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Abstract

The ability of large language models (LLMs) to
reason effectively is crucial for a wide range of
applications, from complex decision-making to
scientific research. However, it remains unclear
how well reasoning capabilities are transferred
or preserved when LLMs undergo Knowledge
Distillation (KD), a process that typically re-
duces model size while attempting to retain
performance. In this study, we explore the
effects of model distillation on the reasoning
abilities of various reasoning language models
(RLMs). We introduce Cognitive Flow, a novel
framework that systematically extracts mean-
ing and map states in Chain-of-Thought (CoT)
processes, offering new insights on model rea-
soning and enabling quantitative comparisons
across RLMs. Using this framework, we inves-
tigate the impact of KD on CoTs produced by
RLMs. We target DeepSeek-R1-671B and its
distilled 70B, 32B and 14B versions, as well
as QwenQwQ-32B from the Qwen series. We
evaluate the models on three subsets of mathe-
matical reasoning tasks with varying complex-
ity from the MMLU benchmark. Our findings
demonstrate that while distillation can effec-
tively replicate a similar reasoning style under
specific conditions, it struggles with simpler
problems, revealing a significant divergence in
the observable thought process and a potential
limitation in the transfer of a robust and adapt-
able problem-solving capability.

1 Introduction

The rapid development and constant evolution of
Large Language Models (LLMs) gave rise to a
class of highly-capable Reasoning Language Mod-
els (RLMs). RLMs like OpenAlI’s ol (OpenAl
etal., 2024) and 03!, and DeepSeek-R1 (DeepSeek-
Al et al., 2025), leverage reinforcement learning
techniques to develop the ability to generate “think-
ing traces”, or Chain-of-Thought (CoT), in order

lht’cps ://openai.com/index/
introducing-o3-and-o04-mini/

to solve complex tasks. To make this power acces-
sible, reasoning from these large and heavy mod-
els (teacher models) is often distilled into smaller,
more efficient LLMs (student models), leading to
the transfer of capabilities that were once exclusive
to high scale proprietary systems. This has led to
the appearance and proliferation of open-source
distilled reasoning models that achieve remarkable
performance on reasoning benchmarks. This trend
has also raised concerns about model homogeniza-
tion, where different models tend to exhibit con-
vergent behaviors and responses due to reliance on
common distilled data sources (Lee et al., 2025).

However, the success achieved by distilled mod-
els in task performance remains somewhat uncer-
tain. Are we truly distilling the “cognitive” prop-
erties of larger models, or merely replicating the
superficial appearance of their reasoning? The
CoT traces used for training reflect the behavior
of teacher models, but they may not always ac-
curately capture the underlying reasoning process
(Agarwal et al., 2024; Turpin et al., 2023; Lindsey
et al., 2025). This raises a critical issue that current
evaluation methods fail to address: they rely on
task accuracy, which is an inadequate and poten-
tially misleading metric for assessing the quality
of the transferred reasoning. This gap is a central
and unsolved issue in the field. As stated in a re-
cent comprehensive survey on LLM distillation,
there is a critical need for “holistic evaluation pro-
tocols that measure nuanced LLM capabilities”, as
current metrics “fail to evaluate whether distilled
datasets preserve deeper reasoning abilities, such as
chain-of-thought logic” (Fang et al., 2025). There
is a need for tools to look deeper to assess qual-
ity, robustness and trustworthiness of the distilled
thinking of these small models.

Looking to bridge this gap, we introduce a novel
framework to extract meaning and identify transi-
tions between the cognitive actions of a model’s
CoT. As a case study, we apply it to quantify the
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fidelity of distilled reasoning. Our approach moves
beyond solely structural analysis and comparison
of final answers, modeling the observable reason-
ing process as a “Cognitive Flow”: a sequence of
transitions between states of different cognitive ac-
tivity. By systematically extracting these states (e.g.
“Problem Decomposition”, “Calculation”, “Conclu-
sion”) from a model’s reasoning traces and com-
puting the probabilistic transitions between them,
our technique allows for a quantitative comparison
of reasoning patterns across different RLMs.

To demonstrate our framework, we conduct a
novel comparative analysis of the DeepSeek-R1
family of RLMs (DeepSeek-Al et al., 2025) as a
case study. These models are ideal for our analysis
as they provide a clear teacher-student hierarchy,
consisting of a 671B parameter teacher and its 70B,
32B and 14B student versions. By also including a
control RLM from outside this model family, we
can effectively isolate the impact of the distilla-
tion process itself. Our contributions are listed as
follows:

* We propose a novel and scalable framework
for automated extraction of the cognitive
states of reasoning semantically, and the tran-
sitions between said states, allowing for anal-
ysis and comparison of reasoning flows in
RLMs.

* We provide the first empirical measurement
of how reasoning patterns are preserved or
altered through distillation across different
model sizes and task complexities.

2 Related Work

The appearance of Chain-of-Thought (CoT)
marked a paradigm shift in the ability of LLMs to
tackle complex reasoning tasks (Wei et al., 2022).
It began with prompt engineering, but recently
started being incorporated directly in the model’s
Supervised Fine-Tuning (SFT) and Reinforcement
Learning (RL) stages of the post-training process
(OpenAl et al., 2024; DeepSeek-Al et al., 2025),
giving way to modern RLMs, which treat the
reasoning trace as an intrinsic part of their output.
While CoT has shown to improve LLM perfor-
mance by taking advantage of test-time scaling
(Chen et al., 2025), one of its primary advantages
lies in the promise of explainability. By expressing
intermediate steps taken to solve a problem,
a model reveals its internal thinking process.

However, this promise of transparent reasoning
is shadowed by the challenge of faithfulness. A
growing body of research demonstrates that while
a model’s reasoning steps may be plausible and
appear logical and coherent to a human observer,
they are not guaranteed to be faithful to the actual
internal process that produced the final answer
(Agarwal et al., 2024; Turpin et al., 2023; Lindsey
et al., 2025). Therefore, a model can arrive at a
correct answer for incorrect reasons, meaning that
“the end justifies the means”, and not the other way
round.

