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Abstract

In-Context Learning (ICL) approaches, such
as Zero-Shot and Few-Shot prompting, allow
Large Language Models (LLMs) to tackle rea-
soning tasks without additional fine-tuning.
However, Zero-Shot prompting often struggles
with more complex tasks, whereas Few-Shot
prompting demands considerable manual ef-
fort and domain expertise to design effective
prompts. Although existing work has attempted
to alleviate these issues by extracting reason-
ing rules from carefully crafted, task-specific
representative examples, creating or obtaining
such examples can be impractical in real-world
scenarios. In this paper, we propose a novel ap-
proach that enhances the inference accuracy by
injecting reasoning principles extracted from
QA data, without relying on representative
Few-Shot exemplars. This offers a lightweight
yet adaptive way to boost accuracy on com-
plex reasoning tasks, while avoiding manual
effort and the high exploration costs typical of
prior methods. Experiments on benchmarks
show that, using GPT-40, our method out-
performs similarity-based Few-Shot and Zero-
Shot prompting methods on challenging bench-
marks such as GPQA-diamond, achieving an
absolute accuracy improvement of up to 2%
in scenarios where carefully crafted Few-Shot
examples are unavailable.

1 Introduction

In-Context Learning (ICL) enables Large Lan-
guage Models (LLMs) to improve their perfor-
mance on a variety of tasks by simply providing
relevant task instructions and examples without
retraining or fine-tuning the model’s internal pa-
rameters (Dong et al., 2024; Wies et al., 2023; Shin
et al., 2022; Wang et al., 2022). Two representa-
tive forms of ICL are Zero-Shot Prompting, which
encourages reasoning based solely on general in-
structions (e.g., “Let’s think step by step”) such
as Zero-Shot Chain of Thought (CoT) (Kojima

etal., 2022), and Few-Shot Prompting (Brown et al.,
2020), which provides a handful of task-specific
examples, sometimes accompanied by their corre-
sponding CoT (Wei et al., 2022; Nachane et al.,
2024) to guide the model toward more accurate
answers.

Despite the effectiveness of these approaches,
several challenges remain. (1) Zero-Shot Prompt-
ing often struggles with complex tasks because
it heavily relies on the model’s inherent knowl-
edge (Labrak et al., 2024; Shaikh et al., 2023). (2)
Few-Shot Prompting typically requires careful de-
sign and selection of examples by an expert fa-
miliar with the task (Liu et al., 2023; Zhao et al.,
2021). Whenever the task changes, practitioners
must redesign prompts and examples, incurring ef-
fort. Consequently, there is a growing demand for
methods that can automatically construct prompts
(Li et al., 2025).

Existing methods can be broadly categorized
based on the availability of representative Few-Shot
examples—each setting introducing its own set of
challenges.

When Few-Shot examples are entirely unavail-
able, methods based purely on Zero-Shot prompt-
ing must be relied upon. A notable example is Plan
and Solve (Wang et al., 2023), which enhances
basic Zero-Shot Chain-of-Thought prompting by
first generating a high-level plan before reasoning
through the task. While such approaches avoid the
need for exemplars, their performance is limited
on complex tasks due to the lack of task-specific
guidance.

In settings where raw task data is available but
representative Few-Shot examples are not identi-
fied, several methods—such as APE (Zhou et al.,
2022) and DSPy (Khattab et al., 2023)—have been
proposed to automatically construct prompts us-
ing LLMs. These methods iteratively optimize
prompts based on evaluation feedback. While ef-
fective, they often involve repeated trial-and-error

576

Proceedings of the 18th International Natural Language Generation Conference, pages 576-595
October 29-November 2, 2025. ©2025 Association for Computational Linguistics



Zero-Shot Prompting (Plan and Solve)

them to empty the jar?
Options: A.4,B.5,C.6,D.7,E. 8

Then, let’s carry out the plan and solve the problem step by step.

Question: Two friends are eating a jar full of candies. Had P eaten alone, it would have taken him
10 minutes to finish the candies in the jar. Had Q eaten alone, it would have taken her 5 minutes to
finish half the jar. Since both of them are eating simultaneously, how many minutes would it take

Answer: Let's first understand the problem and devise a plan to solve the problem.

P's rate is 1 jar / 10 minutes = 0.1 [jar/min].
Q's rate is 1 jar / 5 minutes = 0.1 [jar/min].
P's rate + Q's rate = 0.1 + 0.2 = 0.3 [jar/min].
t=1/0.3 = 3.33 minutes.

Final Answer: A. 4 x

—

Few-Shot Prompting

Few Shots

How much did your friend spend on their lunch?
Options: A. $9, B. $8, C. $4, D. $6, E. $5
Answer: B

Question: You and your friend spent a total of $15 for lunch. Your friend spent $1 more than you.

P's rate is 1 jar / 10 minutes = 0.1 [jar/min].

them to empty the jar?
Options: A.4,B.5,C.6,D.7,E. 8
nswer: Let's think step by step.

Question: Two friends are eating a jar full of candies. Had P eaten alone, it would have taken him
10 minutes to finish the candies in the jar. Had Q eaten alone, it would have taken her 5 minutes to
finish half the jar. Since both of them are eating simultaneously, how many minutes would it take

Q's rate is 1 jar / 5 minutes = 0.1 [jar/min].
P's rate + Q's rate = 0.1 + 0.2 = 0.3 [jar/min].
t=1/0.3 = 3.33 minutes.

Final Answer: A. 4 x

Ours-PFS

Model Input l’
Re-evaluate the following question and your previous answer, applying the relevant
principles where applicable to adjust your reasoning.

Initial Thoughts

Retrieved Princiéles } \
Principles for Avoiding Mistakes: ...To avoid similar

mistakes, always ensure to verify calculations and check

them to empty the jar?
Options: A.4,B.5,C.6,D.7,E. 8
Your Previous Answer: ... 3.33 minute Final Answer: A. 4

Question: Two friends are eating a jar full of candies. Had P eaten alone, it would have taken him
10 minutes to finish the candies in the jar. Had Q eaten alone, it would have taken her 5 minutes to
finish half the jar. Since both of them are eating simultaneously, how many minutes would it take

if the final answer aligns with the provided options.

| IT"| Principles for Achieving Correct Answers: ...For
similar problems, always determine the rates of each
contributor, combine them, and use the reciprocal to find

—Qhe total time. J

l Model Output } \
#it# Step 1: Determine P's Eating Rate

Principles

calculations and check if the final answer aligns with the provided options.

of each contributor, combine them, and use the reciprocal to find the total time.

Principles for Avoiding Mistakes: ...To avoid similar mistakes, always ensure to verify

Principles for Achieving Correct Answers: ...For similar problems, always determine the rates

### Step 2: Determine Q's Eating Rate

### Step 3: Combine Their Rates

Then, let’s carry out the plan and solve the problem step by step.

@er: Let’s first understand the problem and devise a plan to solve the problem.

When P and Q eat together, their combined rate is:
Combined rate = 0.1 + 0.1 = 0.2 [jar/min].
t=1/0.2 = 5 minutes.

Qnal Answer: B. 5 v

/

)

Figure 1: Prompt examples for each method. Our approach (Ours-PFS) refines Zero-Shot Prompting (Plan and
Solve) by injecting retrieved reasoning principles to improve inference.

on vast datasets, require numerous LLM calls, and
result in high inference costs and significant com-
putational overhead.

In contrast, when representative Few-Shot ex-
amples are available, inference performance can
be improved by leveraging those examples directly.
LEAP (Zhang et al., 2024) addresses the problem
by extracting ‘‘reasoning principles”’—strategies
useful for solving similar problems—by analyz-
ing the differences between correct and incorrect
answers based on existing Few-Shot examples, al-
though it assumes that representative Few-Shot ex-
amples are already available. In real-world scenar-
ios, carefully curated few-shot exemplars are rarely
available, and identifying representative ones from
raw data is typically infeasible without significant
manual effort.

