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Abstract

Hallucinations are one of the most pressing
challenges for large language models (LLMs).
While numerous methods have been proposed
to detect and mitigate them automatically, hu-
man evaluation continues to serve as the gold
standard. However, these human evaluations
of hallucinations show substantial variation in
definitions, terminology, and evaluation prac-
tices. In this paper, we survey 64 studies in-
volving human evaluation of hallucination pub-
lished between 2019 and 2024, to investigate
how hallucinations are currently defined and
assessed. Our analysis reveals a lack of con-
sistency in definitions and exposes several con-
cerning methodological shortcomings. Crucial
details, such as evaluation guidelines, user inter-
face design, inter-annotator agreement metrics,
and annotator demographics, are frequently
under-reported or omitted altogether.

1 Introduction

The popularity of large language models (LLMs)
has led to an increase in human evaluations assess-
ing the degree to which a model’s outputs diverge
from its inputs – in other words, the number of
hallucinations or confabulations generated by the
given language model. This is also reflected in the
increased number of papers covering the topic (Fig-
ure 1). Human evaluations are commonly viewed
as the more reliable way to evaluate natural lan-
guage generation (NLG) systems (in contrast to,
e.g., using automatic metrics).

Following on from recent NLP surveys that have
looked at various human and automatic evaluation
practices (Howcroft et al., 2020; van der Lee et al.,
2021; Gehrmann et al., 2023; Balloccu et al., 2024;
Schmidtova et al., 2024), this paper takes a more
focused look at the challenge of evaluating the
faithfulness of output from LLMs. We build on
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Figure 1: There is an exponentially growing trend of
papers concerned with hallucination, both in absolute
and in relative terms. The numeric values represented
by this chart can be found in Table 2 (Appendix B).

top of two earlier surveys that looked at halluci-
nations generally within NLG (Li et al., 2022; Ji
et al., 2023). In contrast, we report in depth on
how researchers are defining hallucination in their
evaluations, as well as the current evaluation prac-
tices by looking at a broader set of papers over the
past six years. Our goals are: (1) investigate and re-
port on the current status quo of human evaluation
for hallucinations, and (2) identify any shortcom-
ings and recommend potential improvements. Our
contributions in this paper are as follows:

• Based on a search over papers published in
major NLP venues from 2019-2024, we iden-
tify 64 human evaluations of hallucination and
extract key information on how evaluations
are conducted (Section 3).

• We analyse our data and show the most com-
mon trends; we also conclude that important
information is frequently not reported in the
papers (Section 4).
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• We discuss the main issues and make recom-
mendations on how to address them and im-
prove evaluation quality (Sections 5 and 6).

2 Related Work

Hallucinations The term hallucination is used in
diverse and sometimes conflicting ways across the
literature, making it difficult to assess model per-
formance in a systematic way (Narayanan Venkit
et al., 2024).

Recent works anchored in factuality frame hallu-
cinations as content that fails to align with accepted
truths. Ravichander et al. (2025) treat such outputs
as content inconsistent with world knowledge or
the user-provided context. Rawte et al. (2023b)
highlight wholly fabricated or misleading details
with respect to world knowledge. Tonmoy et al.
(2024) describe the phenomenon broadly as the
generation of ungrounded, factually erroneous text
across varied domains. Luo et al. (2024) similarly
emphasise outputs that appear correct but are not
grounded in fact.

A complementary line of research emphasises
faithfulness to the source input. Ji et al. (2023)
characterise hallucination as text that diverges from
the input, distinguishing intrinsic (contradicts the
source) from extrinsic (unverifiable) cases, and con-
trasting the notions of faithfulness and factuality.
Huang et al. (2025) extend this stance with a fine-
grained taxonomy covering entity- and relation-
level errors, factual fabrication, overclaims, and
instruction, context, and logical inconsistencies.

Other studies focus on grounding in the model’s
own discourse. Zhang et al. (2023b) distinguish
input-, context-, and fact-conflicting hallucinations,
while Rawte et al. (2023a) differentiate factual mi-
rage (distortions based on an otherwise correct
prompt) from silver lining (elaborate narratives
generated from an incorrect prompt). Huidrom and
Belz (2023) similarly move away from external ver-
ification, framing hallucinations as meaning-level
deviations where fluent outputs misinterpret or dis-
tort the intended content.

These definitions vary along three principal axes:
(i) the grounding criterion (input context, external
knowledge, or self-consistency), (ii) the verifiabil-
ity standard (direct contradiction vs. unverifiabil-
ity), and (iii) the granularity of error types (binary
vs. multi-class taxonomies). This heterogeneity
makes it difficult to achieve reproducible evalua-
tion and impedes the development of comparable

metrics. We discuss the prevalence of these dif-
ferent definition types in our surveyed papers in
Sections 4 and 5.