In Knowledge Distillation (KD), knowledge is
transferred from a larger, more complex “teacher”
model to a smaller, more efficient “student” model.
In traditional KD, the student is trained on both
the logits of the teacher model and a target dataset
(Hinton et al., 2015; Polino et al., 2018). In the
modern LLM paradigm, it involves performing
instruction fine-tuning of smaller LLMs on a
synthetic SFT dataset generated by larger ones. An
emerging subject in this area is the transferring
of reasoning and CoT capabilities from teacher
RLMs to non-reasoning LLLM students. Studies
have shown that KD enables smaller LLMs to
properly capture the reasoning capability and
enable smaller models to achieve high performance
on complex tasks, proving itself more effective
than pure RL for such models (Shirgaonkar et al.,
2024; DeepSeek-Al et al., 2025). The distillation
process introduces another layer of uncertainty to
the CoT faithfulness problem, as we are distilling
a behavioral trace that may not be faithful to
the teacher’s underlying cognitive process. The
question shifts from if the student can learn to
solve the task, to how it learns how to solve it.
This concern is backed by findings suggesting that
the structure of CoT demonstrations matter much
more for successful learning than the correctness
of the content itself (Li et al., 2025a). This implies
that we can’t assess the broad performance of
a distilled model solely based on its accuracy.
Other research has focused on quantifying the
broader effects of distillation (Lee et al., 2025),
proposing a framework to measure the degree
of “homogenization” across various LLMs by
evaluating inconsistencies in “identity cognition”
and similarity in final responses.

Given the challenges of faithfulness and the
uncertainties of distillation, the need for methods
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that analyze and compare CoT reasoning traces is
crucial. While the broader field of Explainable AI
(XA offers many techniques for assessing LLMs
(Mumuni and Mumuni, 2025), for multi-step
reasoning the most direct approach is to analyze
the CoT itself. Some notable current approaches
are Landscape of Thoughts (LoT) (Zhou et al.,
2025) and ReasonGraph (Li et al., 2025b). LoT
visualizes reasoning steps by mapping them as
feature vectors in relation to answer choices.
While useful for distinction between correct and
incorrect paths, this approach is fundamentally
tied to multiple-choice tasks and fails to capture
the intrinsic semantic meaning of each reasoning
step. ReasonGraph focuses on visualizing the
structure of the reasoning path. It dynamically
renders the CoT as a directed graph, and is able
to represent sequential and tree based logic.
However, it only focuses on the structure of
the CoT, disregarding the semantic meaning of
cognitive steps that make up the reasoning trace.
Furthermore, both these tools are designed for
single answer analysis, making it impossible to
extract the common cognitive patterns that define a
model’s characteristic reasoning style across many
tasks of a similar type.

An evident gap arises in the current methodolo-
gies, which lack ways for quantitatively comparing
the semantic and structural patterns of reasoning
between teacher and student models. Existing tools
tend to focus solely on the final answer, prioritize
structural aspects excessively, or fall short in sup-
porting a broader analysis. This work addresses
that, by proposing a framework that enables visu-
alization and quantitative comparison of a model’s
“Cognitive Flow”, offering a method to evaluate the
quality of reasoning distillation, extending beyond
accuracy to focus on the reasoning itself.

3 Methodology

This section is divided into two main parts.
First, we introduce the framework. Then, we
present the experimental setup used to apply it
to a family of teacher-student models, enabling
a systematic comparison.

3.1 Extraction Framework

Here we present our primary contribution, a novel
LLM-automated pipeline designed to turn raw, un-
structured CoT text into a quantitative, structured

representation of a model’s reasoning style. In-
spired by a state-of-the-art approach in dialogue
analysis that models conversations as transitions
between states in an unsupervised manner (Ferreira
et al., 2024), our framework adapts this paradigm
to model the observable reasoning process as a
sequence of cognitive states. This enables the
direct comparison of reasoning patterns between
different models, and different tasks. The en-
tire process, illustrated in Figure 1, consists of
four main stages: (1) Step Segmentation, (2) La-
bel Set Definition, (3) Step Classification, and
(4) Flow Aggregation and Representation.

Step 1: Step Segmentation Raw outputs from
the target LLM (i.e. the LLM being targeted for
CoT analysis) are preprocessed. For each model
completion, the reasoning trace is extracted from
the text between the <think> and </think> tags,
as this is the standard format used by all models
in our study. The CoT is then split into a dis-
crete sequence of reasoning steps, using the double-
newline sequence (\n\n) as a delimiter. This results
in an ordered list of strings, each representing a
single reasoning step.

Step 2: Label Set Definition We then define a
comprehensive set of cognitive state labels. This is
handled by a dedicated Label Extractor LLM. To
ensure that the resulting labels are representative
and unbiased, we first create a diverse corpus by
randomly sampling a large number of individual
reasoning steps from all the outputs of the model
under study. For this work, we sampled a total of
1000 steps. This volume was determined to be large
enough to capture a wide range of reasoning behav-
iors, while being manageable within the context
window of the Label Extractor LLM. This allowed
the model to process the entire sample at once when
defining the label set, ensuring the resulting labels
were comprehensive. If LLMs with larger context
windows are used as Label Extractors, the number
of steps sampled can be further increased. This cor-
pus of steps is handed over to the Label Extractor
LLM, which is prompted with the task of generat-
ing a concise yet comprehensive set of labels that
can categorize the underlying cognitive action of
any given step. Along with the labels, the LLM is
prompted to return clear definitions and illustrative
examples for each one, using steps from the pro-
vided corpus. This set remains fixed and is used
for all subsequent annotations. This step can be
skipped if a predefined set of labels is provided.
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The Cognitive Flow Framework
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Figure 1: Cognitive Flow Extraction Framework. Our pipeline parses CoTs into sequential steps (1), defines

a set of cognitive state labels (2), annotates each step (
represented as a state transition matrix.

Step 3: Step Classification With a defined set
of cognitive labels, the next stage is classifying ev-
ery reasoning step for every CoT. This is performed
by a second LLM-powered component, the Step
Classifier LLM. This process is framed as a few-
shot classification task. For each individual reason-
ing step, the step classifier model is provided with
the step itself, and the complete set of cognitive
state labels, along with definitions and examples
for each one. The LLM is instructed to assign the
single label that is the most appropriate, taking into
account the underlying cognitive process present
in the step. For every step in every completion,
this process is repeated. Each CoT turns into a se-
quence of cognitive states that represent each step.