To overcome these limitations, we propose meth-
ods that automatically extract and apply reason-
ing principles without relying on pre-selected Few-
Shot examples. Specifically, we run Zero-Shot
Prompting on training data without curated exam-
ples, analyze both correct and incorrect reason-

ing paths, and extract principles that capture the
essence of correct reasoning or help avoid mistakes.
Afterward, for test questions, we retrieve relevant
principles and inject them into the model’s infer-
ence stage. Our approach focuses on selectively
injecting reasoning principles into the parts of
the inference process where improvement is most
likely—based on similarity to previously observed
successes and failures. This design is lightweight
yet flexible, improving accuracy on multi-step or
complex tasks without incurring the extensive ex-
ploration overheads or relying on representative
Few-Shot examples, as required by prior methods.

As illustrated in Figure 1, both Zero-Shot and
Few-Shot Prompting originally produced incorrect
reasoning for a math question. However, by inject-
ing a principle such as “determine the rates of each
contributor, combine them,” our approach guided
the model toward the correct answer.

Contributions.
per are threefold:

The key contributions of this pa-

* Automatic principle extraction. We intro-
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duce a procedure to analyze the reasoning pro-
cesses on labeled QA data and distill general-
izable principles—both from correct answers
to reinforce good reasoning and from incor-
rect ones to avoid common pitfalls.

* Dynamic principle application. We propose
a retrieval-based mechanism that retrieves rel-
evant principles based on the similarity of rea-
soning processes, enabling the model to cor-
rect or refine its reasoning at inference time.

* Empirical validation. Through experiments
on benchmarks (GPQA (Rein et al., 2024),
MMLU-Pro (Wang et al., 2024), AQuA (Ling
et al., 2017), OpenBookQA (Mihaylov et al.,
2018)), We demonstrate that our method out-
performs the Zero-Shot and Few-Shot base-
lines by up to 2% in absolute accuracy for
complex tasks.

2 Related Work

In this section, we first describe the methods and
challenges involved in Zero-Shot and Few-Shot
Prompting. Next, we discuss methods aimed at
the automatic design of input prompts that include
Few-Shot examples. We summarize the challenges
of each method and describe their relationship with
the proposed approach.

2.1 Zero-Shot and Few-Shot Prompting

Zero-Shot Prompting solves tasks by providing in-
structional prompts (Kojima et al., 2022). Plan
and Solve (Wang et al., 2023), an evolution of
Zero-Shot-CoT, generates a plan before reason-
ing, achieving better accuracy for complex tasks.
However, these methods still struggle with tasks
requiring task-specific reasoning strategies due to
the lack of specific examples.

Few-Shot Prompting provides task-specific ex-
amples to guide reasoning (Brown et al., 2020).
While effective, designing these examples can be
time-consuming and requires domain expertise, as
the method is highly sensitive to example format
and order (Zhao et al., 2021; Liu et al., 2023). This
has led to a growing demand for automated prompt-
design methods to reduce reliance on manual ef-
fort (Li et al., 2025).

2.2 Automatic Prompt Design Methods
Incorporating Few-Shot Examples

Methods to automate prompting with Few-Shot
examples include APE (Zhou et al., 2022) and

DSPy (Khattab et al., 2023). These methods aim
to optimize the input prompt by leveraging LL.Ms
to iteratively refine its components. Both methods,
however, involve exploratory optimization guided
by evaluation data, and typically require numer-
ous LLM calls, which can result in high inference
costs.

In contrast, LEAP (Zhang et al., 2024) extends
standard Few-Shot prompting by having the model
intentionally generate incorrect answers, typically
using high-temperature sampling. The model then
reflects on the difference between its mistaken
outputs and the correct answers, extracting gen-
eralizable reasoning principles. These principles,
expressed in natural language, are added to the
prompt and used in subsequent inference, enabling
the model to improve its reasoning performance.

2.3 Our Position

In this study, we propose a novel approach that, in
environments where representative Few-Shot ex-
amples are difficult to identify or unavailable, exe-
cutes the reasoning process once and, based on the
evaluation of that reasoning process with known
correct answers, extracts principles that lead to
correct answers and avoid incorrect ones. While
LEAP (Zhang et al., 2024) also learns from mis-
takes to derive “reasoning principles,” it requires
representative Few-Shot exemplars to seed the error
analysis. In contrast, our approach neither presup-
poses nor depends on carefully selected Few-Shot
examples, allowing it to operate in a more general
Zero-Shot or limited-resource setting. Furthermore,
the extracted principles are retrieved based on the
similarity between the reasoning processes of the
training and test data, rather than being applied en
masse to all test records. This design accommo-
dates a broader range of real-world tasks where
curated examples may be difficult to obtain.

3 Proposed Method

In this study, we propose a novel approach consist-
ing of two phases. First, in the training phase, QA
examples from the training data are processed us-
ing Plan and Solve inference with an LLM. The re-
sulting reasoning processes are analyzed to extract
common reasoning principles from both success-
ful and failed cases. Second, in the testing phase,
these extracted principles are applied to test data to
improve the reasoning process. Figure 2 illustrates
the system model of our approach, and Figure 1
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Training Phase

Step1: Initial Inferences Step2: Evaluate Initial Thoughts

Step3: Extraction of Reasoning Principles

—_— @ —_— Correct Thoughts Principlesoto Solve the Questions
i A P—%e
Questions Initial Thoughts Wrong Thoughts LLM Principles to Avoid the Mistakes
in Labeled Data
Step4: Constructing a Database of Reasoning Principles
e
Principles DB
Testing Phase
Step5: Initial Inferences Step6: Retrieval of Principles Step7: Re-Inference
® [
—_— Q —_— — Q) The Principle to Solve the Question
aaeesen LM The Initial Thought ~ L—— — A
The Initial Answer The Principle to Avoid the Mistake LLM Output

in Unlabeled Data

@ JA )
The Initial Thought

Figure 2: Overview of our method. In the training phase, reasoning principles are extracted from correct and
incorrect inferences on labeled data. In the testing phase, relevant principles are retrieved and injected to refine the

model’s initial reasoning.

shows sample input and output prompts for the
baseline methods (Zero-Shot Prompting, Few-Shot
Prompting) and for our method (Ours-PFS).

3.1 Training Phase

In the training phase, the following four steps are
executed:

Step 1: Initial Inference. For each question
with a known correct answer, Plan and Solve is
applied to generate a detailed reasoning process.
This reasoning trace is then used to extract useful
principles—such as strategies that led to correct
answers or helped avoid specific mistakes—and is
illustrated as Initial Thoughts in Figure 1.

Step 2: Evaluate Initial Thoughts. The out-
put answer is compared with the known correct
answer, and each case is classified as either correct
or incorrect.

Step 3: Extraction of Reasoning Principles. In
both correct and incorrect cases, the LLM receives
the question, the reasoning process, and the correct
answer. The LLM is then instructed with prompts
such as:

For correct inferences:

“Summarize the verified reasoning
that leads to the CORRECT AN-
SWER in exactly one sentence. Pro-
vide exactly one sentence that gives
a general strategy for solving similar
problems.”

For incorrect inferences:

“Give the correct reasoning that leads
to the CORRECT ANSWER in ex-
actly one sentence. Provide exactly
one sentence that gives a general
strategy for avoiding similar mis-
takes.”

These instructions enable the automatic extrac-
tion of reasoning principles that can be generalized
to similar problems.