Meta-Evaluations in NLG Over the past two
decades, the NLG community has increasingly
recognised inconsistencies in the evaluation of gen-
erated text. Howcroft et al. (2020) analysed 165
NLG papers employing human evaluation, docu-
mented the diversity of quality dimensions, and
introduced standardised evaluation sheets and defi-
nitions to enhance consistency. Additionally, Belz
et al. (2020) proposed an 18-property classification
for human evaluation methods in NLG to support
comparability, meta-evaluation, and reproducibil-
ity testing. Gehrmann et al. (2023) subsequently
reviewed two decades of human and automatic
evaluation practices, assessed the extent to which
66 contemporary studies adhered to recommended
guidelines, and proposed concrete reporting stan-
dards and template evaluation reports to strengthen
methodological rigour. Addressing the quality of
the studies, Ruan et al. (2024) found that only 30%
of NLG papers release human evaluation guide-
lines, and 77% of those contain vulnerabilities. We
present similar findings, with a more specific focus
on human evaluation of hallucinations, offering a
deeper analysis within this scope.

Surveys on Human Evaluation of Hallucinations
Although hallucination in NLG has been the sub-
ject of numerous surveys (Zhang et al., 2023b;
Rawte et al., 2023b; Sahoo et al., 2024; Agrawal
et al., 2024; Tonmoy et al., 2024; Huang et al.,
2025; Bai et al., 2025), the role of human evalua-
tion is rarely explored in depth. Many surveys ei-
ther omit this aspect entirely or only acknowledge
that human evaluation remains the most reliable
and commonly used method for assessing halluci-
nations (Zhang et al., 2023b; Huang et al., 2025).
At the same time, reliable hallucination evaluation
is often cited as an open research problem (Zhang
et al., 2023b; Ji et al., 2023; Bai et al., 2025). A
recent survey on automatic hallucination evaluation
methods (Qi et al., 2025) underscores the need for
unified annotation guidelines and stresses the im-
portance of annotators possessing relevant domain
expertise and proper training in evaluation criteria
to obtain reliable human evaluation.

Only two surveys provide a more detailed discus-
sion of human evaluation of hallucinations. Ji et al.
(2023) identify two main types of hallucination an-
notation: scoring individual texts and comparing
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multiple texts (e.g., against baselines or ground-
truth references). A more in-depth analysis is pre-
sented by Li et al. (2022), who highlight the chal-
lenges associated with human evaluation, including
the low inter-annotator agreement (IAA) reported
in related studies. They also suggest ranking-based
Best-Worst Scaling (Tang et al., 2022) as a more
effective annotation framework for hallucination
assessment. Nonetheless, this survey discussed
only three works on human evaluation, all of which
predate the introduction of LLMs. Our survey pro-
vides an extension of these results, in both depth
and scope.

3 Methodology

3.1 Paper Selection

We considered papers published between 2019 and
2024 at the following conferences: ACL, NAACL,
EACL, AACL, EMNLP, IJCNLP, and INLG. We
also included papers from two journals: CL and
TACL. 2019 was selected as the lower bound be-
cause it is the year when GPT-2 (Radford et al.,
2019) was released, marking the beginning of the
popularity of pre-trained Transformer language
models in NLG.

In total, 12,418 papers from the selected venues
and time period were automatically screened for
the mention of terms ‘hallucination’ or ‘confabu-
lation’ as well as mentions of ‘human evaluation’
or ‘manual/qualitative analysis’.1 1,405 (11.3%)
papers mentioned ‘hallucination’, 3,552 (28.6%)
mentioned ‘human evaluation’, and 731 (5.9%)
mentioned both. This means that 52% of papers
concerned with hallucination also mention human
evaluation. We ranked these 731 papers by the oc-
currence frequency of the terms of interest, priori-
tising those that mention either term in the abstract.

Then, we manually scanned the top 150 papers
to confirm their relevance to the survey. A paper
was considered relevant if it performed a human
evaluation of hallucinations specifically. Moreover,
we decided to limit our scope to text-only genera-
tion tasks, including structured input data in textual
format (such as semantic triples or tables), exclud-
ing studies that evaluated multimodal tasks.

Applying these criteria led to the selection of 67
papers for the survey. Throughout the inspection
of the surveyed papers, we found that six papers
leveraged previously collected datasets with human

1The search was performed using regular expressions and
allowed for changes in form such as plurals or derivation.

annotations; thus, data collection was not described.
We excluded those, resulting in 61 surveyed papers,
performing 64 distinct human evaluations. Three
papers performed two separate human evaluations,
differing in annotation type (n=2) and the definition
of hallucination and guidelines (n=1). The full list
of annotated papers is in Appendix E.

3.2 Annotation Approach

Each of the surveyed papers was assigned to one of
the authors of this paper,2 who read the surveyed
paper and annotated key information about the hu-
man evaluation of hallucinations performed in the
paper (or lack thereof): definition of hallucination,
annotation type (e.g., categorisation, Likert-scale),
the NLP task in question, availability of annotated
data, annotator demographics (including number
of annotators, annotator type/identity, and any
required specific skills), annotator compensation,
annotation quality assurance measures, inter-
annotator agreement (IAA) details, the annota-
tion user interface used, and annotation guide-
lines. Table 1 in Appendix A includes the full list
of the annotated features and their descriptions.

