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Abstract

Intent, typically clearly formulated and
planned, functions as a cognitive framework
for communication and problem-solving. This
paper introduces the concept of Speaking
with Intent (SWI) in large language models
(LLMs), where the explicitly generated intent
encapsulates the model’s underlying intention
and provides high-level planning to guide sub-
sequent analysis and action. By emulating
deliberate and purposeful thoughts in the hu-
man mind, SWI is hypothesized to enhance
the reasoning capabilities and generation qual-
ity of LLMs. Extensive experiments on text
summarization, multi-task question answering,
and mathematical reasoning benchmarks con-
sistently demonstrate the effectiveness and gen-
eralizability of Speaking with Intent over direct
generation without explicit intent. Further anal-
ysis corroborates the generalizability of SWI
under different experimental settings. More-
over, human evaluations verify the coherence,
effectiveness, and interpretability of the intent
produced by SWI. The promising results in en-
hancing LLMs with explicit intents pave a new
avenue for boosting LLMs’ generation and rea-
soning abilities with cognitive notions.1

1 Introduction

Intent, the goal-oriented intention in our
mind (Adams, 1986; Mele, 1989; Mele and
Moser, 1994), serves as a critical component in
communication and a guiding framework for
problem-solving. As illustrated in Figure 1(a),
human thinking (Kahneman, 2011) typically
follows a structured loop where intent—a mental
state or proactive commitment to perform a specific
action or produce a particular outcome—directs
problem analysis and logical reasoning, therefore
also facilitating communication and interaction.
Hence, we hypothesize that enabling AI systems to
speak with their intent explicitly can replicate this

1Source code: https://github.com/YuweiYin/SWI
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Figure 1: SWI Overview. (a) The intent, functioning
as meta-thought and planning, guides the analysis with
reasoning to answer the question. (b) The performance
improvements brought by SWI on various tasks.

meta-cognitive process, thereby improving their
generation quality and reasoning ability.

In recent years, large language models
(LLMs) (Zhao et al., 2023; Min et al., 2023; Mi-
naee et al., 2024) have revolutionized Natural
Language Processing (NLP) with their excellent
generative capabilities (OpenAI, 2024; Anthropic,
2024; Gemini, 2024). Enhancing LLMs on vari-
ous language understanding and logical reasoning
tasks (Hendrycks et al., 2021; Suzgun et al., 2023;
Lightman et al., 2024; Vendrow et al., 2025) is vital
for their ongoing development (Huang and Chang,
2023; Qiao et al., 2023; Patil, 2025).

This work introduces Speaking with Intent
(SWI), requiring LLMs to articulate their own in-
tent as a planning mechanism during generation,
which makes LLM intentionality more explicit, in
a way reminiscent of the long tradition of intent-
driven generation in classic NLG (Grosz and Sid-
ner, 1986; Mann and Thompson, 1988; Moore and
Paris, 1993; Reiter and Dale, 2000). In essence, we
hypothesize that, due to the autoregressive nature
of LLMs (Radford et al., 2019) and the attention
mechanism (Vaswani et al., 2017), explicitly stated
intent provides high-level guidance for subsequent
analysis and reasoning. For example, when apply-
ing SWI to summarization tasks, each analytical
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step in summarizing an article is effectively guided
by a preceding intent statement, which is a piece of
free-form text generated by instruction-following
LLMs (Ouyang et al., 2022; Rafailov et al., 2023;
Llama, 2024) instead of a predefined class as in
traditional intent modeling (Weld et al., 2022).

In this work, we verify the proposed hypothesis
by comprehensively evaluating the effectiveness
and generalizability of the proposed SWI method.
Specifically, the experimental results across three
diverse task categories (i.e., text summarization,
multi-task question answering, and mathematical
reasoning) demonstrate that speaking with intent
in LLMs consistently outperforms directly gener-
ating responses without explicit intent. In sum-
marization tasks, SWI produces summaries that
are more accurate, concise, and factually reliable,
with fewer hallucinations (Ji et al., 2023; Li et al.,
2024a) in the output. In math reasoning tasks, SWI
surpasses the LLM reasoning method Chain-of-
Thought (CoT) (Kojima et al., 2022) and LLM
planning method Plan-and-Solve (PS) (Wang et al.,
2023), and SWI can work synergistically with these
methods to further improve them. Additionally,
we perform human evaluations to assess the co-
herence, effectiveness, and interpretability of the
intent generated by our SWI method. Evaluators
largely agree on the quality of the generated intent,
particularly for mathematical reasoning tasks. The
evaluation results confirm that SWI enhances task
performance and output explainability.

The key contributions of this work are as follows:
➊ We introduce Speaking with Intent in LLMs,
where the generated intent effectively guides prob-
lem analysis, logical reasoning, and text generation,
boosting performance across various benchmarks.
➋ Extensive experiments and analyses across di-
verse task types and multiple datasets, including
text summarization, multi-task QA, and mathemat-
ical reasoning, demonstrate the consistent effec-
tiveness and generalizability of SWI. ➌ Human
evaluations validate the coherence, effectiveness,
and interpretability of the intent generated by SWI,
with our evaluation practice providing standards
for assessing freely generated intents.

2 Speaking with Intent

This section presents the problem-solving work-
flow of LLMs and introduces Speaking with Intent
(SWI), enabling LLMs to explicitly articulate their
intent during response generation.

2.1 Problem-solving Workflow using LLMs

Let D = {X ,Y} be a dataset, where X =
{X1, X2, . . . , Xn} is the input information (ques-
tions), Y = {y1, y2, . . . , yn} is the corresponding
references (correct answers), and n is the number
of instances in D. For text summarization datasets,
Xi is the source article, and yi is one of the refer-
ence summaries. For multiple-choice QA datasets,
Xi contains the question and options, and yi is the
answer label such as (A)/(B)/(C) or Yes/No. For
mathematical reasoning datasets, Xi is the math
problem, and yi is the correct answer (usually an
integer number).

In this work, we employ instruction-following
LLMs (aka Chat LLMs) M for experiments and
apply the chat template with the system prompt
Ps and user prompt Pu. The system prompt speci-
fies the general behavior of the model (assistant),
and the user prompt poses questions to the model.
Therefore, the generated output ŷi is obtained by

ŷi = M(Ps, Pu, Xi; Θ, ζ), (1)

where Ps is the system prompt, Pu is the user
prompt, and Xi is the task input. These string
objects are concatenated using line breaks (“\n”)
as the delimiter. With parameters Θ and hyper-
parameters ζ, the LLM M generates new tokens
one by one until reaching the generation limit or
generating the “end-of-text” special token provided
by the tokenizer.

2.2 LLM Speaking with Intent

SWI is a novel method that brings a significant cog-
nitive concept (i.e., intent) into LLM generation.
SWI is implemented in a simple and reproducible
approach, i.e., we require LLMs to speak with in-
tent (SWI) by presenting detailed instructions in
the system prompts Ps and restating the SWI re-
quirement in the user prompt Pu. Table 1 presents
the SWI instructions for QA and math tasks. For
summarization tasks, the fourth requirement in the
system prompt is At last, clearly and concisely give
your final summary starting with "Final Summary:"
and the user prompt becomes Speak with intent and
summarize the following article. {{article}}.

As showcased in Figure 2 (math) and Figure 3
(summarization), LLMs that speak with intent ar-
ticulate their intents during the thinking, reasoning
and communication process and then provide the
final answer based on the analysis.
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System Prompt: You are a helpful assistant who
speaks with intent.
During generation, follow all the requirements below:
1. Always explicitly state your own intent before
speaking each sentence.
2. Each intent statement should explain the sentence
that follows.
3. Your intent must start with the "<INTENT>" tag
and end with the "</INTENT>" tag. The content
within the intent tags must begin with "To" followed
by a verb, such as "To accomplish a task."
4. At last, clearly and concisely give your final answer
starting with "Final Answer:"

User Prompt: Speak with intent and answer the
following question.
{{question}}

Table 1: SWI instructions for QA and math tasks.
Problem:
A robe takes 2 bolts of blue fiber and half that much white 
fiber. How many bolts in total does it take?
LLMs speaking with Intent:
To calculate the total number of bolts of fiber required to 
make a robe.
To find the total number of bolts of fiber required, we need 
to determine the amount of white fiber needed and add it to 
the amount of blue fiber.
To determine the amount of white fiber needed.
Since the robe takes half as much white fiber as blue fiber, 
and there are 2 bolts of blue fiber, we need to divide 2 by 2 
to find the amount of white fiber. 2 / 2 = 1
To add the amount of blue and white fiber together.
Now that we know the amount of white fiber needed, we 
can add it to the amount of blue fiber to find the total 
number of bolts required. 2 (blue fiber) + 1 (white fiber) = 3
Final Answer: 3

Figure 2: An example of LLMs speaking with intent
for mathematical reasoning tasks.

2.3 Result Evaluation
We extract the final answer (denoted as ỹi) from
the model outputs ŷi and compute the overall per-
formance of M on the dataset D by

s =
1

n

n∑

i=1

S(yi, ỹi), (2)

where the score function S(·, ·) returns a value in
the range of [0, 1]. Different tasks adopt different
score functions to evaluate the model performance.