Step 4: Constructing a Database of Reasoning
Principles. Each extracted principle is stored in
a database along with the corresponding question
and its reasoning trace. To enable similarity-based
retrieval, we concatenate the question and its CoT
reasoning into a single text string and compute its
vector representation using an embedding model.
These vectors are then stored in a vector database
as keys to retrieve relevant principles at inference
time.

3.2 Testing Phase

The testing phase consists of three steps:

Step 5: Initial Inference. Each test sample is
processed with Plan and Solve, yielding an initial
reasoning process.

Step 6: Retrieval of Principles. The test sam-
ple and its initially generated CoT are concatenated
into a single text and then embedded using the
same embedding model as in the training phase.
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We perform a similarity search via cosine similarity
against the pre-constructed database of reasoning
principles, retrieving the top-k most similar entries.
Each entry in the database corresponds to a prin-
ciple—extracted either from correct or incorrect
examples—and retrieved based on the concatena-
tion of the question and its CoT reasoning. By
injecting these retrieved principles, the model can
reinforce effective strategies from correct examples
and avoid common pitfalls from incorrect examples
before performing the final inference step.

Step 7: Re-Inference. The retrieved reasoning
principles are appended to the prompt alongside
the initial CoT output. Specifically, we place the
principles in a short natural-language paragraph
after the model’s first reasoning trace and instruct
the model to “Re-evaluate the following question
and your previous answer, applying the relevant
principles where applicable to adjust your reason-
ing.” We then ask the LLM to perform inference
again. This step leverages the extracted principles
both to avoid pitfalls identified in previous failures
and to reinforce successful reasoning strategies.

4 Experiments and Results

To validate the effectiveness of our method, we
conducted experiments in which the reasoning prin-
ciples were extracted from each LLM’s inference
process on training data, and then applied to cor-
rect the reasoning on test data. In these experi-
ments, we primarily focus on two LLMs, GPT-40
and GPT-40-mini (Hurst et al., 2024), which are
representative of the available models and widely
used in practice.

To measure text similarity, each text is converted
into an embedding representation via the Sen-
tence Transformer (all-MiniLM-L6-v2) (Reimers
and Gurevych, 2020), and the cosine similarity
is calculated. We evaluate the baseline methods
(Zero-Shot, Few-Shot, and Plan-Solve) and our
proposed approach (Ours-PF, Ours-PS, Ours-PFS)
under these models.

4.1 Benchmarks

We selected these four benchmarks to capture a
range of reasoning challenges: GPQA and MMLU-
Pro emphasize multi-step inference across scien-
tific and academic domains—tasks that are particu-
larly challenging for Zero-Shot prompting. AQuA
focuses on mathematical reasoning, while Open-
BookQA targets common-sense knowledge:

Table 1: Overview of the benchmarks used in our exper-
iments, along with the number of samples used in the
training and testing phases.

Data set Task Type Train  Test
GPQA Advanced 250 198
MMLU-Pro Advanced 560 1,120
AQuA Math 500 254
OpenBookQA  General 500 500

GPQA (GPQA-diamond and GPQA-main):
GPQA is a challenging benchmark in biology,
physics, and chemistry (Rein et al., 2024). Each
question is presented in a multiple-choice format
with four options, only one of which is correct. For
training, we used GPQA-main, which includes eas-
ier questions. For testing, we used GPQA-diamond,
a more difficult subset validated by experts and
characterized by low accuracy from non-experts.
To ensure a clear distinction between training and
test sets, any overlap with GPQA-diamond was
removed from the training data.

MMLU-Pro: A challenging benchmark com-
posed of questions derived from academic exams
and textbooks, spanning a wide range of subjects
grouped into 14 categories (Wang et al., 2024).
Each question has 10 answer choices, only one
of which is correct. Training and test samples are
randomly selected in equal numbers from each cat-
egory.

AQuA: A benchmark featuring algebraic word
problems accompanied by rationales (Ling et al.,
2017). Each question includes five multiple-choice
options, with only one correct answer.

OpenBookQA: A benchmark consisting of ques-
tions that require broad common knowledge (Mi-
haylov et al., 2018). Each question provides four
answer choices, with a single correct answer.

An overview of each benchmark and the number
of samples used in the training and testing phases
is provided in Table 1.

4.2 Comparison Methods

To ensure the reliability of the results, each ex-
periment on the training data was repeated three
times with different random seeds, and the aver-
age accuracy was computed. Accuracy is used as
the evaluation metric, since all benchmarks consist
of single-answer multiple-choice questions with
class balance. In addition, metrics like F1 score are
less suitable, as the model may sometimes produce
non-choice or abstention responses. In all experi-
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Table 2: Average accuracy (%) of different inference methods across four benchmarks for GPT-40 and GPT-40-mini
(3-shot). The best-performing method for each benchmark is highlighted in bold.

Benchmark Task Type Model Zero-Shot Plan-Solve Few-Shot Ours-PF Ours-PS Ours-PFS
VR B R (R TR
MMLUP  Adaneed GGl es e 61 60 e
L O R R (S
I e U S U O

ments, the temperature of the LLM was set to 0 to
minimize variability in inference outcomes.

In these experiments, we set &k = 3 for the num-
ber of retrieved principles in each case. Specifically,
for principle retrieval, we use three principles for
each of Ours-PF and Ours-PS, and three princi-
ples each (three successes and three failures) for
Ours-PFS. For Few-Shot, we retrieve three exam-
ple QAs based on question similarity, selecting the
top three examples from the training data with the
highest similarity to the test question, which were
answered correctly by Zero-Shot inference. Addi-
tionally, the impact of £ on inference performance
will be discussed in Section 5.

In this section, we compare our method against
several baselines to evaluate its performance.
Among the methods introduced in Section 2, we
exclude APE, DSPy, and LEAP from comparison,
as our setting does not assume access to represen-
tative Few-Shot exemplars or allow for iterative
prompt optimization.

e Zero-Shot Prompting (Zero-Shot): The
baseline method where only the instruction
“Let’s think step by step.” is appended at the
end of the task prompt.

Plan and Solve (Plan-Solve): An enhanced
baseline method, where the instruction to de-
vise a plan and solve the problem step by
step is added to promote structured problem-
solving. This method serves as the initial
thought process in our proposed approach,
helping to solve problems in a clear and sys-
tematic way.

Few-Shot Prompting (Few-Shot): For each
test question, we retrieve the most similar
training example—based on cosine similar-
ity of Sentence Transformer embeddings of
the question text—among those for which

Zero-Shot inference yielded the correct an-
swer. The question and gold answer from
this retrieved question is then provided in
the prompt to guide inference. This method
serves to demonstrate the effect of using ex-
emplars as opposed to extracted principles.

* Proposed Method: As depicted in Fig-
ure 1, our approach incorporates the ex-
tracted reasoning principles to prompt local
re-generation of the reasoning process. This
method is evaluated in three variants:

— Ours-PF (Principles from Failures):
Uses principles derived from past failed
cases to trigger correction in the reason-
ing process.

— Ours-PS (Principles from Successes):
Applies principles extracted from past
successful inferences to reinforce correct
reasoning.

— Ours-PFS (Principles from Failures
and Successes): Combines the princi-
ples from both failures and successes, si-
multaneously correcting and reinforcing
the reasoning process.

For reproducibility, we include full prompt tem-
plates and sample outputs in the Appendix.

4.3 Evaluation Results

Table 2 summarizes the average accuracy (in per-
centage) for each benchmark and model across the
different methods.