Step 4: Flow Aggregation and Representa-
tion The final stage of the pipeline transforms
the individual reasoning sequences for all comple-
tions into what we refer to as the model’s Cognitive
Flow. An aggregated, quantitative summary of a
model’s overall reasoning style across all tasks pre-
sented. This aggregated behavior is represented by
an N x N state transition matrix, M. Each element
M;; € M represents the conditional probability of
the model transitioning from cognitive state L; to
state L ;. This probability is computed by counting
all occurrences of that transition across the entire
set of reasoning sequences, and then normalizing
it by the total number of outgoing transitions from
state ;. The resulting matrix M serves as a finger-

3), and aggregates the results into a “Cognitive Flow” (4),

print of the model’s observable reasoning process
and enables direct, numerical comparisons with
other RLMs. To capture only significant shifts in
reasoning, the analysis exclusively counts transi-
tions between different cognitive states. Transitions
within the same state are ignored as they do not rep-
resent a progression in the model’s reasoning flow.
In addition, we inserted two extra states into each
sequence: Start and End. This is useful to ana-
lyze with which cognitive actions the model tends
to start its reasoning, and how it tends to end it.
Visualizing a model’s Cognitive Flow can lead to
increased explainability, therefore we propose three
different yet complementary ways to represent the
resulting flows.

To provide an intuitive, high-level overview of
a model’s most dominant reasoning pathways, we
visualize the cognitive flow as a directed graph,
where vertices correspond to reasoning states and
the edges to one-way transitions between them. On
the one hand, a graph containing all the states and
transition probabilities would be cluttered and too
hard to interpret. On the other, limiting transitions
can ease the reading of the graph, at the cost of
losing information on a few transitions. Here, as
others have done for simplifying flow graphs (Fer-
reira et al., 2024), we used a threshold 6, where
transitions with a probability below that threshold
(e.g. # = 0.10) would not be included in the final
graph. Some examples of this representation are
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depicted in Appendix D.

For a complete, fine-grained view of the model’s
reasoning dynamics, we directly visualize the state
transition matrix M as a heatmap (example in Fig-
ure 2) where the y-axis and the x-axis represent
the “Current” (L;) and the “Next” (L) states, re-
spectively. The color intensity of the cell at (i, j)
corresponds to the transition probability M;,;. This
visualization is particularly effective for identifying
subtle differences in reasoning patterns, finding a
model’s most (and least) probable next steps from
any given state, and discovering rare paths, omitted
in threshold limited graphs.

Finally, to understand a model’s overall reason-
ing bias, irrespective of transitions, we visualize
the stationary distribution cognitive states (exam-
ple in Figure 3). A chart like this can help answer
the question: “What cognitive operations does this
model spend the most computational load on?”. We
compute this by calculating the number of tokens
in each step with a certain assigned cognitive label
across the entire group of label sequences for a
given model, and then normalize by the total num-
ber of tokens. This static view is complementary
to the dynamic views of the graph and heatmap,
revealing the model’s tendencies towards certain
states of cognitive activity.

3.2 Experimental Setup

To empirically test the proposed framework, we
designed an experiment to quantify the fidelity of
reasoning distillation across a controller teacher-
student model family.

3.2.1 Models

We selected a family of models centered around
the DeepSeek-R1 series, forming a clear teacher-
student group (DeepSeek-Al et al., 2025). A con-
trol model from a different family was included to
establish a baseline for what a reasoning style not
brought up by distillation from the teacher model
looks like.

Teacher Model DeepSeek-R1-671B. This
RLM will serve as the source of the teacher’s rea-
soning traces.

Student Models We selected three mod-
els distilled from DeepSeek-R1’s outputs
(DeepSeek-Al et al., 2025), varying in size
and base architecture: DeepSeek-R1-Distill-
Llama-70B, DeepSeek-R1-Distill-Qwen-32B and
DeepSeek-R1-Distill-Qwen-14B.

This selection allows the analysis of how reason-
ing is preserved across different parameter counts,
and even foundational model families, through the
distillation process.

Control Model QwenQwQ-32B, shares the
same foundational architecture, parameter count,
and inference conditions (4-bit quantization) as
the DeepSeek-R1-Distill-Qwen-32B student model.
This pairing allows us to isolate the post-training
approach itself as the independent variable between
them, thereby disentangling the results of distilla-
tion from the effects of model compression and
quantization. It allows us to quantify the difference
between a student inheriting its teacher’s patterns
versus a model of the same size that developed its
reasoning through reinforcement learning?.

3.2.2 Dataset and Tasks

To assess the model’s reasoning, we used tasks
from the Massive Multitask Language Understand-
ing (MMLU) dataset (Hendrycks et al., 2020), fo-
cusing on three subsets in the Mathematics do-
main, with increasing levels of complexity: Ele-
mentary, High School and College (Examples in
Appendix C). The combination of the three test sets
from each subset amounts to a total of 748 unique
problems. This selection allows us to study not only
the effectiveness of reasoning distillation, but also
how it changes as the complexity of the task varies.
To effectively use the reasoning of DeepSeek-R1-
671B as a baseline, all three label sets at different
problem complexities were generated by the Label
Extractor LLM based on its outputs. Each label set
is then held fixed for all model’s annotations within
its corresponding complexity level.

3.2.3 Framework LLMs

As part of our framework we used two different
LLMs for all experiments. In the Label Extrac-
tor LLM role, we employed DeepSeek-V3 (Liu
et al., 2024) via API. The decision to use this
model stemmed from the need of a capable model
that could withstand a large enough context, so we
could provide it with a large sample of steps from
the produced reasoning traces, and it could extract
a meaningful set of labels that could represent the
whole corpus. For the Step Classifier LLM, we
used a 4-bit quantized aware trained (QAT) version
of Gemma3-27B-IT3, an instruction-tuned version

Zhttps://qwenlm.github.io/blog/qwg-32b/
Shttps://huggingface.co/google/
gemma-3-27b-it-gat-q4_0-gguf
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of Google’s Gemma3-27B (Gemma Team, 2025).
We chose this model because this classification sim-
pler and repetitive, but still requires some capability
to understand the underlying cognitive behavior be-
hind the step.