The majority of the attributes were identified at
the beginning of the project as factors that could
influence the quality and reliability of a human
evaluation. For all attributes, our own annotation
guidelines contained the description of the attribute
and examples of values that could appear. For
instance, under the attribute “who were the an-
notators?”, possible categories included authors;
PhD/Masters/Bachelors students; in-house, paid;
in-house, volunteers; participants recruited through
Prolific or Amazon MT; and other.

We noted even the most vague statements related
to a given attribute, and any borderline cases were
documented as comments and discussed during
subsequent meetings to ensure consistent annota-
tion. Due to the time-intensive nature of anno-
tating the cohort of papers, no experiments with
inter-annotator agreement were performed. Never-
theless, during the post-processing phase, two of
the authors reconfirmed all annotations, especially
focusing on the papers that failed to provide the
majority of attributes.

2All authors are NLP researchers with at least three years
of experience.
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Figure 2: Percentage of papers lacking information,
divided by key attributes outlined in Section 3 (absolute
counts shown above each bar).

4 Results

High-Level Statistics The results presented in
this section are based on the 64 human evaluations
we reviewed. Most papers came from EMNLP
(n=26), followed by ACL (n=17), INLG (n=8),
NAACL (n=7), EACL (n=4), and TACL (n=2).
The majority of papers were published in 2024
(n=27), then 2023 (n=22), 2022 (n=11), and 2020
and 2021 were both represented by two papers.
Summarisation was the most frequent task (n=31),
followed by data-to-text generation (n=9), dialogue
response generation and question answering (n=6
for both).

4.1 Missing Information

Figure 2 shows that a large number of the papers
surveyed did not report key information. As we
expected, most papers provided a definition of hal-
lucination and described the annotation types used
in their human evaluation. However, interestingly,
five papers did not include a definition, and two did
not specify the annotation type.

The situation gets worse with annotation details:
annotator compensation (relevant for ethical rea-
sons) and basic experimental and methodological
information (e.g., the IAA metrics used, if any,
and the guidelines provided to annotators) are of-
ten not reported. Furthermore, over 60% of the
papers did not specify whether, and how, they im-
plemented quality assurance methods to ensure the
reliability of the collected annotations. Quality as-
surance includes topics such as whether the authors
included a training phase, calibration, comprehen-

1 2 3 4 5 6 7 8 9 10
0

2

4

6

8

10

C
ou

nt

1 1

5

7

2

10

8

11 11

8

Figure 3: Amount of reported information as specified
in Section 3.2. 10 (right-most column) is considered
the best, where authors shared every necessary detail on
their evaluation.

sion checks, and piloting in their experiment. See
Appendix D for additional charts.

Completeness If we consider the missing infor-
mation from the point of view of completeness, i.e.,
how many papers provide all key information, or
its subset of a given size (considering the 10 key at-
tributes set in bold font in Section 3.2), the situation
looks somewhat less problematic. A large portion
of papers report the majority of key information,
as shown in Figure 3. However, only 8 papers
provide all 10 key attributes. Notably, only one
paper adopted a standardized reporting, which con-
sisted of the human evaluation datasheet (HEDS;
Shimorina and Belz, 2022) that aims to standardise
reporting practices in human evaluations to ensure
clarity and reproducibility. 14 human evaluations
were poorly reported, with less than half of the key
attributes mentioned.

More Prestige ̸= More Rigour We observed a
concerning trend where papers published at the top-
ranked conferences – ACL and EMNLP – more
frequently omit key information (see Figure 4).
This is particularly surprising given that multiple of
the attributes we considered (annotator demograph-
ics, compensation, UI, and guidelines) are specifi-
cally requested by the Responsible NLP Checklist
(Dodge et al., 2019; Rogers et al., 2021), which
has been incorporated into reviewer guidelines or
a mandatory part of every ACL Rolling Review
(ARR) submission since NAACL 2022.

To see how this checklist is being honored, we
filtered out papers published at venues where this
checklist was in place, totalling 47 papers. Section
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ACL EACL EMNLP INLG NAACL TACL

Num of
Annotators

Annotator
Type

Annotator
Specialty

Compensation

Annotation
Type

Definition

Guidelines

User
Interface

Quality
Assurance

IAA
Metrics

82.4%
(14/17)

50.0%
(2/4)

92.3%
(24/26)

87.5%
(7/8)

71.4%
(5/7)

50.0%
(1/2)

64.7%
(11/17)

100.0%
(4/4)

80.8%
(21/26)

87.5%
(7/8)

71.4%
(5/7)

100.0%
(2/2)

64.7%
(11/17)

75.0%
(3/4)

73.1%
(19/26)