Compared with the strongest baseline, Plan-
Solve, the gains are largest on GPQA, where Ours-
PS raises GPT-40 from 49.0 % to 51.2 % and GPT-
4o0-mini from 44.8 % to 47.1 % (both > 2 pp). On
MMLU-Pro the margin is modest but consistent
(up to +0.5 pp), while on AQuA it ranges from
+0.2 pp to +1.8 pp, with the larger improvement
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Figure 3: Accuracy of GPQA and GPT-40-mini as a
function of few-shot count k.

observed for GPT-40. For OpenBookQA, which
relies more on factual recall than multi-step rea-
soning, all methods cluster within 0.2 pp of the
baseline.

The optimal variant is task-dependent. Ours-PS,
which reinforces reasoning patterns found in cor-
rect traces, is best on the two advanced benchmarks:
it tops GPQA for both models and achieves the
highest score on MMLU-Pro with GPT-40. Ours-
PFS, which blends principles from successes and
failures, excels on the Math benchmark AQuA.
Ours-PF, based solely on failure analysis, occasion-
ally matches or narrowly beats the other variants.
In contrast, the common-knowledge benchmark
OpenBookQA exhibits virtually no benefit from
principle injection. These results show that inject-
ing reasoning principles is beneficial, but the mix
of success- and failure-derived guidance that works
best varies with the domain and complexity of the
task.

Additionally, a closer look at the Few-Shot base-
line reveals that, with the simple cosine-similarity
retrieval used here, Few-Shot is actually worse than
Zero-Shot on every benchmark. It is underscoring
that uncurated exemplars alone are insufficient for
most tasks.

5 Discussion

5.1 Analysis on Multiple Benchmarks

Our experimental results show that principle injec-
tion produces the largest gain on the challenging
GPQA set (about +2 pp), a consistent but smaller
gain on MMLU-Pro (around +0.5 pp for both mod-
els), and a modest yet measurable gain on AQuA,
ranging from +0.2 to +1.0 pp depending on the
model. These patterns indicate that injecting rea-
soning principles is especially beneficial for com-
plex multi-step tasks, while still offering some im-

provement even when the baseline accuracy is al-
ready high. For example, in the MMLU-Pro bench-
mark, our method corrected a reasoning error in a
likelihood ratio test question. Initially, the model
incorrectly assessed the relationship between the
models’ log-likelihoods. After applying the princi-
ple of verifying model parameters, and encouraging
a deeper understanding of the likelihood ratio test,
the model recalculated correctly and identified the
accurate answer.

Meanwhile, no improvement is observed on
OpenBookQA, which relies heavily on common
knowledge rather than logical inference. Our
method performed similarly to Zero-Shot, suggest-
ing that tasks requiring common-sense knowledge,
which the model already struggles with in Zero-
Shot, cannot be resolved by adjusting the reason-
ing process alone. Detailed examples of both the
MMLU-Pro and OpenBookQA cases discussed
above are provided in the Appendix.

Although previous studies often report that Few-
Shot prompts can surpass Zero-Shot inference, our
experiments tell a different story. For each test
query we retrieved the training question closest in
embedding space that Zero-Shot had already an-
swered correctly; these uncurated exemplars may
resemble the target problem superficially, but they
seldom capture the underlying reasoning structure
required to solve it. This finding exposes a practical
limitation: the accuracy gains of Few-Shot prompt-
ing hinge on expert curation—an asset that is costly
to reproduce in real deployments. By contrast, our
principle-injection method still yields consistent
improvements even when only raw, uncurated QA
pairs are available.

5.2 Effect of varying k on performance

To examine how the number of retrieved principles
influences accuracy, we varied the retrieval depth
k. For GPQA, the results from GPT-40-mini with
k = 1to k = 4 are shown in Figure 3. We observe
that as k increases, the performance becomes more
stable, but the accuracy does not significantly in-
crease. This suggests that while smaller values of
k might result in ineffective principle retrieval due
to a limited number of principles being retrieved,
larger values of k£ can lead to confusion, as the
model may struggle to determine which principles
to follow when too many are presented. Therefore,
although larger values of & bring more principles,
it does not necessarily improve the accuracy signif-
icantly.
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In this study, we opted for k¥ = 3 as a balance
between the number of principles retrieved and the
stability of performance. However, the optimal
value of £ may vary depending on how well the
database of principles is constructed and how effec-
tive the retrieval mechanism is at selecting relevant
principles. The results for other benchmarks con-
cerning GPT-40-mini with varying k (from k = 1
to k = 4) are provided in the Appendix.

5.3 Category-Level Analysis on MMLU-Pro

As shown in Table 2, our method yields accuracy
improvements across some benchmarks. To better
understand its robustness and generalizability, we
conduct a fine-grained analysis on the MMLU-Pro
benchmark, which covers a wide range of academic
subjects (e.g., chemistry, business, history) and
presents diverse reasoning challenges. Given its
broad coverage, MMLU-Pro is particularly well-
suited for examining how our method performs
across different categories.

Figure 4 compares the accuracy of Ours-PFS
with Plan-Solve for each category, using GPT-40-
mini and the full range of £k = 1 to k = 4 across
all seeds. In this figure, categories where the hor-
izontal axis is positive indicate areas where our
proposed method provides a improvement over
Plan-Solve. We observe that Ours-PFS consistently
boosts performance in logic-heavy domains such
as business, physics, and engineering. In contrast,
categories like philosophy show slightly negative
gains, suggesting that these areas may rely more
on factual recall or specialized knowledge rather
than step-by-step logical reasoning. This implies
that certain question types might require additional
knowledge or alternative prompting strategies.

6 Conclusion

In this study, we proposed a novel in-context learn-
ing approach that applies reasoning principles ex-
tracted from LLM inferences on training data with-
out relying on task-specific Few-Shot examples to
improve reasoning on test data. Experimental re-
sults demonstrated that our method achieved an
accuracy improvement of up to 2% on complex rea-
soning tasks such as GPQA compared to Zero-Shot,
Plan and Solve, and Few-Shot methods. Moreover,
the effectiveness of our approach on both GPT-40
and GPT-40-mini suggests its potential applicabil-
ity to a wider range of LLMs. In future work,
we plan to further investigate the generality of our
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other -
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history
psychology
chemistry
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Figure 4: Accuracy difference between Ours—PFS and
Plan-Solve across MMLU domains (k=1 ~ 4 shot).

method by applying it to diverse tasks and models,
including the reasoning trajectories and strategies
of Al agents involved in complex decision-making
processes, and to refine our approach for even more
robust correction of reasoning processes. An im-
portant future direction is to explore whether the
required amount of training data can be further re-
duced for tasks with a limited variety of reasoning
principles. In addition, verifying the potential for
domain transfer remains an open challenge, and we
aim to evaluate how well the extracted principles
generalize across different domains.

7 Limitations

One practical limitation of our method is the in-
creased inference cost compared to a standard Zero-
Shot CoT approach. During both the training and
testing phases, two inference steps are required: (1)
an initial inference to generate the reasoning trace,
and (2) a second step to extract principles or refine
the reasoning with retrieved principles.

However, the principle extraction step in train-
ing only needs to be performed once per domain
or benchmark. In real-world scenarios where the
domain remains consistent, these principles can
be reused, reducing the additional cost to just one
inference per question during testing. While the
initial training phase incurs some overhead, the
method is more scalable than alternatives like Few-
Shot prompting, which require curated examples
or optimization.

In addition, it assumes access to a modest
amount of task data to extract useful reasoning
patterns. In our experiments, around 500 exam-
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ples per benchmark were sufficient to yield gains.
However, in extremely low-resource settings where
such examples are unavailable, performance may
be more limited.

Another limitation of our method is that it as-
sumes access to labeled QA data for principle ex-
traction. In many real-world scenarios, such QA
pairs are readily available. For example, they can
be obtained from question—answer logs in customer
service systems, community Q&A platforms, or ex-
isting QA benchmarks. This makes the assumption
practically reasonable.