3.2.4 Implementation Details

Answers for the tasks were gathered from all mod-
els using default sampling parameters, except for
temperature. A temperature of 0.0 was used for
the DeepSeek family models, as recommended
by official documentation for math related tasks*,
and 0.6 for QwenQwQ-32B, also recommended?.
DeepSeek-R1-671B was prompted via the official
DeepSeek API, DeepSeek-R1-Distill-Llama-70B
via the Groq API®, and the remaining models were
inferred locally using quantized versions. For the
32B models, we used 4-bit quantization, and for
the 14B model, 8-bit quantization. The choice to
use models served via API was due to limits in
computational resources, and the same reason ap-
plies to the choice of using quantized versions of
the models.

A recurring issue during inference were rea-
soning loops, where a model would produce end-
less repetitions. To handle this systematically, if
a model failed to produce a coherent output, ex-
ceeding its context window, it was resampled up
to five times. If the looping behavior persisted
after five attempts, the task was skipped for that
specific model’.

3.2.5 Flow Evaluation Metrics

To quantitatively compare the Cognitive Flow
between a teacher model and a student model, we
employ two distinct similarity metrics. Together,
they provide a comprehensive measure of flow
alignment and allow us to assess the fidelity of
the reasoning distillation process from different
perspectives.

In order to assess the directional agreement in
reasoning transitions, we compute the average
Cosine Similarity (CS) between corresponding

4https ://api-docs.deepseek.com/quick_start/
parameter_settings

Shttps://huggingface.co/Qwen/QwQ-32B

6h'ctps://console.groq.com/docs/model/
deepseek-ri-distill-1lama-70b

"The failed task counts are as follows: QwenQwQ-32B
failed on 11/100 College and 28/270 High School tasks.
DeepSeek-R1-Distill-Qwen-32B failed on 6/100 College
tasks, and DeepSeek-R1-Distill-Llama-70B failed on 2/270
High School tasks.
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rows of the two transition matrices. A score closer
to 1 indicates that the student model’s relative
probabilities of transitioning from a state better
align with the teacher’s. In other words, it means
a high degree of similarity in the direction of the
cognitive flow.

The Kullback-Leibler Divergence (KLD) mea-
sures the “information loss” when approximating
the teacher’s reasoning with the student’s. For each
state 7, the divergence from the student’s distribu-
tion (g1) to the teacher’s (p?) is:

Dij
Dxw(pillas) =Y pijlog <q]> (D
. 1]
J

A lower KLD indicates the student model’s tran-
sition probabilities are a more faithful approxima-
tion of the teacher’s, reflecting a closer match in
the magnitude and confidence of state transitions.
In essence, CS measures the directional alignment
of the cognitive flow, while KLD measures the
alignment in probabilistic confidence. A high CS
and low KLD score indicate strong flow alignment,
whereas a divergence in either metric signals rea-
soning flow unalignment between the models.

4 Results & Discussion

Our analysis, conducted through the Cognitive
Flow framework, provides a quantitative measure-
ment of reasoning style similarity after distilla-
tion. Results are summarized in Table 1 and reveal
a complex relationship between distillation, task
complexity and model robustness. Our framework
is designed to be agnostic of the correctness of
the final answer, focusing instead on the semantic
structure of the reasoning traces. This way we can
assess how distilled models replicate their teacher’s
cognitive patterns, leading to insights that go be-
yond accuracy-based evaluations.

To ensure increased confidence on these results,
we conducted a human evaluation on 150 randomly
sampled reasoning steps (Appendix A). The Step
Classifier LLM achieved a Cohen’s Kappa of 0.836,
a score indicating “almost perfect agreement” with
the human annotator (Landis and Koch, 1977).
This confirms that the Step Classifier LLM reli-
ably captures the cognitive states of the observable
reasoning process, validating the foundation for the
upcoming analysis.

We first establish a baseline by evaluating mod-
els on tasks of moderate complexity (High School).


https://api-docs.deepseek.com/quick_start/parameter_settings
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Table 1: Cognitive Flow similarity between the teacher model (DeepSeek-R1) and student models. Arrows indicate
whether lower () or higher (1) scores are better. The best performance in each category is highlighted in bold.

In this setting, KD proves highly effective at trans-
ferring reasoning flows between teacher and stu-
dent. As detailed in Table 1, all distilled models
exhibit a high degree of flow alignment with the
teacher, DeepSeek-R1-671B. The Llama-70B dis-
tilled model (L70B) achieves the highest fidelity,
with a CS of 0.959 and a KLD of only 0.065.
This demonstrates that distilled RLMs can, under
the right conditions, faithfully inherit the teacher’s
characteristic reasoning.

However, when models were tested on tasks of
either higher or lower complexity, the high fidelity
seen previously degrades significantly, revealing a
critical weakness in generalization.

On highly complex problems (College), while
the similarity in the direction of reasoning paths re-
mains high (CS > 0.92 for all models), KLD scores
increase. This indicates that, while the distilled
models can still follow the teacher’s cognitive path,
they do so with a different probabilistic confidence,
revealing a divergence from the learned reasoning
style under high cognitive requirements.

’

More surprisingly, we find a significant “failure’
of distillation on the simpler Elementary tasks. For
all distilled models, cognitive flows exhibit a large
gap from the teacher, with KLLD scores soaring to
over 1.3 and CS scores lowering to around 0.8 (Ta-
ble 1). The combination of a low CS and a high
KLD suggests that distilled models are not only
transitioning between states with different proba-
bilistic confidence like before, they are now follow-
ing a fundamentally different reasoning structure
and flow. This structural divergence is visually
apparent in the Cognitive Flow heatmaps in Fig-
ure 2, where the transition matrix of the distilled
RLM shows clear differences from the teacher’s. It
is important to note that the smaller models (32B
and 14B) were evaluated using quantized versions.
Quantization is an additional factor to consider, as
compressing the models inevitably leads to some

information loss, potentially impacting accuracy.

Results obtained from the control model,
QwenQwQ-32B, provide a counterpoint and help
explain the findings so far. On the Elementary
tasks where the distilled models heavily diverged
from the teacher model, the control model actu-
ally resembled a very similar reasoning, achiev-
ing the highest CS (0.956) and the lowest KLD
(0.268). This result is crucial. Firstly, it demon-
strates that flow unalignment is not an inherent lim-
itation posed by model size or architecture. More-
over, and because our control and 32B student mod-
els were both run under identical 4-bit quantization,
we can also conclude that divergence is not merely
an artifact of model compression. Secondly, after
isolating the post-training methodology (distilla-
tion vs. reinforcement learning) as the key variable,
this provides strong evidence that distillation, while
effective for transferring specific skills, may be less
effective at generating a robust and adaptable rea-
soning style than an independent learning process
such as RL.