75.0%
(6/8)

71.4%
(5/7)

50.0%
(1/2)

23.5%
(4/17)

100.0%
(4/4)

30.8%
(8/26)

50.0%
(4/8)

71.4%
(5/7)

100.0%
(2/2)

94.1%
(16/17)

100.0%
(4/4)

100.0%
(26/26)

100.0%
(8/8)

100.0%
(7/7)

50.0%
(1/2)

94.1%
(16/17)

100.0%
(4/4)

92.3%
(24/26)

87.5%
(7/8)

100.0%
(7/7)

50.0%
(1/2)

52.9%
(9/17)

100.0%
(4/4)

69.2%
(18/26)

87.5%
(7/8)

85.7%
(6/7)

100.0%
(2/2)

47.1%
(8/17)

25.0%
(1/4)

42.3%
(11/26)

62.5%
(5/8)

57.1%
(4/7)

50.0%
(1/2)

35.3%
(6/17)

50.0%
(2/4)

30.8%
(8/26)

37.5%
(3/8)

42.9%
(3/7)

50.0%
(1/2)

58.8%
(10/17)

75.0%
(3/4)

65.4%
(17/26)

75.0%
(6/8)

85.7%
(6/7)

100.0%
(2/2)

Figure 4: The proportion of papers from a given venue
(X axis) that specify a given attribute (Y axis).

D of the Responsible NLP Checklist is concerned
with reporting practices around human evaluation.
Notably, Question D1 asks for “full text of instruc-
tions given to participants, including e.g., screen-
shots, disclaimers of any risks to participants or
annotators, etc.?”, which maps to our criteria of pro-
viding guidelines and information on the user inter-
face. Guidelines were not provided in 14 (30%) pa-
pers, and user interface details in 30 (64%) papers
that should have adhered to the checklist. Question
D2 is about how people were recruited (the identity
of annotators) and how they were paid (compensa-
tion). This information was not mentioned by 13
(28%) and 31 (66%) papers, respectively.

4.2 Hallucination Definitions
We focused on the grounding criterion used to de-
fine hallucination, and the granularity of the defini-
tions in our analysis (cf. Section 2). As we discuss
in Section 5, verifiability standards (contradictions
vs. non-verifiability) were generally vague.

Grounding Criterion In Figure 5, we examine
the grounding source depending on the task. Faith-
fulness to the source input is by far the most com-
monly used criterion to assess the presence of hal-
lucinations in generated outputs across all tasks.

Figure 5: Distribution of grounding sources across the
most prominent tasks.

Only seven papers evaluated outputs against ex-
ternal knowledge, suggesting that factuality plays
a relatively minor role in current evaluation prac-
tices. This scarcity may be partly attributable to
the type of generation task: for tasks such as data-
to-text generation, summarisation, or translation,
the standard practice is to compare the output with
the input text rather than with external knowledge.
Conversely, this does not hold for question answer-
ing, where the grounding criteria were the most
diverse. For 11 papers, it is unclear which source
was used to verify the outputs’ veracity.

Granularity of Error Types The granularity
of hallucination error types varied across papers.
Most papers (24) treated hallucination as a singular
phenomenon, providing only one definition or cate-
gory. This was followed by multi-class approaches
(20 papers), where hallucination was represented
using multiple distinct types (e.g., severity scales).
12 papers adopted a binary classification, distin-
guishing between two possible outcomes (e.g., hal-
lucinated vs. non-hallucinated). Finally, 11 papers
were unclear about the granularity used.

4.3 Annotation Details

Annotation Type Figure 6 shows that categori-
sation (e.g., binary labels indicating whether a hal-
lucination is present, or multi-class labels) is by
far the most commonly used type of hallucination
annotation. It is followed, at a distance, by Likert
scale and span-based annotations, which appear in
almost equal proportions.
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Figure 6: Number of papers per type of hallucination
annotation used.

Annotation Guidelines As identifying and cat-
egorising hallucinations is a complex task, clear
and comprehensive annotation guidelines are criti-
cal for annotation. We found that guidelines were
presented in 46 instances. Other key components,
such as annotator instructions (present in only 25
cases) and contextual information (present in only
14 cases), were often omitted. Particularly concern-
ing is the rarity of examples, critical in clarifying
the tasks, which were provided in only six cases.

User Interface Information on details of user in-
terfaces used during annotation is rarely reported
in the reviewed papers. Less than 10 papers pro-
vided a screenshot, and 3 papers mentioned using
Google Forms. However, the vast majority either
described the user interface very vaguely, or did
not comment on it at all. This confirms the broader
trend identified by Calò et al. (2025) of overlooking
this important factor in NLP evaluation.

Quality Assurance Quality assurance (QA) con-
cerns the measures researchers take to ensure that
human evaluation experiments produce reliable and
consistent results (Belz et al., 2024). Common prac-
tices include annotator training, calibration, pilot-
ing, and providing guidelines and examples in the
experiment. Of the 64 studies reviewed, 22 (34.4%)
explicitly report their quality assurance strategy,
with piloting being the most common method. De-
spite the importance of quality assurance, only five
studies have reported the use of multiple methods.
Figure 7 shows the different QA methods examined
in this paper.