Ethics Statement

This work uses only publicly available benchmarks
and LLMs, and does not involve any human sub-
jects or private data.

Supplementary Materials Availability
Statement

All benchmarks used in our experiments are pub-
licly available open-source benchmarks. This ex-
periment was conducted through prompt-driven
experiments, and the full text of the prompts neces-
sary for reproduction is provided in the Appendix.
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function of the number of retrieved principles k.

A Additional Results for Varying i

Here, we present the accuracy experiments for GPT-
40-mini with varying k values from 1 to 4, which
were not included in the main text, for each bench-
mark.

A.1 MMLU-Pro

As shown in Figure 5, increasing k stabilizes per-
formance on the MMLU-Pro benchmark. However,
no significant changes are observed with varying
k, and the performance of Ours methods slightly
outperforms Plan-Solve.

A2 AQuA

Figure 6 shows that as k increases, the performance
on AQuA remains relatively stable across methods,
with only slight variations. The accuracy does not
fluctuate significantly with varying &, and Ours-PS
and Ours-PFS maintains a consistent performance,
slightly outperforming the other methods.

A.3 OpenBookQA

Figure 7 demonstrates the stable performance on
OpenBookQA across varying k. Most methods
show no significant change in accuracy, reflect-
ing the limited potential for improvement in this
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Figure 7: Accuracy of OpenBookQA for GPT-40-mini
as a function of the number of retrieved principles k.

task. While Few-Shot has relatively low accuracy
to begin with, increasing k clearly improves per-
formance. This suggests that for tasks like Open-
BookQA, which rely on general knowledge, the
Few-Shot method might enhance answer accuracy
by incorporating relevant knowledge from the QAs.
However, it remains lower in accuracy compared
to the other methods.



B Prompt Templates

Here, we provide template prompts used for the extraction and application of reasoning principles. In
each template, placeholders enclosed in curly braces (e.g., {question}) indicate elements that will be
dynamically inserted based on the input data.

B.1 Prompt to Extract Reasoning Principles

For principle extraction, the prompt requires the training question, the correct answer, and the initial
reasoning trace as inputs. We design two separate prompts depending on whether the initial reasoning
was correct or incorrect:

* For correct inferences, the prompt asks the model to summarize the reasoning path that led to the
correct answer and to extract a general strategy for solving similar problems.

* For incorrect inferences, the prompt instructs the model to reconstruct the correct reasoning and
derive a strategy to avoid similar mistakes in the future.

This distinction allows the system to capture both positive and negative reasoning patterns that can be
generalized across examples, as illustrated in the following prompts.

Prompt to Extract Reasoning Principles for Correct Thoughts

You are a specialist tutor.

NOTE: The ATTEMPTED ANSWER may be partially or entirely incorrect. Reconstruct the correct reason-
ing from the QUESTION and CORRECT ANSWER; reuse parts of the attempt only after independent verification.

QUESTION:
{question}

ATTEMPTED ANSWER (may contain errors):
{initial thoughts}

CORRECT ANSWER:
{correct answer}

Write a compact solution for future learners:
* Summarize the verified reasoning that leads to the CORRECT ANSWER in exactly one sentence.
* Provide exactly one sentence that gives a general strategy for solving similar problems.

You are a specialist tutor.

NOTE: The ATTEMPTED ANSWER may be partially or entirely incorrect. Reconstruct the correct reason-
ing from the QUESTION and CORRECT ANSWER; reuse parts of the attempt only after independent verification.

QUESTION:
{question}

ATTEMPTED ANSWER (may contain errors):
{initial thoughts}

CORRECT ANSWER:
{correct answer}

Write a compact solution for future learners:
* Give the correct reasoning that leads to the CORRECT ANSWER in exactly one sentence.
* Provide exactly one sentence that gives a general strategy for avoiding similar mistakes.
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B.2 Prompt to Apply Reasoning Principles at Test Time

The following prompt is used in the inference phase of QOurs-PF, Ours-PS, and Ours-PFS. It presents
the original question, the model’s previous answer, and the retrieved reasoning principles. The model
is then instructed to revise its reasoning based on these principles. The core prompt structure is shared
across the three variants. Ours-PF uses only principles derived from failed examples, Ours-PS uses only
those derived from successful examples, and Ours-PFS uses both.

Prompt for Re-Inference with Injected Principles

Re-evaluate the following question and your previous answer, applying the relevant principles where applicable
to adjust your reasoning.

Select the single best option (A, B, C, ...). 'None’ is not allowed.

Question:
{question}

Your Previous Answer:
{initial thoughts}

Principles for Avoiding Mistakes:
(F-1) {failure_principle_1}
(F-2) {failure_principle_2}

Principles for Achieving Correct Answers:
(S-1) {success_principle_1}
(S-2) {success_principle_2}

Answer: Let’s first understand the problem and devise a plan to solve the problem.
Then, let’s carry out the plan and solve the problem step by step.

C Prompt Examples on MMLU-Pro benchmark

This appendix provides the exact prompt templates used in our experiments. For the MMLU-Pro
benchmark, we include complete examples (both model input and output) for Plan-Solve and Ours-PFS.
In addition, we provide the model input prompts for the other methods (Zero-Shot, Few-Shot, Ours-PF,
and Ours-PS) as supplementary material, assuming the case where the number of retrieved principles or
Few-Shot examples is £ = 1.

C.1 Plan-Solve

We present both the input prompt and the corresponding model output below as a representative example.

Select the single best option (A, B, C, D). ’None’ is not allowed.

Question: Suppose that we are interested in testing the null hypothesis that a GARCH(2,2) model can be restricted to a
process with a constant conditional variance using the likelihood ratio test approach. Which of the following statements
are true?

Options: A. The test statistic will follow a chi-squared distribution with 2 degrees of freedom under the null hypothesis,
B. The value of the log-likelihood function will almost always be bigger for the restricted model than for the unrestricted
model, C. If the relevant values of the log-likelihood functions are -112.3 and -118.4, the value of the test statistic is
12.2, D. The likelihood ratio test compares the slopes of the log-likelihood function at the maximum and at the restricted
parameter value.

Answer: Let’s first understand the problem and devise a plan to solve the problem.

Then, let’s carry out the plan and solve the problem step by step.
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To solve the problem, we need to analyze each of the statements provided in the context of the likelihood ratio test
(LRT) for a GARCH(2,2) model being tested against a restricted model with constant conditional variance.

### Step 1: Understanding the Likelihood Ratio Test The likelihood ratio test compares the goodness of fit of two
models: the unrestricted model (GARCH(2,2)) and the restricted model (constant variance). The test statistic is
calculated as:

LR = —2 x (Log-Likelihood of Restricted Model — Log-Likelihood of Unrestricted Model)

Under the null hypothesis, this test statistic follows a chi-squared distribution with degrees of freedom equal to the
difference in the number of parameters estimated in the two models.

### Step 2: Analyzing Each Statement

**Statement A:** ""The test statistic will follow a chi-squared distribution with 2 degrees of freedom under the null
hypothesis.""

- The GARCH(2,2) model has more parameters than the constant variance model. The constant variance model has
1 parameter (the mean), while the GARCH(2,2) model has 4 parameters (mean, two GARCH parameters, and one
variance parameter). Therefore, the difference in parameters is 3. Thus, the test statistic will follow a chi-squared
distribution with 3 degrees of freedom, not 2. **This statement is false.**

**Statement B:** ""The value of the log-likelihood function will almost always be bigger for the restricted model than
for the unrestricted model.""