Our analysis of cognitive states distribution in
Figure 3 provides an explanation for this difference.
On Elementary tasks, the distilled models neglect
the crucial Verification step, using about 20% less
tokens towards it, compared to the teacher. This
suggests a form of overfitting, where distilled mod-
els learn to replicate the teacher’s sophisticated
problem-solving logic but fail to generalize to sim-
pler problems where those advanced techniques
are unnecessary, and fundamental steps like veri-
fication can play a huge part. Furthermore, across
all three levels of complexity tested, the control
model consistently allocates a larger portion of its
computational effort to Verification (Figure 3).

Findings from this experiment highlight the pro-
found impact of the underlying training objective.
Distillation is a form of process supervision, im-
plemented as SFT on the teachers’ outputs, mean-
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Cognitive State Transitions in Elementary Maths Subset
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Figure 2: Cognitive Flow Heatmaps for the Elementary Maths Subset. Transitions of the distilled student
(center) diverge significantly from its teacher (left). The control model (right), develops a flow remarkably similar
to the teacher, isolating the divergence as a cause of the distillation process.

High School Maths Reasoning Distribution Differances from Teacher

Teache:

Elementary Maths Reasoning Distribution Di
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Difference from Teacher (% of Tokens)

Figure 3: Difference in Cognitive State Percentage
from the Teacher. On elementary tasks (bottom), dis-
tilled models exhibit a critical difference: a pronounced
lack of the Verification step. In contrast the control
model, trained via RL, consistently allocates more cog-
nitive effort to verification.

ing that the students’ objective is to replicate the
teacher’s reasoning path precisely. This effectively
forces the student to adopt the teacher’s reasoning
style but, as we show, can lead to fragile behavior
and affect the generalization capability.

On the other hand, the control model’s RL train-
ing represents outcome supervision. Its policy is
not optimized to follow a specific, defined path,
but to maximize a reward signal based on the cor-

rectness of the outcome, encouraging emergent rea-
soning strategies. The model is free to discover
that frequent self-verification is a highly-rewarding
behavior because it often leads to correct answers,
resulting in a robust, generalized reasoning ability
developed through exploration and iteration.

5 Conclusion

We introduced Cognitive Flow, a novel framework
for quantifying and comparing the semantic struc-
ture of an LLM’s reasoning. By modeling CoT as
a sequence of transitions between cognitive states,
we moved beyond accuracy-based metrics to assess
the fidelity of reasoning distillation.

Our analysis of the DeepSeek-R1 family pro-
vided a key insight. Simply learning to replicate a
teacher’s reasoning style through SFT is a fragile
strategy when trying to distill reasoning flows be-
tween models. While highly effective for a set of
tasks under the right conditions, the approach fails
to generalize, leading to an increase of flow unalign-
ment on simpler problems and the neglect of fun-
damental cognitive actions, like self-verification.
In contrast, an independently RL trained model
demonstrated a more robust and adaptable reason-
ing style.

These findings challenge the paradigm of pure
KD as is, for creating smaller and efficient reason-
ing LL.Ms. They suggest that future work should
focus on hybrid training approaches that combine
the guidance of distillation with the exploratory
benefits of RL to build models that can not only
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achieve higher performance, but also higher robust-
ness and alignment with their teachers.

The code used for our experimentation is
available at https://github.com/NLP-CISUC/
Cognitive-Flow.

Limitations

We identify the following limitations in our study:

First, using two core LLMs introduces potential
variability. The labeling system itself can be seen
has having further limitations: the set of cogni-
tive labels is generated from a specific sample of
steps and may not be representative, it potentially
simplifies reasoning by assigning a single label to
complex steps, and its static and “offline” nature
could face problems being adapted for real-time
explainability systems. Future work could address
these, exploring the robustness of label generation,
multi-label classification and dynamic set updating.

Secondly, our framework quantifies “reasoning
style” as a sequence of cognitive state transitions.
We acknowledge that this is a proxy for the under-
lying reasoning process.

Additionally, our empirical analysis is centered
on the DeepSeek model family and mathematical
reasoning tasks. Consequently, the conclusions
about distillation’s fidelity may be specific to these
models, and the identified cognitive patterns are
influenced by the mathematical domain. To estab-
lish these findings as a general principle, future
work should apply the framework to more diverse
teacher-student pairs of models and across different
reasoning domains, such as instruction following
or commonsense reasoning.

Finally, due to computational constraints a mix
of inference methods were used in our experimen-
tation. The teacher model and one student were ac-
cessed via API, while others were run locally using
quantized versions. Quantization can partially de-
grade a model’s performance and accuracy. While
directly comparing the full-precision API-served
teacher and the quantized students is a limitation,
our core findings about distillation’s fragility are
primarily drawn from a controlled comparison be-
tween the two 4-bit quantized 32B models. Albeit,
future applications of the framework should, where
possible, use uniform inference environments for
all models to ensure a more direct and isolated
comparison.
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A Validation of the Step Classifier LLM

To ensure the validity of our framework’s au-
tomated classification, we measured the perfor-
mance of the Step Classifier LLM, Gemma3-27B-
IT-QAT®, against a human expert annotator.

Methodology We randomly sampled 150 steps,
ten for each model, for each task complexity. One
of the paper’s authors manually assigned a label to
each step, while having access to the corresponding
label set, provided by the Label Extractor LLM.

Results The classifier’s performance is depicted
in Figure 4. Overall, the LLM annotator achieved
a Cohen’s Kappa of 0.836, indicating “almost per-
fect agreement” with the human (Landis and Koch,
1977).

Discussion The confusion matrix visually con-
firms a high accuracy. It is to note that most errors
are concentrated in semantically similar categories.
A primary source of disagreement occurs between
Interpretation, Logical Deduction and more spe-
cific actions like Substitution. This suggests that
even when the LLM’s decision differs from the
human’s, this disagreement can be attributed to
semantic ambiguity within the steps, rather than
classifier failure.