To evaluate the quality of summaries, we apply
the standard ROUGE (Lin, 2004) as the automatic
evaluation metric S and complement it with a more
sophisticated fact-checking analysis as described
in Section 4.1. For multiple-choice QA tasks, we
adopt the Option Selection metric introduced by
Yin and Carenini (2025), which evaluates the LLM
perplexity of different option concatenations and se-
lects the one with lowest perplexity as the model’s

Task Dataset Split Size

Sum

CDM Test 11,490
XSum Test 11,334
XL-Sum Test 11,535
DialogSum Test 1,500
WikiLingua Test 3,000

QA
BBH Test 5,511
MMLU Test 13,842
MMLU-Pro Test 12,032

Math
GSM8K Test 1,319
GSM8K-P Test 1,209
MATH500 Test 500

Table 2: Dataset Statistics.

choice. For mathematical reasoning tasks, we first
extract numbers in ỹi and apply text normalization
to both ỹi and the reference yi, and then conduct
exact match to check if the generated answer ỹi is
correct.

3 Experimental Setup

This section presents the experimental setup, in-
cluding Tasks and Datasets (§ 3.1), Model Settings
(§ 3.2), and Baseline Settings (§ 3.3).

3.1 Tasks and Datasets
The proposed SWI method aims to enhance the
generation quality and reasoning ability of LLMs.
To comprehensively study the effectiveness and
generalizability of SWI, we conduct extensive ex-
periments on various challenging benchmarks of
three diverse task types: text summarization (Sum),
multi-task question answering (QA), and mathe-
matical reasoning (Math). The dataset statistics are
presented in Table 2.

Text Summarization (Sum). We hypothesize
that Speaking with Intent benefits natural language
generation tasks like summarization, where the gen-
erated intent can guide the model in summarizing
the source article point by point in an orderly fash-
ion. Hence, we test the effect of SWI on the follow-
ing text summarization datasets covering different
genres: CNN/DailyMail (CDM) (Hermann et al.,
2015; See et al., 2017), Extreme summarization
(XSum) (Narayan et al., 2018), XL-Sum (Hasan
et al., 2021), DialogSum (Chen et al., 2021), and
WikiLingua (Ladhak et al., 2020).

Multi-task Question Answering (QA). Our
SWI method is also evaluated on various multi-
task question answering datasets, including BIG-
Bench Hard (BBH) (Suzgun et al., 2023),
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MMLU (Hendrycks et al., 2021), and MMLU-
Pro (Wang et al., 2024b). They are all reasoning-
intensive benchmarks designed as multiple-choice
QA tasks, where the model is asked to select the
most appropriate one from the given options to
answer the question. Here, the hypothesis is that
generating its intent explicitly as text improves the
system’s question analysis abilities.

Mathematical Reasoning (Math). Beyond
multiple-choice QA tasks, we also consider
mathematical reasoning benchmarks, where
the model is asked to solve the given math
problem and present the final answer (numer-
ical values). We consider representative and
high-quality math benchmarks, including Grade
School Math 8K (GSM8K) (Cobbe et al., 2021),
GSM8K-Platinum (Vendrow et al., 2025), and
MATH500 (Lightman et al., 2024). Again, our
hypothesis is that speaking with explicit intent
improves the model’s reasoning abilities.

3.2 Model Settings

Language Models. By default, we employ
LLaMA3-8B-Instruct (Llama, 2024) as the lan-
guage model M for generation and evaluation.
It is an open-weights, instruction-following, and
Transformer-based (Vaswani et al., 2017) LLM
with 8 billion model parameters. We load the
model checkpoint and tokenizer provided by Hug-
ging Face Transformers (Wolf et al., 2020). To
further assess the generality of SWI, we also eval-
uate the efficacy of SWI with different LLMs in
§ 5.3. In the fact-checking evaluation for sum-
maries (§ 5.1), we adopt GPT-4o-mini (OpenAI,
2024) to decompose the generated summary and
reference summary into two sets of atomic facts.

Generation Configurations. Each experiment
session was conducted on a single NVIDIA H100
GPU, and all the models were loaded in a half-
precision mode (float16). The input sequence
is not truncated to avoid losing context informa-
tion, while we set the maximum number of newly
generated tokens to 4096 during generation.

Reproducibility Statement. To guarantee repro-
ducibility, we fixed the seeds to 42 for all random
modules, set the LLM generation temperature to 0
for deterministic generation without sampling, and
ran all experiments three times, obtaining repro-
ducible generation outputs and evaluation scores.
The source code is available on GitHub.

3.3 Baseline Settings

The main comparison is LLM generation with in-
tent or without intent, and the effectiveness of SWI
is verified if the former outperforms the latter.

In § 5.2, we also investigate the synergy between
SWI and existing LLM reasoning & planning meth-
ods, i.e., Chain-of-Thought (CoT) (Kojima et al.,
2022) and Plan-and-Solve (PS) (Wang et al., 2023).
CoT aims to elicit LLM reasoning using the answer-
trigger prompt ΦCoT

i as “Let’s think step by step”,
while PS applies the following prompt ΦPS

i to con-
struct plans before problem-solving: “Let’s first
understand the problem and devise a plan to solve
the problem. Then, let’s carry out the plan and
solve the problem step by step.” With such answer-
trigger prompts Φi, the generation process (Eq. 1)
is given by

ŷi = M(Ps, Pu, Xi,Φi; Θ, ζ), (3)

where Ps is the system prompt, Pu is the user
prompt, and Xi is the task input. Θ and ζ are
the parameters and hyper-parameters of the LLM
M, respectively.

4 Main Results

This section presents the experimental results to
verify the effectiveness of SWI on diverse genera-
tion and reasoning tasks.

4.1 Text Summarization

First, we demonstrate that SWI benefits natural lan-
guage generation tasks like summarization by more
explicitly analyzing the source document point by
point and better planning the generation of the final
summary.

We evaluate the quality of summaries using the
ROUGE score (Lin, 2004), which counts the over-
laps of the generated summaries and reference
summaries. Specifically, we average the ROUGE-
1 (unigrams), ROUGE-2 (bigrams), ROUGE-L
(longest common subsequences), and ROUGE-
LSum (sentence-level ROUGE-L) scores as the
final ROUGE score. As shown in Table 3, our SWI
method consistently surpasses the direct generation
baseline (“w/o SWI”), confirming its effectiveness
in enhancing the quality of text summaries.

4.2 Multi-task Question Answering

Beyond text understanding and generation, we
also consider multi-task QA tasks. We test the
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Method Text Summarization (Average ROUGE-1/2/L/Lsum %) Multi-task QA (Accuracy %) Math Reasoning (Accuracy %)

CDM XSum XL-Sum DialogSum WikiLingua BBH MMLU MMLU-Pro GSM8K GSM8K-P MATH500

➀ w/o SWI 23.38 11.90 11.29 16.92 15.01 56.65 52.40 39.27 79.08 81.89 38.20

➁ SWI 23.91 13.90 13.80 19.57 16.53 63.11 59.22 43.72 80.06 82.88 43.00

Table 3: Main results on text summarization, multi-task QA, and mathematical reasoning tasks.

Dataset Method Precision Recall F1

CDM
➀ w/o SWI 26.06 76.28 36.37
➁ SWI 34.22 55.89 37.79

XSum
➂ w/o SWI 11.06 48.38 15.15
➃ SWI 14.77 37.30 16.29

XL-Sum
➄ w/o SWI 8.96 61.88 13.79
➅ SWI 12.96 46.72 16.51

DialogSum
➆ w/o SWI 23.99 57.08 29.55
➇ SWI 34.92 45.19 31.20

WikiLingua
➈ w/o SWI 23.33 65.55 30.63
➉ SWI 32.40 54.98 35.78

Table 4: Fact Checking Evaluation of Summaries.
We compare the atomic facts drawn from the LLM-
generated summaries and the golden references, and
compute recall, precision, and F1 scores (%).

effect of SWI on three large-scale and challeng-
ing benchmarks designed as multiple-choice QA
tasks, where the model is asked to select the most
appropriate one from the given options to answer
the question. Table 3 shows that our SWI method
consistently improves the direct generation base-
line by a large margin. The results demonstrate the
efficacy of SWI in reasoning-intensive QA tasks.

4.3 Mathematical Reasoning
Additionally, we explore the efficacy of SWI
on three high-quality math benchmarks. Unlike
multiple-choice QA in § 4.2, where the model
picks an option from the given list, math tasks re-
quire LLMs to generate numerical values as the
answer. As shown in Table 3, SWI consistently
improves the model performance over direct gener-
ation, showing its effectiveness in enhancing LLM
on problem analysis and mathematical reasoning.

5 Analysis

5.1 Fact Checking of Summaries
LLMs frequently generate hallucinated content (Ji
et al., 2023; Li et al., 2024a), which can not be
detected by lexical metrics like ROUGE. To assess
this issue, we adopt a more semantically sophisti-
cated fact-checking metric (Hwang et al., 2025),
which quantifies factual consistency by calibrat-
ing the extent of fabricated statements (low pre-
cision) and omitted factual information (low re-

Method GSM8K GSM8K-P MATH500 Avg.