IAA Details The situation with reporting IAA
information is concerning. 27 papers did not report
any IAA. Of these, one study used only one annota-
tor per example and therefore could not report the
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Figure 7: Number of studies containing quality assur-
ance methods. One paper can use multiple methods.

inter-annotator agreement. In contrast, 20 papers
reported high IAA, 15 reported medium IAA, and
2 reported low IAA.3 The small number of papers
reporting low IAA may be because studies with
poor agreement opted not to report it. Of the 27 pa-
pers that failed to report IAA, there are 8 for which
it was unclear if this was even possible: one used
only a single annotator, making IAA measurement
impossible, while the other seven did not mention
how many annotators they used.

4.4 Annotator Details
Compensation Almost 60% of papers (37 in to-
tal) do not report the compensation provided to the
annotators. Among those that do, various papers
only provide vague statements. Some cite compen-
sation as “above the minimum wage”, “fair pay-
ment according to our organisation’s standards”,
and “a competitive hourly rate that is benchmarked
against similar roles in the US”.

Annotator Group Figure 8 shows that students
and crowd workers are tied as the most commonly
used annotator groups, followed closely by experts.
Surprisingly, 12 papers did not mention who the an-
notators were. Of the 15 papers that reported using
students as annotators, 11 gave no details on com-
pensation, one relied on voluntary participation,
and only three specified an hourly rate.

Specific Annotator Skills Figure 9 categorises
annotators according to the skills or qualifications
required for each experiment. Notably, 19 papers
do not specify any qualifications, whereas 16 call

3The classification of IAA into high, medium, and low
was done by the authors of this survey based on commonly
considered thresholds.
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for domain expertise (e.g., computer science or lin-
guistics). The remaining studies apply criteria such
as crowd-platform metrics (e.g., HIT approval rate),
language proficiency, formal university education,
task familiarity, or other bespoke requirements.

5 Discussion

Human Evaluation Shows Absolute Growth,
Relative Decline We analyzed 1,405 papers that
mention hallucinations, tracking over time how
many also discuss human evaluation, both in abso-
lute numbers and relative proportions. Figure 10
shows that while the absolute number of hallucina-
tion papers mentioning human evaluation continues
to grow, the proportion of such papers is declining
dramatically. This decline is indicative of a rapid
overall increase in hallucination research outpacing
the use of human evaluation methods.

We offer our hypothesis of possible factors that
could have contributed to this trend. First, run-
ning a properly designed human evaluation requires
a considerable amount of effort (Thomson et al.,
2024). As the absence of human insight into the
model’s errors is becoming standard, with less than
50% of hallucination papers providing it, many au-
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Figure 10: The count of hallucination papers that use
human evaluation is growing (solid blue line). However,
their relative proportion is falling, i.e., a larger % of
papers do not consider human evaluation (dashed blue
line). We observe a similar trend in the abstracts (yel-
low), where a lower proportion of authors deem human
evaluation important enough to mention. This informa-
tion is also available as Table 3.

thors have very little incentive to undertake this
effort.

Second, LLM-as-a-judge evaluations (Bavaresco
et al., 2025; Kasner et al., 2025) have emerged
as an alternative to human evaluation due to their
lower cost. This approach, made popular in ma-
chine translation evaluation (Kocmi and Feder-
mann, 2023), has grown in the hallucination lit-
erature from just one paper in 2023 to 40 papers
(5% of hallucination papers) in 2024. While we
cannot establish a direct causal relationship, this
growth coincides with the relative decline in human
evaluation usage.

Third, researchers may increasingly substitute
benchmark evaluation for human evaluation, view-
ing automated metrics on standard datasets as suf-
ficient. We discuss why this practice is problem-
atic in our next point. Robust human evaluation
methodologies matter as in the end “a careful and
well-designed human evaluation is usually the best
way to meaningfully evaluate an NLG system” (Re-
iter, 2024).

The Continued Importance of Human Evalu-
ation Despite trends toward automated evalua-
tion, human judgment remains essential for hallu-
cination assessment. Human evaluation provides
irreplaceable insights that automated approaches
cannot capture: humans can apply specialized do-
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main expertise (e.g., medical, legal knowledge),
assess contextual appropriateness and cultural sen-
sitivity, and evaluate real-world applicability from
an end-user perspective (Reiter, 2025). Moreover,
human evaluation often reveals novel failure modes
and error patterns not captured by predefined met-
rics, which is crucial for understanding model lim-
itations and improving systems. The persistent
misalignment between automatic metrics and hu-
man judgment (Belz and Reiter, 2006; Novikova
et al., 2017) has intensified as evaluation tasks have
grown more complex – hallucinations require nu-
anced assessment that goes beyond simpler, pre-
viously evaluated factors (Howcroft et al., 2020).
Current automated alternatives suffer from signifi-
cant limitations: benchmarks are plagued by LLM
training data contamination (Balloccu et al., 2024;
Golchin and Surdeanu, 2025), dataset errors (Gema
et al., 2025), and poor real-world applicability
(Hardy et al., 2025; Lunardi et al., 2025), while
LLM-as-a-judge approaches require human valida-
tion for new datasets or tasks (Schmidtová et al.,
2025) and may inherit training data biases. Fi-
nally, developing better automated metrics itself
requires human-annotated gold standards, and cer-
tain domains demand human validation for safety
or regulatory compliance.