Confusion Matrix: Human vs LLM Labels

Human Assigned Label
Nurber of Samples

LLM Assigned Label

Figure 4: Confusion matrix of the Step Classifier
LLM vs. human labels. The strong diagonal indicates
a high number of equal classifications.

8https ://huggingface.co/google/
gemma-3-27b-it-qat-q4_0-gguf

B Framework Details

This appendix provides a more detailed look into
the implementation of the framework, specifically
design of the prompts used to guide the core LLM
components, foundational to our analysis.

B.1 Label Extractor LLM Prompt

The Label Extractor LLM is tasked with defining
a comprehensive and domain-agnostic set of cog-
nitive labels. The system prompt for this model is
detailed in Figure 5. This stage is unsupervised and
foundational to the entire framework.

The prompt guides the LLM to produce a set
of labels that are both meaningful and broadly us-
able. The input to this LLM is a diverse corpus of
1000 reasoning steps, randomly sampled from the
outputs of the teacher model at each complexity,
ensuring the resulting labels are representative of
the model’s reasoning behavior. Key criteria are
provided directly in the prompt: labels must be ap-
plicable across different domains, broad enough to
be versatile but distinct enough to be meaningful,
and oriented towards clustering similar reasoning
patterns. By specifying an aim of 5-12 labels, we
guide the model to produce a concise set that is
comprehensive without being too specific.

B.2 Step Classifier LLM Prompt

The Step Classifier LLM is tasked with assigning a
single cognitive label to each step of a model’s CoT.
The prompt used to guide this model is depicted in
Figure 6.

The prompt explicitly defines the model as a
“Step Annotator” and frames the LLM’s task as a
few-shot classification problem. For each step to be
classified, the model is provided with both the rea-
soning step and the full set of cognitive state labels,
along with definitions and examples for each one.
The prompt then defines a strict set of rules both
for classification criteria and format, minimizing
variability and ensuring the model’s output is con-
sistently usable to compute the transition matrix.

C Examples of CoT Annotations

Here we provide concrete examples of the anno-
tated CoT outputs used in our analysis. Tables 2,
3 and 4 illustrate how the Cognitive Flow frame-
work deconstructs a model’s raw reasoning trace
into a sequence of discrete cognitive states. Each
example presents a problem from one of the used
MMLU subsets.
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You are a Reasoning Pattern Analyzer specializing in extracting domain-agnostic labels from
chain-of-thought reasoning steps. Your task is to analyze samples of reasoning steps and generate a
concise set of labels (between 5-12) that represent fundamental thinking patterns that can be used
for clustering similar reasoning approaches across domains.

INPUT: You will receive phrases representing individual steps in chain-of-thought reasoning
processes from various problem-solving scenarios across different domains.

OBJECTIVE: Identify underlying cognitive patterns and create a set of broad, domain-agnostic
labels that can effectively cluster similar thinking approaches, regardless of the specific
content domain.

ANALYSIS APPROACH:

1. Examine each reasoning step independently, focusing on the cognitive operation being performed
rather than the domain-specific content.

2. Identify the fundamental mental process occurring in each step (such as interpretation,
conclusion formation, decomposition, etc.).

3. Prioritize breadth over depth - aim to cover diverse reasoning types rather than making fine
distinctions between similar reasoning patterns.

4. Look for general patterns that would appear across completely different domains and problems.

LABEL CRITERIA:

1. Domain-agnostic: Labels should describe thinking patterns applicable across any domain (math,
literature, business, science, etc.).

2. Broad yet meaningful: Each label should capture a distinct category of reasoning but be
applicable across multiple contexts.

3. Clustering-oriented: Labels should effectively group similar reasoning steps together, even
when the content differs completely.

4. Independent: Focus on labeling individual steps, not relationships between steps.

5. Comprehensive: The complete set should cover the major reasoning patterns present in the sample
(aim for 5-12 total labels).

OUTPUT FORMAT: Provide your output in the following JSON-like structure and nothing else. Do not
include any additional text or formatting in your response. Do NOT include special characters or
line breaks in the label names:

{

"LABEL1": {

"criteria”: "A clear definition of the cognitive operation it represents”,

"examples”: "1-2 examples of how this pattern might appear across different domains” },
"LABEL2": {

"criteria”: "A clear definition of the cognitive operation it represents”,

"examples”: "1-2 examples of how this pattern might appear across different domains” },

}

Examples of possible general labels include "Interpretation,” "Conclusion,” "Breakdown,"
"Arithmetic Operation” - but you are not limited to these. Create labels that best represent the

patterns you observe in the provided steps.

Remember, your primary goal is to create labels that will be effective for clustering similar
reasoning steps across completely different domains and problems. Aim for 5-12 total labels.

Figure 5: System prompt used for the Label Extractor LLM.
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You are a Step Annotator that analyzes reasoning steps and assigns the most
appropriate label from a provided set. Your task is to categorize each step
according to its dominant cognitive operation.

INPUT:
1. A set of labels with their criteria and examples (provided in the user message)
2. A reasoning step to analyze

TASK:

Assign EXACTLY ONE label from the provided set to the reasoning step. While steps
may involve multiple cognitive processes, you must identify the MOST DOMINANT
process and select only one label.

ANALYSIS APPROACH:

1. Examine the reasoning step, identifying the primary cognitive process present
2. Compare this process against the criteria for each provided label

3. Select the single most appropriate label that best captures the dominant
reasoning pattern

IMPORTANT RULES:

- Select ONLY ONE label per step, even if multiple processes are present

- Prioritize the cognitive pattern that is most central or essential to the step
- Use exactly the label text as provided in the options, with the same spelling

and capitalization

- Always select one label from the set, never leave a step unlabeled

- If the step does not fit any label totally, choose the one that is closest in

meaning

OUTPUT FORMAT:
Return ONLY the chosen label name in plain text, with no additional text,
explanation, or formatting.

Your entire response should be only the selected label text, nothing more.

Figure 6: System prompt used for the Step Classifier LLM.
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Table 2: Annotated CoT of DeepSeek-R1-671B for an Elementary maths subset problem.

Problem: A worker on an assembly line takes 7 hours to produce 22 parts. At that rate how many
parts can she produce in 35 hours? [’220 parts’, ’770 parts’, ’4 parts’, 110 parts’]

LLM Reasoning Step

Cognitive Label

Okay, let me try to figure out this problem. So, the question is about a
worker on an assembly line who takes 7 hours to produce 22 parts. We need to
find out how many parts she can produce in 35 hours at the same rate. The
options given are 220, 770, 4, or 110 parts. Hmm, let me think step by step.