CoT
➀ w/o SWI 77.86 80.07 42.00 66.64
➁ SWI 80.21 82.55 42.80 68.52

PS
➂ w/o SWI 72.56 75.35 40.00 62.64
➃ SWI 79.45 82.54 41.40 67.80

Table 5: LLM Reasoning & Planning with SWI.
When additional LLM reasoning (CoT) and planning
(PS) methods are adopted, the exact matching scores
(%) on multiple math datasets with or without SWI.

Method News Article Dialogue Wiki Article

CDM XSum XL-Sum DialogSum WikiLingua

CoT
➀ w/o SWI 23.17 11.54 11.11 15.77 14.44
➁ SWI 24.25 13.86 13.73 19.49 16.88

PS
➂ w/o SWI 24.12 12.21 11.91 17.92 15.86
➃ SWI 24.43 12.46 12.28 18.95 16.76

Table 6: LLM Reasoning & Planning with SWI.
When additional LLM reasoning (CoT) and planning
(PS) methods are adopted, the ROUGE scores (%) on
multiple summarization datasets with or without SWI.

call). Specifically, we use GPT-4o-mini (OpenAI,
2024) to decompose both generated and reference
summaries into atomic fact sets and measure their
coverage to quantify factual consistency.

We evaluate 100 random samples from each sum-
marization dataset using this fact-checking metric,
with results presented in Table 4. Directly gen-
erated summaries (“w/o SWI”) tend to be more
lengthy and verbose, resulting in higher recall
scores. In contrast, SWI-generated summaries ex-
hibit greater accuracy, conciseness, and factual cor-
rectness, with fewer hallucinations. Overall, SWI
consistently outperforms the direct generation base-
line in terms of F1 score.

5.2 Synergy with Other Methods

In recent years, various methods have been pro-
posed to boost the reasoning and planning abilities
of LLMs. Since our SWI method is orthogonal to
previous work, it is necessary to compare the per-
formance and study the synergy between SWI and
them. As mentioned in § 3.3, we adopt represen-
tative LLM reasoning method Chain-of-Thought
(CoT) (Kojima et al., 2022) and LLM planning
method Plan-and-Solve (PS) (Wang et al., 2023).

688



Model Method GSM8K GSM8K-P MATH500 Avg.

LLaMA3-3B
➀ w/o SWI 45.64 46.82 27.20 39.89
➁ SWI 65.05 67.58 32.80 55.14

LLaMA3-8B-R1
➂ w/o SWI 68.08 70.72 56.40 65.07
➃ SWI 75.44 79.24 57.00 70.56

Table 7: Generalizability of SWI to different LLMs.
When different sizes and types of LLMs are adopted,
the exact matching scores (%) on multiple mathematical
reasoning datasets with or without SWI.

Method News Article Dialogue Wiki Article

CDM XSum XL-Sum DialogSum WikiLingua

➀ w/o SWI 23.38 11.90 11.29 16.92 15.01

➁ SWI (V0) 23.91 13.90 13.80 19.57 16.53

➂ SWI (V1) 24.27 14.12 14.10 19.43 17.34
➃ SWI (V2) 24.04 14.69 14.66 19.24 17.06
➄ SWI (V3) 24.17 13.83 14.02 18.82 16.10

Table 8: Results of Different SWI Prompt Variants.
When different paraphrases of SWI prompts are adopted,
the ROUGE scores (%) on various text summarization
datasets with or without Speaking with Intent (SWI).

When additional reasoning (CoT) and planning
(PS) methods are adopted, Table 5 and Table 6
present the LLM performance on multiple math
and summarization tasks, respectively. Compar-
ing the results in Table 3 and Table 5, our SWI
method (➁ in Table 3) beats CoT (➀ in Table 5)
and PS (➂ in Table 5). Moreover, the combina-
tion of CoT+SWI (➁ in Tables 5 and 6) boosts
the CoT method (i.e., ➁>➀), and the synergy of
PS+SWI (➃ in Tables 5 and 6) also improves the
PS-alone performance (i.e., ➃>➂). These results
verify that SWI works synergistically with existing
LLM reasoning & planning methods.

5.3 Generalizability to Different LLMs

To further validate the generalizability of our SWI
method, we evaluate its effect on different sizes and
types of LLMs. Aside from the results of LLaMA3-
8B (Table 3), we present the results on multiple
mathematical reasoning tasks using LLaMA3-3B
(with 3B parameters) and LLaMA3-8B-R1, which
is fine-tuned using reasoning data distilled from
DeepSeek R1 (Guo et al., 2025). As observed in Ta-
ble 7, our SWI method brings consistent improve-
ments over the direct generation baseline, verifying
the effectiveness of SWI when applied to models
of different model sizes and LLM types (i.e., chat
and reasoning models).

5.4 SWI Prompt Variants

In this work, we implement SWI in a straight-
forward prompting way for simplicity and repro-

Task Dataset # Input Tokens # Output Tokens

w/o SWI SWI ∆ w/o SWI SWI ∆

Sum

CDM 920 1028 +108 166 434 +161%
XSum 542 650 +108 135 374 +177%

XL-Sum 613 721 +108 150 405 +170%
DialogSum 263 371 +108 77 238 +209%
WikiLingua 525 633 +108 145 386 +166%

QA
BBH 203 313 +110 96 244 +154%

MMLU 193 303 +110 63 229 +263%
MMLU-Pro 270 380 +110 493 703 +43%

Math
GSM8K 123 233 +110 211 280 +33%

GSM8K-P 123 233 +110 213 273 +28%
MATH500 133 243 +110 810 922 +14%

Table 9: Efficiency Study. The number of input and
output tokens with or without SWI.

ducibility. To demonstrate that SWI works effec-
tively irrespective of specific prompt design, we
conduct experiments on different SWI prompt vari-
ants. Specifically, the original SWI prompt (“V0”)
is paraphrased into three different versions (details
in the appendix) by GPT-4o (OpenAI, 2024). Ta-
ble 8 shows the performance of each SWI variants
over multiple summarization tasks. As illustrated,
the proposed SWI method, regardless of its prompt
implementation, maintains a consistent advantage
over the direct generation baseline, substantiating
that SWI is an effective and general framework that
brings intent—a key cognitive concept for reason-
ing and communication—into LLM generation.

5.5 Efficiency Study

To study the efficiency cost of requiring LLMs to
speak with intent, we present the number of in-
put and output tokens with or without SWI in Ta-
ble 9. SWI adds about 110 extra input tokens in
the system prompt (as in Table 1) for additional
instructions, and the extra output tokens are not
more than 300 tokens (percentages in Table 9) on
average compared to direct generation. Hence,
this cost should be traded off against the substan-
tially improved performance, transparency, and in-
terpretability of SWI.

5.6 Case Study

In addition to the math example in Figure 2, we
conduct a case study on the summarization task
to provide more insights into the benefits of SWI.
Figure 3 showcases the SWI outputs, where the
generated intent is well formulated and articulated,
guiding a point-by-point summarization process
that leads to a final summary that is accurate, con-
cise, and abstractive, while effectively capturing
the key information of the source article. This prob-
ably leads to the high Precision and F1 scores of
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SWI Output (Intent + Analysis + Final Summary)
<INTENT> To provide a concise summary of the article 
about a dog's impressive trick. </INTENT>
A dog named Pakak, a German Shepherd from Alaska, 
has been filmed performing a skillful trick by 
Kristina Patrick.
<INTENT> To describe the specific details of the 
trick. </INTENT>
Pakak lies on her back with a tennis ball between 
her front paws, lifts it into the air without 
dropping it, freezes for a few seconds, and then 
places the ball between her teeth, returning it to 
its original position.
<INTENT> To highlight the dog's other interests. 
</INTENT>
Pakak also enjoys playing with balls and has a 
passion for swimming and being by the sea, as shown 
in other videos.
<INTENT> To conclude the summary. </INTENT>

Final Summary:
A German Shepherd named Pakak from Alaska has been 
filmed performing a skillful trick by lifting a 
tennis ball into the air and placing it between her 
teeth, showcasing her talent.

Source Article
Shhh! Don't make a sound. This dog is lost in deep 
concentration. Kristina Patrick from Alaska filmed her 
German Shepherd Pakak performing a very skillful trick. 
Video footage shows the pup lying on her back with a 
tennis ball neatly clutched between her front paws. 
Keeping her eyes fixed on the toy, she then proceeds to 
lift it into the air being careful not to drop it. 
After freezing still for several seconds, Pakak lowers 
the ball slowly down. She then places it in between her 
teeth, back to where it started. Pakak's owner says she 
loves playing with balls. Other videos reveal the pup 
also has a passion for swimming and being by the sea. 
Pet's got talent: Kristina Patrick from Alaska filmed 
her German Shepherd, Pakak, performing a skillful 
trick . Easy does it: Video footage shows the pup lying 
on her back with a tennis ball neatly clutched between 
her front paws - she then proceeds to lift it into the 
air being careful not to drop it.

Reference Summary
Kristina Patrick from Alaska filmed her German 
Shepherd Pakak performing a very skillful trick. 
Footage shows the pup taking the ball from her mouth 
with her paws and holding it up high in the air to 
admire it. She then carefully lowers it back down to 
the starting point.

Figure 3: Case Study. The source article, reference summary, and SWI output of a text summarization example.

Task Dataset Total Unique Per Ins.