- The log-likelihood of the unrestricted model (GARCH(2,2)) should be greater than or equal to that of the restricted
model (constant variance) because the unrestricted model has more parameters and can fit the data better. **This
statement is true.**

**Statement C:** ""If the relevant values of the log-likelihood functions are -112.3 and -118.4, the value of the test
statistic is 12.2.""

- The test statistic is calculated as:

LR = —2 x (—118.4 — (—112.3)) = —2 x (—118.4 4 112.3) = —2 x (—6.1) = 12.2

This calculation is correct. **This statement is true.**

**Statement D:** ""The likelihood ratio test compares the slopes of the log-likelihood function at the maximum and at
the restricted parameter value.""

- The likelihood ratio test does not compare slopes; it compares the log-likelihood values of the two models. The test
statistic is based on the difference in log-likelihoods, not on the slopes. **This statement is false.**

### Step 3: Conclusion Based on the analysis, the true statements are B and C. However, since we can only select one
option, we need to choose the best one.

- ¥*B** is a general statement about the log-likelihood values, which is always true. - **C** is a specific calculation
that is also true.

Since both B and C are true, but B is a broader statement about the nature of the models, we will select **B** as the
best option.

### Final Answer: **B. The value of the log-likelihood function will almost always be bigger for the restricted model
than for the unrestricted model.** X (Correct: C)

C.2  Ours-PFS (Principles from Failures and Successes)

As with Plan-Solve, we provide both the model input and output to illustrate how our method (Ours-PFS)
operates in practice.

Reevaluate the following question and your previous answer, applying the relevant principles where applicable to
adjust your reasoning. Select the single best option (A, B, C, D, E, F, G, H, L, J). ’None’ is not allowed.

Question: Suppose that we are interested in testing the null hypothesis that a GARCH(2,2) model can be restricted to a
process with a constant conditional variance using the likelihood ratio test approach. Which of the following statements
are true?

Options: A. The test statistic will follow a chi-squared distribution with 2 degrees of freedom under the null hypothesis,
B. The value of the log-likelihood function will almost always be bigger for the restricted model than for the unrestricted
model, C. If the relevant values of the log-likelihood functions are -112.3 and -118.4, the value of the test statistic is
12.2, D. The likelihood ratio test compares the slopes of the log-likelihood function at the maximum and at the restricted
parameter value.

Your Previous Answer: To solve the problem, we need to analyze each of the statements provided in the context of the
likelihood ratio test (LRT) for a GARCH(2,2) model being tested against a restricted model with constant conditional
variance.
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### Step 1: Understanding the Likelihood Ratio Test The likelihood ratio test compares the goodness of fit of two
models: the unrestricted model (GARCH(2,2)) and the restricted model (constant variance). The test statistic is
calculated as:

LR = —2 x (Log-Likelihood of Restricted Model — Log-Likelihood of Unrestricted Model)

Under the null hypothesis, this test statistic follows a chi-squared distribution with degrees of freedom equal to the
difference in the number of parameters estimated in the two models.

### Step 2: Analyzing Each Statement

**Statement A:** ""The test statistic will follow a chi-squared distribution with 2 degrees of freedom under the null
hypothesis.""

- The GARCH(2,2) model has more parameters than the constant variance model. The constant variance model has
1 parameter (the mean), while the GARCH(2,2) model has 4 parameters (mean, two GARCH parameters, and one
variance parameter). Therefore, the difference in parameters is 3. Thus, the test statistic will follow a chi-squared
distribution with 3 degrees of freedom, not 2. **This statement is false.**

**Statement B:** ""The value of the log-likelihood function will almost always be bigger for the restricted model than
for the unrestricted model.""

- The log-likelihood of the unrestricted model (GARCH(2,2)) should be greater than or equal to that of the restricted
model (constant variance) because the unrestricted model has more parameters and can fit the data better. **This
statement is true.**

**Statement C:** ""If the relevant values of the log-likelihood functions are -112.3 and -118.4, the value of the test
statistic is 12.2.""

- The test statistic is calculated as:

LR = —2 x (—118.4 — (—112.3)) = —2 x (—118.4 + 112.3) = —2 x (—6.1) = 12.2

This calculation is correct. **This statement is true.**

**Statement D:** ""The likelihood ratio test compares the slopes of the log-likelihood function at the maximum and at
the restricted parameter value.""

- The likelihood ratio test does not compare slopes; it compares the log-likelihood values of the two models. The test
statistic is based on the difference in log-likelihoods, not on the slopes. **This statement is false.**

### Step 3: Conclusion Based on the analysis, the true statements are B and C. However, since we can only select one
option, we need to choose the best one.

- ¥*B** is a general statement about the log-likelihood values, which is always true. - **C** is a specific calculation
that is also true.

Since both B and C are true, but B is a broader statement about the nature of the models, we will select **B** as the
best option.

### Final Answer: **B. The value of the log-likelihood function will almost always be bigger for the restricted model
than for the unrestricted model.** X (Correct: C)

Principles for Avoiding Mistakes:

(F-1) To test whether the VAR(6) can be restricted to a VAR(4), use the likelihood ratio test statistic calculated as
LR = —2-log (5:332%), which yields a value of approximately 77.07.

To avoid similar mistakes, ensure to correctly apply the likelihood ratio test formula and verify each step of the

calculation for accuracy.

Principles for Achieving Correct Answers:

(S-1) The statement that is NOT true is D, as the critical value for the rejection region actually decreases when the
degrees of freedom decrease, contrary to what is claimed.

A general strategy for solving similar problems is to analyze each statement in the context of the properties and
characteristics of the relevant statistical distribution.

Answer: Let’s first understand the problem and devise a plan to solve the problem.
Then, let’s carry out the plan and solve the problem step by step.

MMLU-Pro: Ours-PFS — Model Output Prompt Example

Let’s reevaluate the question and the statements provided regarding the likelihood ratio test (LRT) for a GARCH(2,2)
model against a restricted model with constant conditional variance.

### Step 1: Understanding the Likelihood Ratio Test The likelihood ratio test compares the goodness of fit of two
models: the unrestricted model (GARCH(2,2)) and the restricted model (constant variance). The test statistic is
calculated as:

LR = —2 x (Log-Likelihood of Restricted Model — Log-Likelihood of Unrestricted Model)

Under the null hypothesis, this test statistic follows a chi-squared distribution with degrees of freedom equal to the
difference in the number of parameters estimated in the two models.
### Step 2: Analyzing Each Statement
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**Statement A:** ""The test statistic will follow a chi-squared distribution with 2 degrees of freedom under the null
hypothesis.""

- The GARCH(2,2) model has 4 parameters (mean, two GARCH parameters, and one variance parameter), while the
constant variance model has 1 parameter. The difference in the number of parameters is 3. Therefore, the test statistic
will follow a chi-squared distribution with 3 degrees of freedom, not 2. **This statement is false.**

**Statement B:** ""The value of the log-likelihood function will almost always be bigger for the restricted model than
for the unrestricted model.""

- The log-likelihood of the unrestricted model (GARCH(2,2)) should be greater than or equal to that of the restricted
model (constant variance) because the unrestricted model has more parameters and can fit the data better. **This
statement is false.** The log-likelihood of the unrestricted model is typically higher, not the restricted model.
**Statement C:** ""If the relevant values of the log-likelihood functions are -112.3 and -118.4, the value of the test
statistic is 12.2.""

- The test statistic is calculated as:

LR = —2 x (—118.4 — (—112.3)) = —2 x (—118.4 4+ 112.3) = —2 x (—6.1) = 12.2

This calculation is correct. **This statement is true.**

**Statement D:** ""The likelihood ratio test compares the slopes of the log-likelihood function at the maximum and at
the restricted parameter value.""

