)

Finally, a controlled-X gate is applied, target-
ing the first qubit and controlled by the second,
producing

1
V2

CX(1,0) L
V2

Through this sequence of operations, a superpo-
sition of the three computational basis states |00),

H(0)

100) — —=(100) +[10)). (1)

CH(0,1) 1

00) + 5 (110) + 1))

. 3)
|00) + §(|10> +|01)).

(|00)+]10)) ——— —= |00>—|—%(|10>+|11>).

def solve() -> QuantumCircuit:
gc = QuantumCircuit(2)

a0 =1
al =1
a2 =1
norm = np.sqrt(np.abs(a0)**2

+ np.abs(al)**2 + np.abs(a2)*x2)
state = np.array([a@, a2, al, 0],
dtype=complex) / norm
gc.initialize(state, [0, 11)
return qc

Figure 9: DeepSeek-R1’s answer at the first iteration
without refinement.

|10), and |01) is successfully prepared. The avail-
able code is shown in Fig. 8.

Fig. 9 shows the code generated at the first iter-
ation. In this code, the .initialize() method is
used, however, since this method is not included
in the allowed set of quantum gates. Therefore,
the gate constraint violation error is raised. This
violation report is then included in the prompt for
refinement as shown in Section 4, The second code
generated by the model is shown in Fig. 10. This
code passes the runtime error check, however, the
evaluator produces the wrong output error although
the runtime or other constraints’ checks are passed.
The generated code at third iteration shown in Fig.
11 can successfully generate the desired state. Note
that the model employs a different approach from
the example solution shown in Fig. 8. Through
iterative refinement, the model gradually modifies
the code to produce one that satisfies the input con-
straints.

Finally, we also observed that many failure cases
involved Python’s runtime errors that are relatively
easy for humans to fix, such as missing import
statements (e.g., import math). They still struggle
with basic coding hygiene that would typically be
trivial for humans.

8 Conclusions

We introduced QCoder Benchmark, which con-
sists of a dataset and evaluation tool for quantum
code generation. This benchmark is designed to
investigate the capabilities of LLMs under domain-
specific hardware-aware constraints. By integrating
a quantum simulator that returns hardware-aware
feedback, we implemented a feedback-driven it-
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def solve() -> QuantumCircuit:

gc = QuantumCircuit(2)

a0 =1

al =1

a2 =1

norm = math.sqrt(a@**2+al**x2+a2*x2)
ad_norm = a@ / norm

al_norm = al / norm

a2_norm = a2 / norm

denominator = math.sqrt(a@_norm*x2

+ a2_normx*2)

theta = 2 * math.atan(al_norm
/ denominator)

gc.ry(theta, 0)

phi = 2 * math.atan(a2_norm/a@_norm)

c_ry = RYGate(phi).control(1)

qgc.append(c_ry, [0, 11)

return qc

Figure 10: DeepSeek-R1’s answer at second iteration.

erative code generator. Our experiments revealed
that even advanced models like GPT-40 struggle
with quantum programming tasks, while reasoning-
oriented models like 03 show superior performance
and can even outperform human-written code sub-
missions for programming contests. These findings
suggest the importance of refinement of codes by
domain-specific feedback. While our benchmark
and experiments focus on quantum programming,
the proposed feedback-driven generation frame-
work—where domain-specific constraint violations
are systematically detected and incorporated into it-
erative code refinement—could generalize to other
domains that impose strict execution constraints.
Potential applications include robotics and embed-
ded system programming, where functional cor-
rectness alone is insufficient and compliance with
real-world constraints (e.g., timing, resource usage,
device compatibility) must be enforced. We leave
the exploration of such domains to future work.

Ethical Considerations

This work evaluates LLMs on quantum code
generation using a custom benchmark dataset
and simulator-based feedback. @ The dataset
includes human-written quantum programming
codes, which were collected with permission from
the QCoder platform. All collected data are free
of personally identifiable information and originate
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import math

from gqiskit import QuantumCircuit

from giskit.circuit.library.
standard_gates import RYGate

def solve() -> QuantumCircuit:

gc = QuantumCircuit(2)

ao =1

al =1

a2 =1

norm = math.sqrt(a@*x2+alxx2+a2x*x2)
ad_norm = a@ / norm

al_norm = al / norm

a2_norm = a2 / norm

theta = 2 * math.asin(al_norm)

phi = 2*math.atan(a@_norm/a2_norm)

.ry(theta, 9)
.x(0)
gc.cry(phi, 0, 1)
qc.x(9)

return gc

qc
qc

Figure 11: DeepSeek-R1’s answer at third iteration.
(Success)

from programming contest submissions.

While the dataset is not yet publicly released,
we plan to make it available for academic research
use under a license that prohibits commercial use.
The dataset and evaluation API will be distributed
to promote transparency, reproducibility, and re-
sponsible research in quantum programming. Final
license terms will be announced at the time of re-
lease.
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