Sum

CDM 53,086 86 4.6
XSum 50,697 92 4.5

XL-Sum 56,100 84 4.9
DialogSum 4,739 96 3.2
WikiLingua 12,463 91 4.2

QA
BBH 7,425 49 1.3

MMLU 19,380 106 1.4
MMLU-Pro 21,916 122 1.8

Math
GSM8K 5,237 45 4.0

GSM8K-P 4,719 43 3.9
MATH500 3,619 84 7.2

Table 10: Intent Statistics. The number of total and
unique intents (verbs) of each dataset, as well as the
average number of intents per instance (“Per Ins.”).

SWI in Table 4, suggesting the validity of SWI in
text generation tasks. Similarly, SWI enables LLM
to have progressive planning when solving math
problems. This is a critical ability when dealing
with complex problems that require the divide-and-
conquer strategy.

5.7 Intent Statistics

To further analyze the pattern and variability of the
intents generated by our SWI method, we present
the intent statistics across different tasks. Specifi-
cally, we extract and count the verbs in the gener-
ated intent statements, which are required to be in
the format “To do something.”. Table 10 shows the
number of total verbs (“Total”) and unique verbs
(“Unique”) of each dataset, as well as the average
number of intents per instance (“Per Ins.”). We
observe that the number of unique intents in the
summarization task is larger, indicating that sum-
marizing documents demands a higher intent vari-

SUM
QA
MATH

(a)

English verbs
Intent verbs

(b)
Figure 4: The semantic distribution of intents across
different task types and among all English verbs.

ability. In addition, summarization and math tasks
generally have more intents per instance than QA,
likely due to their longer outputs, as also observed
in the efficiency study (Table 9). Among the three
math datasets, MATH500 is relatively harder, as
the model performance is lower in Table 3. Thus,
solving the problems in MATH500 requires more
thinking steps and longer reasoning chains, which
is consistent with the observation that its number
of unique intent verbs and the average number of
intents per instance are larger than GSM8K.

Furthermore, we investigate the intents across
different task types and the distribution of intent
verbs among all English verbs. First, we feed
the same model that generates the outputs (i.e.,
LLaMA3-8B) with each verb and extract the last-
layer hidden states, which indicate how the gen-
erator perceives and utilizes the intents. Then, t-
SNE (van der Maaten and Hinton, 2008) is applied
to visualize the semantic representations of each
unique intent verb and all 11,531 English verbs
drawn from WordNet (Miller, 1992). We observe
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Figure 5: Top 10 common intent verbs of (a) summa-
rization, (b) question answering, and (c) math tasks.

from Figure 4(a) that all three tasks involve diverse
intents, indicating the need for versatile intent skill
sets when performing different tasks. Figure 4(b)
illustrates that intent verbs mainly lie in a certain
cluster, showing their specialty from common En-
glish verbs. In addition, Figure 5 presents the top
10 common intent verbs in summarization, QA,
and math tasks, demonstrating the nuance of in-
tents used in different tasks.

5.8 Intent Quality Evaluation

Although we have shown that SWI boosts perfor-
mance across a broad range of tasks, verifying
the quality of generated intents is also significant.
Thus, we hire human evaluators to assess the qual-
ity of generated intent across three criteria: coher-
ence, effectiveness, and interpretability. Coherence
measures how well the intent guides analysis and
reasoning, effectiveness evaluates its contribution
to problem-solving, and interpretability assesses its
role in enhancing user understanding of the gener-
ated content. For each instance, human evaluators
are provided with evaluation instructions, task input
(e.g., the math problem, question with options, or
source article), SWI-generated output, and assess-
ment check boxes. They are then asked to evaluate
the following aspects:

• Coherence: In general, does the analysis
align coherently with the intent statements?

• Effectiveness: Overall, do the intent state-
ments help with the planning and reasoning
for performing the task?

• Interpretability: Do you think providing the
intent can help you better understand the rea-
soning process than not providing it?

Evaluation scores range from 1 (Bad), 2 (Fair),
to 3 (Good). Agreement ratios are calculated as
follows: 1 if all three evaluators agree, 0.5 if two
agree, and 0 if all scores differ. As shown in Ta-
ble 11, human evaluation scores for all aspects
across datasets exceed 2.3, indicating that the gen-
erated intent is generally well-regarded. Notably,

Task Dataset Coherence Effectiveness Interpretability
Score Agree Score Agree Score Agree

Summarization
CDM 2.83 80% 2.77 70% 2.83 75%
XSum 2.70 70% 2.60 65% 2.57 65%

Math Reasoning
GSM8K 2.90 85% 2.97 95% 2.97 95%

MATH500 2.87 80% 2.87 80% 2.83 80%

Multi-task QA
BBH 2.37 55% 2.37 50% 2.33 45%

MMLU 2.67 75% 2.53 55% 2.37 45%

Table 11: Intent Quality Evaluation by Humans. The
score ranges from 1 (Bad) to 3 (Good).

we observe very strong assessment scores (near 3)
with substantial agreement (approaching 100%) for
both summarization and math tasks, demonstrating
that SWI-generated intent is particularly coherent,
effective, and interpretable.

The relatively low (but still fairly good) scores
observed in QA tasks may be attributed to the lack
of multi-step guidance: as presented in Table 10,
the average number of intents per instance in QA
tasks is often 1 or 2, which is much lower than
that in summarization and math tasks. This finding
indicates the advantages of multi-round iterative
intents, with SWI being able to boost task perfor-
mance even with a few intents generated.

6 Related Work

Intent in NLG and LLMs. Since the semi-
nal work (Grosz and Sidner, 1986), intent has
played a critical role in NLG. In the classical NLG
pipeline (Reiter and Dale, 1997, 2000), content de-
termination and document planning are modeled
as a process of communicative goals decompo-
sition and ordering, where the resulting planned
communicative acts the NLG system wants to
achieve are its intentions. Most approaches fol-
lowed this framework by implementing a compu-
tational model of the Rhetorical Structure Theory
(RST) (Mann and Thompson, 1988), a discourse
theory that explains how parts of a multi-sentential
text relate to each other functionally, i.e., how each
piece serves a communicative purpose relative to
the whole. For instance, RST has been applied in
NLG to many genres, ranging from handling expla-
nation dialogues (Moore and Paris, 1993) to gen-
erating persuasive evaluative arguments (Carenini
and Moore, 2006). In all these applications, the text
was planned before being generated and intentions
were explicit.

In contrast, in modern LLM-driven generation,
intent is typically implicit. In other words, what we
see is only the generated text, with no access to the
underlying communicative goals and correspond-
ing intentions. In this respect, SWI can be seen as
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the first attempt to make LLM intentionality more
explicit, bridging the gap between classic NLG and
LLMs, arguably boosting LLMs’ controllability
and interpretability.

LLM Reasoning. Early LLMs were rather poor
at reasoning (Radford et al., 2018, 2019), and scal-
ing pre-training was shown not to be a feasible solu-
tion for improving reasoning (Chu et al., 2025). In-
stead, Chain-of-Thought (CoT) prompting (Kojima
et al., 2022; Wei et al., 2022) demonstrated that by
modifying the prompt, LLMs can elicit a beneficial
step-by-step reasoning process at test time with-
out additional training (Li et al., 2024b; Yeo et al.,
2025; Zhang et al., 2025). Building on CoT, vari-
ous reasoning techniques have emerged (Xu et al.,
2025). Among them, a recent research ARR (Yin
and Carenini, 2025) consistently outperforms CoT
on multiple QA tasks, where analyzing the intent
of questions is its most effective component. Dif-
ferent from ARR, we enable LLMs to articulate
their intent, using it to guide subsequent analysis
and reasoning for improved task performance.

Inspired by the success of CoT and similar
prompting techniques, very recent research is in-
creasingly focusing on enhancing LLMs reason-
ing abilities by explicitly training them for reason-
ing using reinforcement learning (RL) (Sutton and
Barto, 2018; Shao et al., 2024). Intriguingly, the
success of SWI demonstrated in this paper could
spur a similar explosion of research on training
LLMs with RL (Wang et al., 2025; Setlur et al.,
2025) to better analyze and formulate intentions.

Intent-related Research. Intent Detection (ID)
and New Intent Discovery (NID) (Kumar et al.,
2022; Liang et al., 2024; Zhang et al., 2024a;
Tang et al., 2024; Zhang et al., 2024c; Qian et al.,
2024; Yin et al., 2025), which classify utterances
into known or novel intent categories, are long-
standing challenges in natural language understand-
ing (Larson et al., 2019; Casanueva et al., 2020;
Zhang et al., 2021; Weld et al., 2022). Typi-
cally, these tasks are approached as classification
problems (Wang et al., 2024a; Yoon et al., 2024;
Zhang et al., 2024b; Sakurai and Miyao, 2024),
where models assign sentences to predefined in-
tent classes. On the contrary, our SWI method
generates intent as free-form text rather than fixed
categories, enhancing flexibility and fluency. SWI
naturally integrates intent statements as planning
into the reasoning process, providing contextual
guidance for subsequent analysis.