- The likelihood ratio test does not compare slopes; it compares the log-likelihood values of the two models. The test
statistic is based on the difference in log-likelihoods, not on the slopes. **This statement is false.**

#i## Step 3: Conclusion Based on the analysis, the true statement is C.

- #*A** s false because the degrees of freedom are 3, not 2. - **B** is false because the unrestricted model typically
has a higher log-likelihood. - **C** is true as the calculation of the test statistic is correct. - **D** is false because the
test does not compare slopes.

Since we can only select one option and C is the only true statement, the best option is:

### Final Answer: **C. If the relevant values of the log-likelihood functions are -112.3 and -118.4, the value of the test
statistic is 12.2.%*/

C.3 Other Methods

Below, we also provide input prompt examples for the other methods used in our experiments. Few-Shot
uses the most similar successful example (based on question embedding similarity) as a single in-context
demonstration. Ours-PF injects only principles derived from failed cases to correct prior mistakes, while
Ours-PS uses only principles from successful cases to reinforce effective reasoning. Ours-PFS, which

combines both, is presented earlier with complete input-output examples.

Select the single best option (A, B, C, D). ’None’ is not allowed.

Question: Suppose that we are interested in testing the null hypothesis that a GARCH(2,2) model can be
restricted to a process with a constant conditional variance using the likelihood ratio test approach. Which of the
following statements are true?

Options: A. The test statistic will follow a chi-squared distribution with 2 degrees of freedom under the null hypothesis,
B. The value of the log-likelihood function will almost always be bigger for the restricted model than for the unrestricted
model, C. If the relevant values of the log-likelihood functions are -112.3 and -118.4, the value of the test statistic
is 12.2, D. The likelihood ratio test compares the slopes of the log-likelihood function at the maximum and at the
restricted parameter value.

Answer: Let’s think step by step.

Select the single best option (A, B, C, D). ’None’ is not allowed.

Question: Which of the following propositions would be rejected by those who describe themselves as critical legal
theorists?

Options: A. Law is unstable., B. Law is determinate., C. Law reflects economic power., D. Law is politics., E. Law is a
social construct.

Answer: B

Question: Suppose that we are interested in testing the null hypothesis that a GARCH(2,2) model can be restricted to a
process with a constant conditional variance using the likelihood ratio test approach. Which of the following statements
are true?
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Answer: A. The test statistic will follow a chi-squared distribution with 2 degrees of freedom under the null hypothesis,
B. The value of the log-likelihood function will almost always be bigger for the restricted model than for the unrestricted
model, C. If the relevant values of the log-likelihood functions are -112.3 and -118.4, the value of the test statistic is
12.2, D. The likelihood ratio test compares the slopes of the log-likelihood function at the maximum and at the restricted
parameter value.

Answer: Let’s think step by step.

Reevaluate the following question and your previous answer, applying the relevant principles where applicable to
adjust your reasoning. Select the single best option (A, B, C, D, E, F, G, H, I, J). ’None’ is not allowed.

Question: Suppose that we are interested in testing the null hypothesis that a GARCH(2,2) model can be restricted to a
process with a constant conditional variance using the likelihood ratio test approach. Which of the following statements
are true?

Options: A. The test statistic will follow a chi-squared distribution with 2 degrees of freedom under the null hypothesis,
B. The value of the log-likelihood function will almost always be bigger for the restricted model than for the unrestricted
model, C. If the relevant values of the log-likelihood functions are -112.3 and -118.4, the value of the test statistic is
12.2, D. The likelihood ratio test compares the slopes of the log-likelihood function at the maximum and at the restricted
parameter value.

Your Previous Answer: To solve the problem, we need to analyze each of the statements provided in the context of the
likelihood ratio test (LRT) for a GARCH(2,2) model being tested against a restricted model with constant conditional
variance.

### Step 1: Understanding the Likelihood Ratio Test The likelihood ratio test compares the goodness of fit of two
models: the unrestricted model (GARCH(2,2)) and the restricted model (constant variance). The test statistic is
calculated as:

LR = —2 x (Log-Likelihood of Restricted Model — Log-Likelihood of Unrestricted Model)

Under the null hypothesis, this test statistic follows a chi-squared distribution with degrees of freedom equal to the
difference in the number of parameters estimated in the two models.

#i## Step 2: Analyzing Each Statement

**Statement A:** ""The test statistic will follow a chi-squared distribution with 2 degrees of freedom under the null
hypothesis.""

- The GARCH(2,2) model has more parameters than the constant variance model. The constant variance model has
1 parameter (the mean), while the GARCH(2,2) model has 4 parameters (mean, two GARCH parameters, and one
variance parameter). Therefore, the difference in parameters is 3. Thus, the test statistic will follow a chi-squared
distribution with 3 degrees of freedom, not 2. **This statement is false.**

**Statement B:** ""The value of the log-likelihood function will almost always be bigger for the restricted model than
for the unrestricted model.""

- The log-likelihood of the unrestricted model (GARCH(2,2)) should be greater than or equal to that of the restricted
model (constant variance) because the unrestricted model has more parameters and can fit the data better. **This
statement is true.**

**Statement C:** ""If the relevant values of the log-likelihood functions are -112.3 and -118.4, the value of the test
statistic is 12.2.""

- The test statistic is calculated as:

LR = —2 x (—118.4 — (—112.3)) = -2 x (—118.4 4 112.3) = —2 x (—6.1) = 12.2

This calculation is correct. **This statement is true.**

**Statement D:** ""The likelihood ratio test compares the slopes of the log-likelihood function at the maximum and at
the restricted parameter value.""

- The likelihood ratio test does not compare slopes; it compares the log-likelihood values of the two models. The test
statistic is based on the difference in log-likelihoods, not on the slopes. **This statement is false.**

### Step 3: Conclusion Based on the analysis, the true statements are B and C. However, since we can only select one
option, we need to choose the best one.

- ¥*B** is a general statement about the log-likelihood values, which is always true. - **C** is a specific calculation
that is also true.

Since both B and C are true, but B is a broader statement about the nature of the models, we will select **B** as the
best option.

### Final Answer: **B. The value of the log-likelihood function will almost always be bigger for the restricted model
than for the unrestricted model.** X (Correct: C)

Principles for Avoiding Mistakes:

(F-1) To test whether the VAR(6) can be restricted to a VAR(4), use the likelihood ratio test statistic calculated as
LR = -2 log (8:88;2 ), which yields a value of approximately 77.07.

To avoid similar mistakes, ensure to correctly apply the likelihood ratio test formula and verify each step of the

calculation for accuracy.
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Answer: Let’s first understand the problem and devise a plan to solve the problem. Then, let’s carry out the plan and
solve the problem step by step.

Reevaluate the following question and your previous answer, applying the relevant principles where applicable to
adjust your reasoning. Select the single best option (A, B, C, D, E, F, G, H, L, J). ’None’ is not allowed.

Question: Suppose that we are interested in testing the null hypothesis that a GARCH(2,2) model can be restricted to a
process with a constant conditional variance using the likelihood ratio test approach. Which of the following statements
are true?

Options: A. The test statistic will follow a chi-squared distribution with 2 degrees of freedom under the null hypothesis,
B. The value of the log-likelihood function will almost always be bigger for the restricted model than for the unrestricted
model, C. If the relevant values of the log-likelihood functions are -112.3 and -118.4, the value of the test statistic is
12.2, D. The likelihood ratio test compares the slopes of the log-likelihood function at the maximum and at the restricted
parameter value.

Your Previous Answer: To solve the problem, we need to analyze each of the statements provided in the context of the
likelihood ratio test (LRT) for a GARCH(2,2) model being tested against a restricted model with constant conditional
variance.