Hallucination Definition Hallucination defini-
tions vary greatly in the papers we reviewed. Some
authors used standardised definitions previously
published in the literature, while others grounded
their definitions in the specific context of the task,
such as medical decision-making. For instance,4

one paper defined hallucination in the context of
clinical safety as:

factual accuracy, specifically looking for missing
or incorrect information that could lead to errors
in medical treatment after discharge

However, we also found vague or difficult-to-
interpret definitions, such as:

Hallucinations - 0: no stuff that is not factual.
- 1: even if there is one stuff that is not correct,
gibberish also gets this

Lack of Reporting and Release of Research Data
From the papers that we have surveyed, there is a
significant gap in the number of details reported
by researchers. In particular, details such as remu-
neration details, experimental details, IAA metrics,

4See more examples of hallucination definitions in Table 5,
Appendix C.

and the guidelines used. Efforts have been made
to encourage researchers to fill in standardised hu-
man evaluation reporting sheets, such as HEDS
(Shimorina and Belz, 2022), to greater evaluation
reproducibility. However, our results indicate this
is far from standard practice, with only a single
paper filling in such a datasheet.

There is also an additional need for researchers
to be more proactive in releasing research data.
Only 20 papers (43%) in our survey have actually
released any annotation data. Model outputs with
error annotations would not only be useful for fur-
ther error analysis, but also for the development and
improvement of new automatic evaluation methods,
such as COMET (Rei et al., 2020) was developed
for machine translation.

The issues observed in our results are not new
issues. The same lack of reporting was observed
by Howcroft et al. (2020) in their survey of NLG
human evaluations. However, it is disappointing,
but not surprising, that no progress on this front
has been made over the past five years.

Are Responsible NLP Checklists Used Respon-
sibly? Our findings reveal a troubling inconsis-
tency between the formal requirements of the Re-
sponsible NLP Checklist and actual reporting prac-
tices in papers published at premier NLP venues.
Despite the checklist being integrated into reviewer
guidelines and made mandatory for submissions
to the ACL Rolling Review since NAACL 2022, a
significant proportion of papers failed to report crit-
ical information about human evaluation practices.
This pattern is surprising when contrasted with pa-
pers from INLG, a venue not formally bound by
the checklist, which nonetheless reported these at-
tributes more consistently. This discrepancy raises
concerns about the seriousness with which authors
and reviewers are taking the Responsible NLP
checklist. It suggests that mere formal inclusion of
reporting guidelines may not be sufficient; instead,
stronger enforcement via higher peer review qual-
ity may be necessary to ensure broader compliance
and more transparent reporting of information. The
checklist itself may need simplification in order to
increase its practical adoption.

Quality Assurance in Human Annotations Ob-
taining high-quality and consistent annotations is
challenging, especially when annotators must look
for divergences between input data and model out-
puts. For example, Thomson et al. (2023), in their
methodology for evaluating the accuracy of data-to-
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text systems, recommends the use of pilot studies to
develop intuitive error categories for error-span an-
notations. Additionally, to ensure high agreement
between recruited participants, careful design of
the qualification tasks is needed to filter out subpar
annotators (Zhang et al., 2023a).

From the results above, there is clear under-
reporting of key information in the majority of the
surveyed papers, especially with respect to qual-
ity assurance information. This makes comparison
between different papers challenging and prevents
researchers from understanding whether a given set
of results has methodological gaps or not. Further-
more, sharing lessons from quality assurance meth-
ods can enhance the reliability and reproducibility
of future evaluations by setting a standard.

Reporting Inter-Annotator Agreement Al-
though highly informative, IAA is often not re-
ported. One possible reason is that peer review
may discourage authors from including low IAA
scores. However, low IAA does not necessarily
indicate poor annotation quality (especially when
quality assurance steps, such as piloting and atten-
tion or comprehension checks, have been taken).
Instead, it may reflect the inherent subjectivity of
the task, including factors such as ambiguity, im-
plicit assumptions, or the difficulty of certain items
(Plank, 2022). We argue that all of this information
is valuable and worth reporting. As Reiter et al.
(2003) already emphasised more than two decades
ago, sharing negative results is important for sci-
entific research; however, little progress has been
made in this regard.