7 Conclusion

In this work, we introduce Speaking with Intent
(SWI) in LLMs, where the generated intent (as
high-level planning) guides subsequent analysis,
improving the generation and reasoning abilities.
Extensive experiments across text summarization,
multi-task QA, and mathematical reasoning bench-
marks consistently show the benefits of speaking
with explicit intent over the direct generation base-
line. In text summarization, SWI produces sum-
maries that are more accurate, concise, and factu-
ally reliable, with fewer hallucinations. In addition,
SWI outperforms existing LLM reasoning and plan-
ing methods and works synergistically with them.
Further analysis substantiates the generalizability
of SWI when applied to different settings. More-
over, human evaluations solidify the coherence, ef-
fectiveness, and interpretability of LLM-generated
intent. Overall, this study opens a new avenue for
enhancing LLM generation and reasoning abilities.

Ethics & Impact Statement

This work does not raise ethical issues, and we
would like to mention the impact of SWI. As in-
tent is a fundamental aspect of natural language
processing, empowering, eliciting, and enhancing
the intent understanding and generation abilities
can potentially drive AI systems (including multi-
modal models) to the next level. Moreover, Speak-
ing with Intent can also be applied to various do-
mains beyond NLP, such as healthcare, law, and
finance. These applications are cost-sensitive, so
explicitly showing the intent of AI models will help
with the transparency and interpretability of critical
decision-making.
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intent detection with dual sentence encoders. In Pro-
ceedings of the 2nd Workshop on Natural Language
Processing for Conversational AI, pages 38–45, On-
line. Association for Computational Linguistics.

Yulong Chen, Yang Liu, Liang Chen, and Yue Zhang.
2021. DialogSum: A real-life scenario dialogue sum-
marization dataset. In Findings of the Association
for Computational Linguistics: ACL-IJCNLP 2021,
pages 5062–5074, Online. Association for Computa-
tional Linguistics.

Tianzhe Chu, Yuexiang Zhai, Jihan Yang, Shengbang
Tong, Saining Xie, Dale Schuurmans, Quoc V Le,
Sergey Levine, and Yi Ma. 2025. SFT memorizes,
RL generalizes: A comparative study of foundation
model post-training. In Forty-second International
Conference on Machine Learning.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, Christopher Hesse, and John Schulman.
2021. Training verifiers to solve math word prob-
lems. arXiv preprint arXiv:2110.14168.

Team Gemini. 2024. Gemini 1.5: Unlocking multi-
modal understanding across millions of tokens of
context. arXiv preprint arXiv:2403.05530.

Barbara J. Grosz and Candace L. Sidner. 1986. At-
tention, intentions, and the structure of discourse.
Computational Linguistics, 12(3):175–204.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao
Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shi-
rong Ma, Peiyi Wang, Xiao Bi, and 1 others. 2025.
Deepseek-r1: Incentivizing reasoning capability in
llms via reinforcement learning. arXiv preprint
arXiv:2501.12948.

Tahmid Hasan, Abhik Bhattacharjee, Md. Saiful Is-
lam, Kazi Mubasshir, Yuan-Fang Li, Yong-Bin Kang,
M. Sohel Rahman, and Rifat Shahriyar. 2021. XL-
sum: Large-scale multilingual abstractive summariza-
tion for 44 languages. In Findings of the Association
for Computational Linguistics: ACL-IJCNLP 2021,
pages 4693–4703, Online. Association for Computa-
tional Linguistics.

Dan Hendrycks, Collin Burns, Steven Basart, Andy
Zou, Mantas Mazeika, Dawn Song, and Jacob Stein-
hardt. 2021. Measuring massive multitask language
understanding. In 9th International Conference on
Learning Representations, ICLR 2021, Virtual Event,
Austria, May 3-7, 2021. OpenReview.net.

Karl Moritz Hermann, Tomas Kocisky, Edward Grefen-
stette, Lasse Espeholt, Will Kay, Mustafa Suleyman,
and Phil Blunsom. 2015. Teaching machines to read
and comprehend. In Advances in Neural Information
Processing Systems, volume 28. Curran Associates,
Inc.

Jie Huang and Kevin Chen-Chuan Chang. 2023. To-
wards reasoning in large language models: A survey.
In Findings of the Association for Computational
Linguistics: ACL 2023, pages 1049–1065, Toronto,
Canada. Association for Computational Linguistics.

EunJeong Hwang, Peter West, and Vered Shwartz. 2025.
BottleHumor: Self-informed humor explanation us-
ing the information bottleneck principle. In Find-
ings of the Association for Computational Linguis-
tics: ACL 2025, pages 22611–22632, Vienna, Austria.
Association for Computational Linguistics.

Ziwei Ji, Nayeon Lee, Rita Frieske, Tiezheng Yu,
Dan Su, Yan Xu, Etsuko Ishii, Yejin Bang, Andrea
Madotto, and Pascale Fung. 2023. Survey of halluci-
nation in natural language generation. ACM Comput-
ing Surveys, 55(12):248:1–248:38.

Daniel Kahneman. 2011. Thinking, fast and slow. Far-
rar, Straus and Giroux.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yu-
taka Matsuo, and Yusuke Iwasawa. 2022. Large lan-
guage models are zero-shot reasoners. In Advances
in Neural Information Processing Systems 35: An-
nual Conference on Neural Information Processing
Systems 2022, NeurIPS 2022, New Orleans, LA, USA,
November 28 - December 9, 2022.

Rajat Kumar, Mayur Patidar, Vaibhav Varshney,
Lovekesh Vig, and Gautam Shroff. 2022. Intent de-
tection and discovery from user logs via deep semi-
supervised contrastive clustering. In Proceedings of
the 2022 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 1836–1853,
Seattle, United States. Association for Computational
Linguistics.

Faisal Ladhak, Esin Durmus, Claire Cardie, and Kath-
leen McKeown. 2020. WikiLingua: A new bench-
mark dataset for cross-lingual abstractive summariza-
tion. In Findings of the Association for Computa-
tional Linguistics: EMNLP 2020, pages 4034–4048,
Online. Association for Computational Linguistics.

Stefan Larson, Anish Mahendran, Joseph J. Peper,
Christopher Clarke, Andrew Lee, Parker Hill,
Jonathan K. Kummerfeld, Kevin Leach, Michael A.
Laurenzano, Lingjia Tang, and Jason Mars. 2019. An

693

https://doi.org/10.1111/j.1468-0017.1986.tb00327.x
https://doi.org/10.1111/j.1468-0017.1986.tb00327.x
https://www.anthropic.com/news/claude-3-family
https://www.anthropic.com/news/claude-3-family
https://doi.org/10.1016/j.artint.2006.05.003
https://doi.org/10.1016/j.artint.2006.05.003
https://doi.org/10.18653/v1/2020.nlp4convai-1.5
https://doi.org/10.18653/v1/2020.nlp4convai-1.5
https://doi.org/10.18653/v1/2021.findings-acl.449
https://doi.org/10.18653/v1/2021.findings-acl.449
https://openreview.net/forum?id=dYur3yabMj
https://openreview.net/forum?id=dYur3yabMj
https://openreview.net/forum?id=dYur3yabMj
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2403.05530
https://arxiv.org/abs/2403.05530
https://arxiv.org/abs/2403.05530
https://aclanthology.org/J86-3001/
https://aclanthology.org/J86-3001/
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://doi.org/10.18653/v1/2021.findings-acl.413
https://doi.org/10.18653/v1/2021.findings-acl.413
https://doi.org/10.18653/v1/2021.findings-acl.413
https://openreview.net/forum?id=d7KBjmI3GmQ
https://openreview.net/forum?id=d7KBjmI3GmQ
https://proceedings.neurips.cc/paper_files/paper/2015/file/afdec7005cc9f14302cd0474fd0f3c96-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2015/file/afdec7005cc9f14302cd0474fd0f3c96-Paper.pdf
https://doi.org/10.18653/v1/2023.findings-acl.67
https://doi.org/10.18653/v1/2023.findings-acl.67
https://doi.org/10.18653/v1/2025.findings-acl.1163
https://doi.org/10.18653/v1/2025.findings-acl.1163
https://doi.org/10.1145/3571730
https://doi.org/10.1145/3571730
http://papers.nips.cc/paper_files/paper/2022/hash/8bb0d291acd4acf06ef112099c16f326-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/8bb0d291acd4acf06ef112099c16f326-Abstract-Conference.html
https://doi.org/10.18653/v1/2022.naacl-main.134
https://doi.org/10.18653/v1/2022.naacl-main.134
https://doi.org/10.18653/v1/2022.naacl-main.134
https://doi.org/10.18653/v1/2020.findings-emnlp.360
https://doi.org/10.18653/v1/2020.findings-emnlp.360
https://doi.org/10.18653/v1/2020.findings-emnlp.360
https://doi.org/10.18653/v1/D19-1131


evaluation dataset for intent classification and out-of-
scope prediction. In Proceedings of the 2019 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-IJCNLP),
pages 1311–1316, Hong Kong, China. Association
for Computational Linguistics.

Junyi Li, Jie Chen, Ruiyang Ren, Xiaoxue Cheng, Xin
Zhao, Jian-Yun Nie, and Ji-Rong Wen. 2024a. The
dawn after the dark: An empirical study on factuality
hallucination in large language models. In Proceed-
ings of the 62nd Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), pages 10879–10899, Bangkok, Thailand. As-
sociation for Computational Linguistics.

Zhiyuan Li, Hong Liu, Denny Zhou, and Tengyu Ma.
2024b. Chain of thought empowers transformers to
solve inherently serial problems. In The Twelfth In-
ternational Conference on Learning Representations.