Interpretation

First, I need to determine the rate at which the worker is producing parts.

The rate is usually calculated as parts per hour. Since she makes 22 parts in
7 hours, her rate would be 22 divided by 7. Let me write that down: Rate =

22 parts / 7 hours. That simplifies to approximately 3.142857 parts per hour.

But maybe I should keep it as a fraction to be exact. So, 22/7 parts per hour.

Calculation

Now, if we want to know how many parts she can produce in 35 hours, we can
multiply her hourly rate by the number of hours. So, the total parts would
be (22/7) parts/hour * 35 hours. Let me compute that. The hours unit cancels
out, which is good. So, 22 divided by 7 multiplied by 35. Let me do the math
here.

Calculation

First, 35 divided by 7 is 5. Then, 5 multiplied by 22 is 110. Wait, so that
calculation gives 110 parts. Let me check that again. 22/7 * 35. If I write
35 as 7%5, then 22/7 * 7x5 = 22%5 = 110. Yeah, that seems right. So, 110
parts in 35 hours.

Calculation

Looking at the options given, 110 parts is one of them. So, that should be the

answer. But wait, let me make sure I didn’t make a mistake in the calculation.

Let me do it another way to cross-verify.

Comparison

Alternatively, we can set up a proportion. If 7 hours correspond to 22 parts,
then 35 hours correspond to x parts. The proportion would be:

Equation Solving

7 hours / 35 hours = 22 parts / x parts

Equation Solving

But wait, is that the correct proportion? Hmm, actually, as the number of
hours increases, the number of parts should increase as well. So, the ratio
of hours should be equal to the ratio of parts. So, 7/35 = 22/x. Solving
for x, cross-multiplying: 7x = 35%22. Then, x = (35%*22)/7. Simplify that, 35
divided by 7 is 5, so x = 5%22 = 110. Yep, same answer. So that’s consistent.

Equation Solving

Alternatively, another way: how many 7-hour periods are there in 35 hours?
Since 35 divided by 7 is 5. So, 5 times 7 hours is 35 hours. Therefore, she
can produce 5 times the number of parts she makes in 7 hours. So, 22 parts *
5 = 110 parts. That’s another way to look at it. So, all methods lead to 110
parts. Therefore, the answer is 110 parts.

Calculation

Let me check the options again: 220, 770, 4, 110. 110 is there, so that’s
the correct choice. I think that’s solid. I don’t see any mistakes in the
calculations. So, yeah, 110 parts is the answer.

Verification
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Table 3: Annotated CoT of DeepSeek-R1-Distill-Llama-70B, for a High School maths subset problem.

512 [’57, ’3", ’15%, *31’]

Problem: The symbol 5! means 5-4-3-2-1. What is the greatest odd integer that is a factor of

LLM Reasoning Step

Cognitive Label

Okay, so I have this problem here: The symbol 5! means 5 x 4 x 3 x 2 x 1, I
need to find the greatest odd integer that is a factor of 5!. The options are
’57, 737, 715, 317, Hmm, let me think about how to approach this.

Interpretation

First, I remember that the factorial of a number, like 5!, is the product of
all positive integers up to that number. So, 5! is 5 x 4 x 3 x 2 x 1, Let me
calculate that first. 5 x 4 is 20, then 20 x 3 is 60, 60 x 2 is 120, and 120
x 1 is still 120. So, 5! equals 120.

Calculation

Now, the question is asking for the greatest odd integer that is a factor
of 120. So, I need to find the largest odd number that divides 120 without
leaving a remainder.

Interpretation

I know that factors of a number are the numbers that can divide it without
leaving a remainder. So, to find the greatest odd factor, I need to look at
the factors of 120 and pick the largest odd one.

Interpretation

But maybe there’s a smarter way than listing all factors. Let me think. 120
is an even number because it ends with a @, which is even. So, it’s divisible
by 2. But we want an odd factor, so I need to remove all the factors of 2
from 120.

Hypothesis

Wait, that might be a good approach. If I factor 120 into its prime factors,
I can then remove the factors of 2 and see what’s left. The remaining product
will be the greatest odd factor.

Hypothesis

Let me try that. Prime factorization of 120:
120 + 2 = 60. 60 + 2 = 30. 30 + 2 = 15. Now, 15 is not divisible by 2, so I
switch to the next prime number, which is 3. 15 + 3 = 5. Then, 5 is a prime
number itself. So, the prime factors of 120 are 2 x 2 x 2 x 3 x 5,

120 can be divided by 2 first.

Calculation

So, 120 = 2% x 3 x 5, Now, if I remove all the factors of 2, which are 22, I’'m
left with 3 x 5. Multiplying those together gives 15. So, 15 is the greatest
odd factor of 120.

Calculation

Alternatively, I can list all the factors of 120 and pick the largest odd one.

Let’s try that method to double-check.

Hypothesis

Factors of 120: 1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 20, 24, 30, 40, 60, 120.

Calculation

Now, the odd factors among these are 1, 3, 5, 15. So, the largest one is 15.

That confirms my earlier conclusion.

Verification

So, the answer should be 15. Looking back at the options:
’31’. 15 is one of them, so that must be the correct choice.

!5!’ y3v, 715!,

Comparison

Wait, just to make sure I didn’t make a mistake in my prime factorization. 22
x 3 x5 1is 8 x 3 x 5 which is 8 x 15, which is 120. Correct. So, removing
the 2s gives 15. So, yes, 15 is the greatest odd factor.

Verification

Another way to think about it is that any number can be expressed as 2% x odd
number. So, 120 is 8 x 15, where 8 is 23 and 15 is the odd part. So, the
greatest odd factor is 15.

Pattern
Recognition

I think that’s solid. So, I’m confident that 15 is the correct answer.

Conclusion
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Table 4: Annotated CoT of QwenQwQ-32B for a College maths subset problem.

’False, False’]

Problem: Statement 1 : Suppose s, and t, are sequences of complex numbers such that lim,Boco
$n = s and limyBoo tn =t. lim,Boo s,tn, = st. Statement 2 : There exists a bounded sequence
of real numbers with no convergent subsequence. [’True, True’, ’True, False’,

’False, True’,

LLM Reasoning Step

Cognitive Label

Okay, so I have these two statements to evaluate. Let me start with the first
one.