### Step 1: Understanding the Likelihood Ratio Test The likelihood ratio test compares the goodness of fit of two
models: the unrestricted model (GARCH(2,2)) and the restricted model (constant variance). The test statistic is
calculated as:

LR = —2 x (Log-Likelihood of Restricted Model — Log-Likelihood of Unrestricted Model)

Under the null hypothesis, this test statistic follows a chi-squared distribution with degrees of freedom equal to the
difference in the number of parameters estimated in the two models.

### Step 2: Analyzing Each Statement

**Statement A:** ""The test statistic will follow a chi-squared distribution with 2 degrees of freedom under the null
hypothesis.""

- The GARCH(2,2) model has more parameters than the constant variance model. The constant variance model has
1 parameter (the mean), while the GARCH(2,2) model has 4 parameters (mean, two GARCH parameters, and one
variance parameter). Therefore, the difference in parameters is 3. Thus, the test statistic will follow a chi-squared
distribution with 3 degrees of freedom, not 2. **This statement is false.**

**Statement B:** ""The value of the log-likelihood function will almost always be bigger for the restricted model than
for the unrestricted model.""

- The log-likelihood of the unrestricted model (GARCH(2,2)) should be greater than or equal to that of the restricted
model (constant variance) because the unrestricted model has more parameters and can fit the data better. **This
statement is true.**

**Statement C:** ""If the relevant values of the log-likelihood functions are -112.3 and -118.4, the value of the test
statistic is 12.2.""

- The test statistic is calculated as:

LR = —2 x (—118.4 — (—112.3)) = —2 x (—118.4 + 112.3) = =2 x (—6.1) = 12.2

This calculation is correct. **This statement is true.**

*#Statement D:** ""The likelihood ratio test compares the slopes of the log-likelihood function at the maximum and at
the restricted parameter value.""

- The likelihood ratio test does not compare slopes; it compares the log-likelihood values of the two models. The test
statistic is based on the difference in log-likelihoods, not on the slopes. **This statement is false.**

### Step 3: Conclusion Based on the analysis, the true statements are B and C. However, since we can only select one
option, we need to choose the best one.

- **B** is a general statement about the log-likelihood values, which is always true. - **C** is a specific calculation
that is also true.

Since both B and C are true, but B is a broader statement about the nature of the models, we will select **B** as the
best option.

### Final Answer: **B. The value of the log-likelihood function will almost always be bigger for the restricted model
than for the unrestricted model.** X (Correct: C)

Principles for Achieving Correct Answers:

(S-1) The statement that is NOT true is D, as the critical value for the rejection region actually decreases when the
degrees of freedom decrease, contrary to what is claimed.

A general strategy for solving similar problems is to analyze each statement in the context of the properties and
characteristics of the relevant statistical distribution.

Answer: Let’s first understand the problem and devise a plan to solve the problem. Then, let’s carry out the plan and
solve the problem step by step.
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D Prompt Examples on OpenBookQA benchmark

This appendix provides the exact prompt templates used in our experiments on the OpenBookQA
benchmark. For OpenBookQA, we include complete examples (both model input and output) for Zero-
Shot and Ours-PFS.

D.1 Plan-Solve
The input and output prompts for Plan-Solve on OpenBookQA are shown below.

Select the single best option (A, B, C, D). ’None’ is not allowed.

Question: Camouflage can be used by animals for hunting

Options: A. water, B. trees, C. air, D. meals

Answer: Let’s first understand the problem and devise a plan to solve the problem.
Then, let’s carry out the plan and solve the problem step by step.

To determine the best option related to camouflage being used by animals for hunting, we need to consider how
camouflage functions in the context of hunting.

1. **Water**: While some animals may use water as part of their environment, it is not directly related to camouflage
for hunting.

2. **Trees**: Many animals use trees and foliage to blend into their surroundings, making it easier to ambush prey.
This is a strong candidate.

3. ¥*Air**: While some animals may use the air (like birds) to hunt, it does not directly relate to camouflage in the
same way as physical environments do.

4. **Meals**: This option refers to the food itself rather than the environment used for camouflage.

Given this analysis, the best option that relates to camouflage being used by animals for hunting is:

**B. trees** X (Correct: D. meals)
This option directly connects to the idea of animals blending into their environment (like trees) to hunt effectively.

D.2 Ours-PFS (Principles from Failures and Successes)

The input and output prompts for Ours-PES on OpenBookQA are provided below.

Re-evaluate the following question and your previous answer, applying the relevant principles where applicable
to adjust your reasoning. Select the single best option (A, B, C, D). ’None’ is not allowed.

Question: Camouflage can be used by animals for hunting

Options: A. water, B. trees, C. air, D. meals

Your Previous Answer: To determine the best option related to camouflage being used by animals for hunting, we need
to consider how camouflage functions in the context of hunting.

1. **Water**: While some animals may use water as part of their environment, it is not directly related to camouflage
for hunting.

2. **Trees**: Many animals use trees and foliage to blend into their surroundings, making it easier to ambush prey.
This is a strong candidate.

3. #*Air**: While some animals may use the air (like birds) to hunt, it does not directly relate to camouflage in the
same way as physical environments do.

4. **Meals**: This option refers to the food itself rather than the environment used for camouflage.

Given this analysis, the best option that relates to camouflage being used by animals for hunting is:

*#*B, trees** X (Correct: D. meals)
This option directly connects to the idea of animals blending into their environment (like trees) to hunt effectively.

Principles for Avoiding Mistakes:

(F-1) A camouflaged creature in a patterned room will be difficult to see, making it ""rough to spot"" due to its ability to
blend in with the environment. To avoid similar mistakes, always ensure that your reasoning aligns with the fundamental
concepts being tested, such as the definition of camouflage in this case.

" "
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Principles for Achieving Correct Answers:

(S-1) Coloration in animals primarily serves the function of protection, such as through camouflage or warning signals
against predators. To solve similar problems, evaluate each option in relation to the context of the question and identify
the most relevant function or purpose.

Answer: Let’s first understand the problem and devise a plan to solve the problem.
Then, let’s carry out the plan and solve the problem step by step.

Let’s re-evaluate the question and the options provided, applying the relevant principles to ensure a thorough
analysis.

**Question: ** Camouflage can be used by animals for hunting.
**Options:** A. water B. trees C. air D. meals

**Analysis of Each Option:**

A. **Water** - While some animals may hunt in or around water, water itself does not serve as a camouflage mechanism.
It is more of a habitat than a camouflage strategy.

B. **Trees** - This option is highly relevant. Many animals, such as certain birds and insects, use trees as a backdrop
to blend in with their environment while hunting. This directly relates to the concept of camouflage.

C. **Air** - Similar to water, air is not a camouflage medium. While some animals may use the air for hunting (like
birds), it does not pertain to camouflage in the same way that physical structures do.

D. *¥*Meals** - This option refers to the food that animals hunt, but it does not relate to camouflage. Meals are the
target of hunting, not a method or environment for camouflage.

**Conclusion:** After reevaluating the options, the best choice remains: **B. trees**
This option directly connects to the use of camouflage in hunting, as many animals utilize trees to conceal themselves
from their prey.

**Principles for Avoiding Mistakes:** - Always ensure that the reasoning aligns with the fundamental concepts being
tested, such as the definition and application of camouflage in this case.

**Principles for Achieving Correct Answers:** - Evaluate each option in relation to the context of the question and
identify the most relevant function or purpose, which in this case is how camouflage aids in hunting.
Thus, the final answer is **B. trees™*.

**Conclusion**: By applying the principles of understanding the core function, eliminating irrelevant options, and
selecting the most relevant option, the most reasonable choice is "B. Trees." X (Correct: D. meals)

595