Jinggui Liang, Lizi Liao, Hao Fei, and Jing Jiang. 2024.
Synergizing large language models and pre-trained
smaller models for conversational intent discovery.
In Findings of the Association for Computational Lin-
guistics: ACL 2024, pages 14133–14147, Bangkok,
Thailand. Association for Computational Linguistics.

Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harri-
son Edwards, Bowen Baker, Teddy Lee, Jan Leike,
John Schulman, Ilya Sutskever, and Karl Cobbe.
2024. Let’s verify step by step. In The Twelfth Inter-
national Conference on Learning Representations.

Chin-Yew Lin. 2004. ROUGE: A package for auto-
matic evaluation of summaries. In Text Summariza-
tion Branches Out, pages 74–81, Barcelona, Spain.
Association for Computational Linguistics.

Team Llama. 2024. The llama 3 herd of models. arXiv
preprint arXiv:2407.21783.

William C Mann and Sandra A Thompson. 1988.
Rhetorical structure theory: Toward a functional the-
ory of text organization. Text-interdisciplinary Jour-
nal for the Study of Discourse, 8(3):243–281.

Alfred R Mele. 1989. Intention, belief, and intentional
action. American Philosophical Quarterly, 26(1):19–
30.

Alfred R Mele and Paul K Moser. 1994. Intentional
action. Nous, 28(1):39–68.

George A. Miller. 1992. WordNet: A lexical database
for English. In Speech and Natural Language: Pro-
ceedings of a Workshop Held at Harriman, New York,
February 23-26, 1992.

Bonan Min, Hayley Ross, Elior Sulem, Amir
Pouran Ben Veyseh, Thien Huu Nguyen, Oscar Sainz,
Eneko Agirre, Ilana Heintz, and Dan Roth. 2023.
Recent advances in natural language processing via
large pre-trained language models: A survey. ACM
Computing Surveys, 56(2):1–40.

Shervin Minaee, Tomas Mikolov, Narjes Nikzad,
Meysam Chenaghlu, Richard Socher, Xavier Am-
atriain, and Jianfeng Gao. 2024. Large language
models: A survey. arXiv preprint arXiv:2402.06196.

Johanna D. Moore and Cecile L. Paris. 1993. Planning
text for advisory dialogues: Capturing intentional and
rhetorical information. Computational Linguistics,
19(4):651–694.

Shashi Narayan, Shay B. Cohen, and Mirella Lapata.
2018. Don‘t give me the details, just the summary!
topic-aware convolutional neural networks for ex-
treme summarization. In Proceedings of the 2018
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1797–1807, Brussels, Bel-
gium. Association for Computational Linguistics.

OpenAI. 2024. Gpt-4o system card. arXiv preprint
arXiv:2410.21276.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll L. Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray,
John Schulman, Jacob Hilton, Fraser Kelton, Luke
Miller, Maddie Simens, Amanda Askell, Peter Welin-
der, Paul F. Christiano, Jan Leike, and Ryan Lowe.
2022. Training language models to follow instruc-
tions with human feedback. In Advances in Neural
Information Processing Systems 35: Annual Confer-
ence on Neural Information Processing Systems 2022,
NeurIPS 2022, New Orleans, LA, USA, November 28
- December 9, 2022.

Avinash Patil. 2025. Advancing reasoning in large lan-
guage models: Promising methods and approaches.
arXiv preprint arXiv:2502.03671.

Cheng Qian, Bingxiang He, Zhong Zhuang, Jia Deng,
Yujia Qin, Xin Cong, Zhong Zhang, Jie Zhou, Yankai
Lin, Zhiyuan Liu, and Maosong Sun. 2024. Tell me
more! towards implicit user intention understanding
of language model driven agents. In Proceedings
of the 62nd Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 1088–1113, Bangkok, Thailand. Association
for Computational Linguistics.

Shuofei Qiao, Yixin Ou, Ningyu Zhang, Xiang Chen,
Yunzhi Yao, Shumin Deng, Chuanqi Tan, Fei Huang,
and Huajun Chen. 2023. Reasoning with language
model prompting: A survey. In Proceedings of the
61st Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
5368–5393, Toronto, Canada. Association for Com-
putational Linguistics.

Alec Radford, Karthik Narasimhan, Tim Salimans, and
Ilya Sutskever. 2018. Improving language under-
standing by generative pre-training. OpenAI blog.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners. OpenAI
blog, 1(8):9.

694

https://doi.org/10.18653/v1/D19-1131
https://doi.org/10.18653/v1/D19-1131
https://doi.org/10.18653/v1/2024.acl-long.586
https://doi.org/10.18653/v1/2024.acl-long.586
https://doi.org/10.18653/v1/2024.acl-long.586
https://openreview.net/forum?id=3EWTEy9MTM
https://openreview.net/forum?id=3EWTEy9MTM
https://doi.org/10.18653/v1/2024.findings-acl.840
https://doi.org/10.18653/v1/2024.findings-acl.840
https://openreview.net/forum?id=v8L0pN6EOi
https://aclanthology.org/W04-1013/
https://aclanthology.org/W04-1013/
https://arxiv.org/abs/2407.21783
https://www.degruyterbrill.com/document/doi/10.1515/text.1.1988.8.3.243/html
https://www.degruyterbrill.com/document/doi/10.1515/text.1.1988.8.3.243/html
https://www.jstor.org/stable/20014264
https://www.jstor.org/stable/20014264
https://www.jstor.org/stable/2215919
https://www.jstor.org/stable/2215919
https://aclanthology.org/H92-1116/
https://aclanthology.org/H92-1116/
https://dl.acm.org/doi/abs/10.1145/3605943
https://dl.acm.org/doi/abs/10.1145/3605943
https://arxiv.org/abs/2402.06196
https://arxiv.org/abs/2402.06196
https://aclanthology.org/J93-4004/
https://aclanthology.org/J93-4004/
https://aclanthology.org/J93-4004/
https://doi.org/10.18653/v1/D18-1206
https://doi.org/10.18653/v1/D18-1206
https://doi.org/10.18653/v1/D18-1206
https://arxiv.org/abs/2410.21276
http://papers.nips.cc/paper_files/paper/2022/hash/b1efde53be364a73914f58805a001731-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/b1efde53be364a73914f58805a001731-Abstract-Conference.html
https://arxiv.org/abs/2502.03671
https://arxiv.org/abs/2502.03671
https://doi.org/10.18653/v1/2024.acl-long.61
https://doi.org/10.18653/v1/2024.acl-long.61
https://doi.org/10.18653/v1/2024.acl-long.61
https://doi.org/10.18653/v1/2023.acl-long.294
https://doi.org/10.18653/v1/2023.acl-long.294
https://openai.com/research/language-unsupervised
https://openai.com/research/language-unsupervised
https://openai.com/research/better-language-models
https://openai.com/research/better-language-models


Rafael Rafailov, Archit Sharma, Eric Mitchell, Christo-
pher D Manning, Stefano Ermon, and Chelsea Finn.
2023. Direct preference optimization: Your language
model is secretly a reward model. In Thirty-seventh
Conference on Neural Information Processing Sys-
tems.

Ehud Reiter and Robert Dale. 1997. Building applied
natural language generation systems. Natural Lan-
guage Engineering, 3(1):57–87.

Ehud Reiter and Robert Dale. 2000. Building Natural
Language Generation Systems. Studies in Natural
Language Processing. Cambridge University Press.

Hiromasa Sakurai and Yusuke Miyao. 2024. Evaluat-
ing intention detection capability of large language
models in persuasive dialogues. In Proceedings
of the 62nd Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 1635–1657, Bangkok, Thailand. Association
for Computational Linguistics.

Abigail See, Peter J. Liu, and Christopher D. Manning.
2017. Get to the point: Summarization with pointer-
generator networks. In Proceedings of the 55th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1073–
1083, Vancouver, Canada. Association for Computa-
tional Linguistics.

Amrith Setlur, Chirag Nagpal, Adam Fisch, Xinyang
Geng, Jacob Eisenstein, Rishabh Agarwal, Alekh
Agarwal, Jonathan Berant, and Aviral Kumar. 2025.
Rewarding progress: Scaling automated process veri-
fiers for LLM reasoning. In The Thirteenth Interna-
tional Conference on Learning Representations.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu,
Junxiao Song, Mingchuan Zhang, YK Li, Yu Wu,
and Daya Guo. 2024. Deepseekmath: Pushing the
limits of mathematical reasoning in open language
models. arXiv preprint arXiv:2402.03300.

Richard S. Sutton and Andrew G. Barto. 2018. Rein-
forcement Learning: An Introduction. A Bradford
Book, Cambridge, MA, USA.

Mirac Suzgun, Nathan Scales, Nathanael Schärli, Se-
bastian Gehrmann, Yi Tay, Hyung Won Chung,
Aakanksha Chowdhery, Quoc Le, Ed Chi, Denny
Zhou, and Jason Wei. 2023. Challenging big-bench
tasks and whether chain-of-thought can solve them.
In Findings of the Association for Computational Lin-
guistics: ACL 2023, pages 13003–13051, Toronto,
Canada. Association for Computational Linguistics.

Kai Tang, Junbo Zhao, Xiao Ding, Runze Wu, Lei
Feng, Gang Chen, and Haobo Wang. 2024. Learning
geometry-aware representations for new intent dis-
covery. In Proceedings of the 62nd Annual Meeting
of the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 5641–5654, Bangkok,
Thailand. Association for Computational Linguistics.