Interpretation

Statement 1 says that if you have two sequences of complex numbers, {s,}
and {t.}, and both converge to s and t respectively, then the limit of their
product spt, as n approaches infinity should be sxt. Hmm, I remember from real
analysis that the limit of a product is the product of the limits, provided
both limits exist. Since complex numbers are a field extension of the reals,
I think the same property should hold here. Let me verify this.

Logical Deduction

Suppose lims, = s and limt, = t. Then, for the product, we can use the property
that the limit of the product is the product of the limits. So, yes, this
should be true. The complex numbers, like the real numbers, are a topological
ring, so multiplication is continuous. Therefore, the limit of the product
should indeed be the product of the limits. So Statement 1 is True.

Logical Deduction

Now moving on to Statement 2: "There exists a bounded sequence of real numbers
with no convergent subsequence.” Hmm, this seems a bit tricky. Wait, in real
analysis, there’s the Bolzano-Weierstrass theorem, which states that every
bounded sequence of real numbers has a convergent subsequence. So if that’s
the case, then Statement 2 would be False because it’s claiming the opposite.

Logical Deduction

But let me think again. The Bolzano-Weierstrass theorem does state exactly
that: every bounded sequence in R"™ has a convergent subsequence. Since we’re
dealing with real numbers (n = 1 here), any bounded sequence must have a
convergent subsequence. Therefore, the statement that there exists a bounded
sequence with no convergent subsequence is false.

Logical Deduction

Wait, but could there be some exception? For example, if the sequence is
constant? No, a constant sequence would converge to that constant, so it
definitely has a convergent subsequence. What if the sequence oscillates but
remains bounded? Like sin(n) or something? Wait, sin(n) is bounded between
-1 and 1. Does sin(n) have a convergent subsequence? Well, yes. Because even
though the sequence itself might not converge, any bounded sequence in R has
a convergent subsequence by Bolzano-Weierstrass. For example, sin(n) would
have a subsequence converging to 1, or -1, or some value in between. So even
if the whole sequence doesn’t converge, there is a subsequence that does.

Logical Deduction

Therefore, Statement 2 is false. Conclusion
So putting it together, Statement 1 is True, Statement 2 is False. Therefore Conclusion
the answer should be "True, False”.

Wait, hold on. Let me check Statement 2 again. Maybe I misread it. It says Verification

"a bounded sequence of real numbers with no convergent subsequence”. But
according to Bolzano-Weierstrass, that can’t exist. So yeah, Statement 2 is
false.

Is there any way Statement 2 could be true? Maybe in some other space?
But the question specifies real numbers. In real numbers, bounded sequences
are precisely those that have convergent subsequences. So no. Therefore,
Statement 2 must be false.

Logical Deduction

Therefore the correct pair is True, False. So the second option in the choices
given.

Conclusion
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D Directed Graphs

D.1 Importance of the § parameter

In this section, we analyze the effect of the thresh-
old parameter # on the readability of the cognitive
flow graphs. As shown in Figure 7, a lower value
of 6 includes too many transitions, resulting in a
cluttered graph, while a higher value provides a
clearer view of the main cognitive processes.

D.2 Examples of Cognitive Flow Graphs

In this section, in Figure 8, we display cognitive
flow graphs for some models on the Elementary
Maths subset.

E Cognitive State Distributions

Quantitative analysis of the distribution of cog-
nitive states offers a complementary, static view
of a model’s reasoning patterns. By aggregating
state usage across all tasks, we can measure overall
prevalence and computational effort put towards
each cognitive activity. This allows us to move
beyond the flow of reasoning and look at its com-
position.

E.1 Label Percentage

We first take a look at the frequency of each cog-
nitive state by calculating the percentage of total
reasoning steps assigned to each label, measuring
which cognitive operations models utilize more of-
ten.

As shown in Figure 9, the distribution of cogni-
tive actions varies significantly across models and
complexities. For example, on college-level tasks,
the teacher model allocates a substantial portion of
its steps to Logical Deduction, whereas the student
models show a higher frequency of Calculation.
This suggests that different models may prioritize
different cognitive actions when facing problems
of varying difficulty, even when their final answers
are the same.

E.2 Token Percentage

To measure the computational effort dedicated to
each cognitive state, we analyze the distribution of
generated tokens. Instead of frequency, this metric
quantifies the verbosity and detail with which a
model executes a particular action. A state may
be used infrequently (low label percentage) but
require significant effort when it appears (high
token percentage). Tokenization for all text was
done using the bert-base-uncased’ tokenizer.

Analysis of Figure 10 shows crucial differences
in computational effort. A key finding is the consis-
tent low allocation of tokens to Verification by the
distilled models, especially on Elementary level
tasks. The teacher and control models dedicate
significant computational effort to verifying their
steps, while the distilled students appear to neglect
this critical action. This significant difference pro-
vides strong quantitative evidence that distillation
may fail to transfer not just the reasoning path, but
also the underlying cognitive discipline required
for robust problem-solving.

*https://huggingface.co/google-bert/
bert-base-uncased
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Figure 7: Directed Graphs of the Cognitive Flow for DeepSeek-R1-671B on the High School Maths subset.
The top graph is constructed with a 6 of 0.05, resulting in a cluttered visualization. The bottom graph has a 6 of 0.2,
providing a clear way to interpret the model’s main cognitive processes.
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Figure 8: Directed Graphs of the Cognitive Flow for DeepSeek-R1-671B, its 32B Distilled model, and

QwenQwQ-32B on the Elementary Maths subset.
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College Maths Reasoning Distribution Percentages
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Figure 9: Cognitive State Distribution by Frequency (Label Percentage). Across the three complexities, each bar
corresponds to a model’s percentage of reasoning steps assigned to each cognitive label. It indicates the frequency
with which models utilize different cognitive actions in their reasoning.
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Percentage of Tokens per Label - College Maths
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Figure 10: Cognitive State Distribution by Computational Effort (Token Percentage). Across the three
complexities, each bar corresponds to the total number of tokens generated by a model for each cognitive state. It
indicates the computational effort that the models put towards each cognitive action in their reasoning.
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