6 Recommendations

Defining Clear Hallucination Definitions Au-
thors should use standardised definitions from exist-
ing literature whenever possible to promote consis-
tency and facilitate comparison. Definitions must
be clear, unambiguous, and should include con-
crete examples. In order to avoid ambiguity, au-
thors should explicitly specify the grounding crite-
rion, verifiability standard, and granularity of error
types, as discussed in Section 2. When introducing
new definitions, authors should justify why exist-
ing definitions are inadequate and pilot them with
annotators to confirm understanding.

Inter-Annotator Agreement Reporting Au-
thors should consistently report IAA results from
their human evaluations, as this information is cru-

cial for assessing the reliability and reproducibility
of findings. In addition to reporting IAA scores,
authors should specify the quality assurance steps
taken, in order to provide proper context for inter-
preting these results. We urge reviewers to avoid
rejecting papers with low IAA when proper qual-
ity assurance measures were implemented and the
agreement is adequately addressed. Some tasks
are inherently subjective, and using low IAA as a
“rejection shortcut” reduces transparency and loses
valuable insights about task difficulty and subjec-
tivity that benefit the broader research community.

Use Evaluation Reporting Sheets Standardised
evaluation reporting sheets, such as HEDS (Shimo-
rina and Belz, 2022), allow for evaluation compara-
bility and reproducibility by ensuring that all rele-
vant evaluations are recorded. While such reporting
sheets may seem overwhelming at first, they can
help practitioners to better understand what details
should be reported. At the very least, we urge au-
thors to read through them to understand which
information should always be reported.

7 Conclusion

Our survey of 64 human evaluation studies uncov-
ered key insights across multiple aspects of how
LLMs’ hallucinations are assessed. Although hu-
man evaluation remains the gold standard for NLG
researchers (Zhou et al., 2022), we observed a con-
cerning decline in the proportion of papers conduct-
ing such evaluations. Moreover, methodological
reporting is often lacking; critical details, such as
inter-annotator agreement, annotator demograph-
ics, and annotation guidelines, are frequently omit-
ted. Definitions and categorisations of hallucina-
tions vary widely across tasks and papers. We argue
that adopting standardised definitions addressing
the three axes we propose in Section 2 would sup-
port a more unified understanding of hallucinations.
Finally, it is troubling that even papers published at
top NLP venues often fail to report essential infor-
mation about their human evaluation procedures,
despite being prompted to include the Responsi-
ble NLP Checklist. These findings underscore the
urgent need for more rigorous, transparent, and
standardised practices in human evaluations of hal-
lucinations.

Limitations

In this survey, we only looked at papers published
in well-known NLP conferences and journals over
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the past six years. This means that it is possible
that there are earlier papers with human evaluations
that assess LLMs’ for hallucination that may have
been excluded from our analysis. Additionally,
we only annotated papers in English and did not
include papers that may have been published in
other languages.

Ethics Statement

The focus of this work is to gain better insights
into how human evaluations of hallucinations are
performed. The annotations made in this paper
were made by the authors and therefore, we did
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palette to improve the accessibility of our paper.
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A Annotated Features

In Table 1, we provide a detailed list of all features
that were recorded for the surveyed papers.

B Yearly Trend Tables and Charts

In this section, we provide additional charts and
tables. Data supporting the yearly trend charts can
be found in Table 2 (trend of hallucination men-
tions in papers) and Table 4 (human evaluation and
LLM-as-a-judge trends in hallucination papers).
For completeness, analogous data for papers men-
tioning human evaluation is shown in Table 3 and
Figure 11, and shows that while the absolute num-
ber of human evaluations started growing in 2022,
this trend is not reflected when related to the num-
ber of papers considered.
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Figure 11: Yearly trend of human evaluation in papers
from 2019-2024.

C Examples of Hallucination Definitions

In Table 5 we present examples of definitions found
in the surveyed papers.

D Information Frequently Reported
Together

Figure 12 reveals patterns in how information is
reported or omitted.
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Feature Description

Number of annotators The total number of individuals who conducted the annotations.
Identity of annotators The group or affiliation of those who performed annotations (e.g., authors, students

from the authors’ lab, in-house employees, volunteers, Prolific workers, Amazon MTurk
workers).

Specific quality of annotators Additional, more specific qualifications of annotators, such as familiarity with the task,
domain expertise, pre-filtered conditions on crowdworkers, native-speaker status, or
residence in a specific region.

Compensation The form and amount of payment provided to annotators, including currency and whether
paid per task, per hour, or per HIT.

Annotation type The kind of annotations collected, including word-level (e.g., span or span + category)
or text-level (e.g., Likert scale, categorization, continuous score) annotations.

Task type Type of the task addressed in the article, specifying whether it was data-to-text or text-to-
text generation.

Was input or output annotated? Indicates whether annotations were made on the input, the output, or both.
Task The specific generation task of the study (e.g., summarization, machine translation,

question answering, dialogue generation, data-to-text generation, style transfer, error
correction).