Laurens van der Maaten and Geoffrey Hinton. 2008.
Visualizing data using t-sne. Journal of Machine
Learning Research, 9(86):2579–2605.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems 30: Annual Conference on Neural
Information Processing Systems 2017, December 4-9,
2017, Long Beach, CA, USA, pages 5998–6008.

Joshua Vendrow, Edward Vendrow, Sara Beery, and
Aleksander Madry. 2025. Do large language
model benchmarks test reliability? arXiv preprint
arXiv:2502.03461.

Huaijie Wang, Shibo Hao, Hanze Dong, Shenao Zhang,
Yilin Bao, Ziran Yang, and Yi Wu. 2025. Offline
reinforcement learning for LLM multi-step reasoning.
In Findings of the Association for Computational
Linguistics: ACL 2025, pages 8881–8893, Vienna,
Austria. Association for Computational Linguistics.

Jiayin Wang, Fengran Mo, Weizhi Ma, Peijie Sun, Min
Zhang, and Jian-Yun Nie. 2024a. A user-centric
multi-intent benchmark for evaluating large language
models. In Proceedings of the 2024 Conference on
Empirical Methods in Natural Language Processing,
pages 3588–3612, Miami, Florida, USA. Association
for Computational Linguistics.

Lei Wang, Wanyu Xu, Yihuai Lan, Zhiqiang Hu, Yunshi
Lan, Roy Ka-Wei Lee, and Ee-Peng Lim. 2023. Plan-
and-solve prompting: Improving zero-shot chain-of-
thought reasoning by large language models. In Pro-
ceedings of the 61st Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers), pages 2609–2634, Toronto, Canada. Associ-
ation for Computational Linguistics.

Yubo Wang, Xueguang Ma, Ge Zhang, Yuansheng Ni,
Abhranil Chandra, Shiguang Guo, Weiming Ren,
Aaran Arulraj, Xuan He, Ziyan Jiang, Tianle Li, Max
Ku, Kai Wang, Alex Zhuang, Rongqi Fan, Xiang Yue,
and Wenhu Chen. 2024b. Mmlu-pro: A more robust
and challenging multi-task language understanding
benchmark. In Advances in Neural Information Pro-
cessing Systems, volume 37, pages 95266–95290.
Curran Associates, Inc.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Brian Ichter, Fei Xia, Ed H. Chi, Quoc V. Le,
and Denny Zhou. 2022. Chain-of-thought prompting
elicits reasoning in large language models. In Ad-
vances in Neural Information Processing Systems 35:
Annual Conference on Neural Information Process-
ing Systems 2022, NeurIPS 2022, New Orleans, LA,
USA, November 28 - December 9, 2022.

Henry Weld, Xiaoqi Huang, Siqu Long, Josiah Poon,
and Soyeon Caren Han. 2022. A survey of joint intent
detection and slot filling models in natural language
understanding. ACM Computing Surveys, 55(8):1–
38.

695

https://openreview.net/forum?id=HPuSIXJaa9
https://openreview.net/forum?id=HPuSIXJaa9
https://www.cambridge.org/core/journals/natural-language-engineering/article/abs/building-applied-natural-language-generation-systems/FEB374A3FF652F06D8567A6FAB2EF36E
https://www.cambridge.org/core/journals/natural-language-engineering/article/abs/building-applied-natural-language-generation-systems/FEB374A3FF652F06D8567A6FAB2EF36E
https://www.cambridge.org/core/books/building-natural-language-generation-systems/0AE70C709A9BFBDC80B349B2D22A78CD
https://www.cambridge.org/core/books/building-natural-language-generation-systems/0AE70C709A9BFBDC80B349B2D22A78CD
https://doi.org/10.18653/v1/2024.acl-long.90
https://doi.org/10.18653/v1/2024.acl-long.90
https://doi.org/10.18653/v1/2024.acl-long.90
https://doi.org/10.18653/v1/P17-1099
https://doi.org/10.18653/v1/P17-1099
https://openreview.net/forum?id=A6Y7AqlzLW
https://openreview.net/forum?id=A6Y7AqlzLW
https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2402.03300
https://mitpress.mit.edu/9780262039246/reinforcement-learning/
https://mitpress.mit.edu/9780262039246/reinforcement-learning/
https://doi.org/10.18653/v1/2023.findings-acl.824
https://doi.org/10.18653/v1/2023.findings-acl.824
https://doi.org/10.18653/v1/2024.acl-long.306
https://doi.org/10.18653/v1/2024.acl-long.306
https://doi.org/10.18653/v1/2024.acl-long.306
http://jmlr.org/papers/v9/vandermaaten08a.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://arxiv.org/abs/2502.03461
https://arxiv.org/abs/2502.03461
https://doi.org/10.18653/v1/2025.findings-acl.464
https://doi.org/10.18653/v1/2025.findings-acl.464
https://aclanthology.org/2024.emnlp-main.210
https://aclanthology.org/2024.emnlp-main.210
https://aclanthology.org/2024.emnlp-main.210
https://doi.org/10.18653/v1/2023.acl-long.147
https://doi.org/10.18653/v1/2023.acl-long.147
https://doi.org/10.18653/v1/2023.acl-long.147
https://proceedings.neurips.cc/paper_files/paper/2024/file/ad236edc564f3e3156e1b2feafb99a24-Paper-Datasets_and_Benchmarks_Track.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/ad236edc564f3e3156e1b2feafb99a24-Paper-Datasets_and_Benchmarks_Track.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/ad236edc564f3e3156e1b2feafb99a24-Paper-Datasets_and_Benchmarks_Track.pdf
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
https://doi.org/10.1145/3547138
https://doi.org/10.1145/3547138
https://doi.org/10.1145/3547138


Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtowicz,
Joe Davison, Sam Shleifer, Patrick von Platen, Clara
Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven
Le Scao, Sylvain Gugger, and 3 others. 2020. Trans-
formers: State-of-the-art natural language processing.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38–45, Online. Association
for Computational Linguistics.

Fengli Xu, Qianyue Hao, Zefang Zong, Jingwei Wang,
Yunke Zhang, Jingyi Wang, Xiaochong Lan, Jiahui
Gong, Tianjian Ouyang, Fanjin Meng, Chenyang
Shao, Yuwei Yan, Qinglong Yang, Yiwen Song, Si-
jian Ren, Xinyuan Hu, Yu Li, Jie Feng, Chen Gao,
and Yong Li. 2025. Towards large reasoning models:
A survey of reinforced reasoning with large language
models. arXiv preprint arXiv:2501.09686.

Edward Yeo, Yuxuan Tong, Xinyao Niu, Graham Neu-
big, and Xiang Yue. 2025. Demystifying long chain-
of-thought reasoning in LLMs. In Scaling Self-
Improving Foundation Models without Human Su-
pervision.

Shangjian Yin, Peijie Huang, and Yuhong Xu. 2025.
Midlm: Multi-intent detection with bidirectional
large language models. In Proceedings of the 31st
International Conference on Computational Linguis-
tics, pages 2616–2625, Abu Dhabi, UAE. Associa-
tion for Computational Linguistics.

Yuwei Yin and Giuseppe Carenini. 2025. Arr: Ques-
tion answering with large language models via an-
alyzing, retrieving, and reasoning. arXiv preprint
arXiv:2502.04689.

Yejin Yoon, Jungyeon Lee, Kangsan Kim, Chanhee
Park, and Taeuk Kim. 2024. Blendx: Complex
multi-intent detection with blended patterns. In Pro-
ceedings of the 2024 Joint International Conference
on Computational Linguistics, Language Resources
and Evaluation (LREC-COLING 2024), pages 2428–
2439, Torino, Italia. ELRA and ICCL.

Feng Zhang, Wei Chen, Fei Ding, Meng Gao, Tengjiao
Wang, Jiahui Yao, and Jiabin Zheng. 2024a. From
discrimination to generation: Low-resource intent
detection with language model instruction tuning. In
Findings of the Association for Computational Lin-
guistics: ACL 2024, pages 10167–10183, Bangkok,
Thailand. Association for Computational Linguistics.

Hanlei Zhang, Hua Xu, Ting-En Lin, and Rui Lyu. 2021.
Discovering new intents with deep aligned clustering.
Proceedings of the AAAI Conference on Artificial
Intelligence, 35(16):14365–14373.

Qiyuan Zhang, Fuyuan Lyu, Zexu Sun, Lei Wang,
Weixu Zhang, Wenyue Hua, Haolun Wu, Zhihan Guo,
Yufei Wang, Niklas Muennighoff, Irwin King, Xue
Liu, and Chen Ma. 2025. A survey on test-time scal-
ing in large language models: What, how, where, and
how well? arXiv preprint arXiv:2503.24235.

Shun Zhang, Yan Chaoran, Jian Yang, Jiaheng Liu, Ying
Mo, Jiaqi Bai, Tongliang Li, and Zhoujun Li. 2024b.
Towards real-world scenario: Imbalanced new in-
tent discovery. In Proceedings of the 62nd Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 3949–3963,
Bangkok, Thailand. Association for Computational
Linguistics.