Definition Precise definition of hallucination presented in the paper.
Guidelines Whether guidelines are available and, if so, which format they take (e.g., free text,

tutorial, in-person briefing).
User Interface The platform or tool used for annotation (e.g., Google Forms, Microsoft Forms, Label-

Studio, Argilla, or a custom platform), or “NM” if not mentioned.
Quality Assurance Whether the authors mention measures like training, calibration, comprehension checks,

piloting, or golden label acquisition phase.
Is data available? Whether the annotated data is publicly available.
IAA Metrics The metrics used to assess the quality of annotations (e.g., inter-annotator agreement,

accuracy, entropy).
Kappa Score (Cohen or Fleiss) The reported score, if Kappa was used.
Krippendorff’s Alpha Score The reported score, if Krippendorff’s Alpha was used.
Other IAA measure value Mention any other IAA measure used.
Overall IAA assessment A summary rating from the reported inter-annotator agreement. Low: 0–0.35, Medium:

0.36–0.60, High: 0.61–1.

Table 1: Description of the annotated features in the surveyed papers.

Year Total Papers Paper Body # Abstract # Title # Paper Body % Abstract % Title %

2019 1841 36 5 1 2.0% 0.3% 0.1%
2020 1671 57 10 1 3.4% 0.6% 0.1%
2021 1606 79 9 1 4.9% 0.6% 0.1%
2022 1706 136 20 7 8.0% 1.2% 0.4%
2023 2539 349 62 25 13.7% 2.4% 1.0%
2024 3055 748 155 47 24.5% 5.1% 1.5%

Table 2: Evolution of hallucination mentions in academic papers from 2019-2024. Shows both absolute counts and
percentages of papers mentioning hallucinations in PDF content, abstracts, and titles.

Year Total Papers Paper Body # Abstract # Title # Paper body % Abstract % Title %

2019 1841 446 106 4 24.2% 5.8% 0.2%
2020 1671 442 103 3 26.5% 6.2% 0.2%
2021 1606 450 97 7 28.0% 6.0% 0.4%
2022 1706 482 79 4 28.3% 4.6% 0.2%
2023 2539 774 151 5 30.5% 5.9% 0.2%
2024 3055 958 139 5 31.4% 4.5% 0.2%

Table 3: Evolution of human evaluation mentions in academic papers from 2019-2024. Shows both absolute counts
and percentages of papers mentioning human evaluation in PDF content, abstracts, and titles.
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Year Papers HumEval HumEval % LLM Judge LLM %

2019 36 23 63.9% 0 0.0%
2020 57 40 70.2% 0 0.0%
2021 79 53 67.1% 0 0.0%
2022 136 91 66.9% 0 0.0%
2023 349 198 56.7% 1 0.3%
2024 748 326 43.6% 40 5.3%

Table 4: Evolution of the use of human evaluation and LLM-as-a-judge in hallucination papers.

Definition Comment

Hallucinations are cases in which the model generates output that is partially or com-
pletely unrelated to the source sentence, while omissions are translations that do not
include some of the input information (Dale et al., 2023).

Use of a definition previously published in the literature.

Factual accuracy, specifically looking for missing or incorrect information that could
lead to errors in medical treatment after discharge.

Definition grounded in the concrete task at hand (i.e.,
medical treatment after discharge).

Hallucinations - 0: no stuff that is not factual. - 1: even if there is one stuff that is not
correct, gibberish also gets this.

Extremely unclear and vague definition.

The output text contains word span(s) for which there is no corresponding part of the
input that they render. In other words, some content that is not present in the input and
should not be rendered in the output is nevertheless rendered by some word span(s) in
the output. Moreover, there is no content in the input that the word span(s) are intended
to render, but render wrongly. i.e. this type of error can be fixed by removing something
from the output.

Clear and extensive definition, giving specific details
on how to handle various cases that can occur in the
annotation.

Major errors: Readers knowledgeable in the space would likely recognise the error
in the blue sentence. If printed in a newspaper, the newspaper would have to print a
correction or retraction to maintain its reputation. Minor errors: Most readers would
not notice the error or find it less important. If printed in a newspaper, the newspaper
may not need to print a correction.

Interesting definition, rooting the different categories in
something the annotators should be familiar with (i.e.,
reading newspapers).

Table 5: Selected definitions of hallucination from the surveyed papers.
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Figure 12: Co-occurrence of key information reported (left) or omitted (right). Please note that the values in the two
charts do not have to sum up to the total amount of evaluations, because they do not account for cases when a paper
reports exactly one of two given attributes.
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E Full List of Papers Reviewed

In this section, we list all the work we reviewed
and classified as relevant for our survey.
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Arab Emirates. Association for Computational
Linguistics.
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for Computational Linguistics.
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ence on Empirical Methods in Natural Language Pro-
cessing, pages 18837–18851, Miami, Florida, USA.
Association for Computational Linguistics.
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