Yuwei Zhang, Siffi Singh, Sailik Sengupta, Igor Sha-
lyminov, Hang Su, Hwanjun Song, and Saab Man-
sour. 2024c. Can your model tell a negation from
an implicature? unravelling challenges with intent
encoders. In Proceedings of the 62nd Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 552–567, Bangkok,
Thailand. Association for Computational Linguistics.

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang,
Xiaolei Wang, Yupeng Hou, Yingqian Min, Beichen
Zhang, Junjie Zhang, Zican Dong, Yifan Du, Chen
Yang, Yushuo Chen, Zhipeng Chen, Jinhao Jiang,
Ruiyang Ren, Yifan Li, Xinyu Tang, Zikang Liu, and
3 others. 2023. A survey of large language models.
arXiv preprint arXiv:2303.18223.

696

https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://arxiv.org/abs/2501.09686
https://arxiv.org/abs/2501.09686
https://arxiv.org/abs/2501.09686
https://openreview.net/forum?id=6A861u4Crm
https://openreview.net/forum?id=6A861u4Crm
https://aclanthology.org/2025.coling-main.179/
https://aclanthology.org/2025.coling-main.179/
https://arxiv.org/abs/2502.04689
https://arxiv.org/abs/2502.04689
https://arxiv.org/abs/2502.04689
https://aclanthology.org/2024.lrec-main.218/
https://aclanthology.org/2024.lrec-main.218/
https://doi.org/10.18653/v1/2024.findings-acl.605
https://doi.org/10.18653/v1/2024.findings-acl.605
https://doi.org/10.18653/v1/2024.findings-acl.605
https://doi.org/10.1609/aaai.v35i16.17689
https://arxiv.org/abs/2503.24235
https://arxiv.org/abs/2503.24235
https://arxiv.org/abs/2503.24235
https://doi.org/10.18653/v1/2024.acl-long.217
https://doi.org/10.18653/v1/2024.acl-long.217
https://doi.org/10.18653/v1/2024.acl-long.33
https://doi.org/10.18653/v1/2024.acl-long.33
https://doi.org/10.18653/v1/2024.acl-long.33
https://arxiv.org/abs/2303.18223


A Experiment Details

A.1 Dataset Details
All datasets used in this work are loaded from Hug-
ging Face datasets. Table 12 lists the URL link of
each dataset. Please note that the URLs may be
subject to change by the dataset providers.

Task Dataset Source

Sum

CDM (Hermann et al., 2015) Link
XSum (Narayan et al., 2018) Link
XL-Sum (Hasan et al., 2021) Link
DialogSum (Chen et al., 2021) Link
WikiLingua (Ladhak et al., 2020) Link

QA
BBH (Suzgun et al., 2023) Link
MMLU (Hendrycks et al., 2021) Link
MMLU-Pro (Wang et al., 2024b) Link

Math
GSM8K (Cobbe et al., 2021) Link
GSM8K-P (Vendrow et al., 2025) Link
MATH500 (Lightman et al., 2024) Link

Table 12: Dataset Sources.

A.2 Model Details
As mentioned in § 3.2, we mainly em-
ploy LLaMA3-8B-Instruct (Llama, 2024), an
instruction-following LLM with 8 billion model
parameters, for most experiments. In generalizabil-
ity experiments (§ 5.3), we also explore LLMs of
different sizes and types. Table 13 presents the
URL link of each model and tokenizer provided by
Hugging Face Transformers (Wolf et al., 2020).

Model Source

LLaMA3-3B (Llama, 2024) Link
LLaMA3-8B (Llama, 2024) Link
LLaMA3-8B-R1 (Guo et al., 2025) Link

Table 13: Model Sources.

A.3 SWI Prompt Variants
As mentioned in § 2.2, we implement SWI in a
straightforward prompting way for simplicity and
reproducibility, i.e., we require LLMs to speak with
intent (SWI) by presenting detailed instructions in
the system prompts and restating the SWI require-
ment in the user prompt. In addition, we paraphrase
the SWI prompt into three different versions (§ 5.4)
to demonstrate that our SWI method maintains ef-
fectiveness irrespective of the specific prompt for-
mulation. Here, we present the prompt variants in
Table 14.

B Human Evaluation Details

Participant Requirements. We hire human
evaluators from the cloud-sourcing platform
CloudResearch to conduct human evaluation on
the quality of the generated intent: coherence, ef-
fectiveness, and interpretability. To ensure the an-
notation quality, we apply several requirements to
select qualified human evaluators, as shown in Ta-
ble 15.

Evaluation Tasks. For each task category, we
select two datasets: CDM (Hermann et al., 2015;
See et al., 2017) and XSum (Narayan et al., 2018)
for text summarization, BBH (Suzgun et al., 2023)
and MMLU (Hendrycks et al., 2021) for multi-task
multiple-choice QA, and GSM8K (Cobbe et al.,
2021) and MATH500 (Lightman et al., 2024) for
mathematical reasoning. We randomly sample 12
instances per dataset and divide them into two
batches of six. Each batch includes a dummy
instance with deliberately reversed intents to en-
sure evaluators are actively engaged rather than
randomly selecting responses. Evaluator submis-
sions are accepted or rejected based on completion
time and performance on the dummy instance.

For each instance, human evaluators are pro-
vided with evaluation instructions, task input (e.g.,
the math problem, question with options, or source
article), SWI-generated output, and assessment
check boxes. They are then asked to evaluate the
following aspects:

• Coherence: In general, does the analysis
align coherently with the intent statements?

• Effectiveness: Overall, do the intent state-
ments help with the planning and reasoning
for performing the task?

• Interpretability: Do you think providing the
intent can help you better understand the rea-
soning process than not providing it?

Each batch is assessed by three different human
evaluators, with each person uniquely assigned to
only one batch. Evaluation scores range from 1
(Bad), 2 (Fair), to 3 (Good). Agreement ratios are
calculated as follows: 1 if all three evaluators agree,
0.5 if two agree, and 0 if all scores differ.

Human Evaluation Quality. As mentioned
above, we decided to accept or reject the evalu-
ator’s submission based on the task completion
time and the results on the dummy instance that is
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Type & Version Prompt Text

System Prompt
V0 (default)

You are a helpful assistant who speaks with intent. You are good at summarizing
documents and the summary must start with "Final Summary:"
During generation, follow all the requirements below:
1. Always explicitly state your own intent before speaking each sentence.
2. Each intent statement should explain the sentence that follows.
3. Your intent must start with the "<INTENT>" tag and end with the "</INTENT>" tag.
The content within the intent tags must begin with
"To" followed by a verb, such as "To accomplish a task."
4. At last, clearly and concisely give your final summary starting with "Final Summary:"

System Prompt
V1

You are a purposeful assistant skilled in document summarization who speaks with intent.
Your final response must begin with "Final Summary:"
While generating responses, adhere strictly to these instructions:
1. Before every sentence, clearly state your intent using an explanation.
2. Each intention should directly clarify the sentence that follows.
3. Use the tags "<INTENT>" and "</INTENT>" to wrap each intent statement.
Each statement inside the intent tags must begin with "To" and a verb,
for example, "To describe the process."
4. Conclude with a clear and concise final summary that begins with "Final Summary:"

System Prompt
V2

You are a helpful assistant who is skilled in text summarization and always communicates
with deliberate intent. Ensure your final output starts with "Final Summary:"
Comply with the following instructions during your response:
1. Begin each sentence with a description of your intent.
2. The intent must directly relate to and explain the sentence that comes after it.
3. Surround each intent with the tags "<INTENT>" and "</INTENT>". Each intent
statement enclosed by the tags should start with the word "To" and an action verb,
like "To explain the reasoning."
4. Finish with a succinct summary, introduced by "Final Summary:"

System Prompt
V3

You are a precise and helpful assistant proficient in text summarization, who always
speaks with deliberate intent. Your final response must begin with "Final Summary:"
While producing your response, follow these guidelines:
1. Before each sentence, declare your intent explicitly.
2. Ensure each intent explains the sentence that immediately follows.
3. Wrap every intent declaration with "<INTENT>" and "</INTENT>" tags.
Make sure that every intent statement within the tags begins with "To" and an action verb,
for example, "To justify the choice."
4. Conclude your response with a clearly stated final summary prefaced by "Final Summary:"

User Prompt
All Versions

Speak with intent and summarize the following document.
{{article}}

Table 14: SWI Prompt Variants.

Type Requirements

Native Language English

Country of Residence Australia, Canada, Ireland, New Zealand, UK, US

Education Undergraduate student, Graduate student

Reputation
Approved Projects Count: ≥ 1,000
Approval Rating: ≥ 90%

Table 15: The requirements for human evaluators.

deliberately modified to have a lower coherence.
As a result, about 60% of the evaluators still rated
the dummy instance as good coherence, meaning
they failed the dummy test and potentially did not
fully focus on the evaluation process, which poses
a general caveat to the quality of cloud-sourcing
annotations. Overall, we rejected about 10% of

submissions that both failed the dummy test and
took an unreasonably short time to complete the
annotation. After rejecting them, we hired other
evaluators until the intent quality evaluation was
finished.

Human Evaluation Cost. The pay rate for each
human evaluator is US$10 per hour, completing
a batch of 6 instances takes an evaluator 10-15
minutes on average, and the total cost of the intent
quality evaluation is about US$120.
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